文档库 最新最全的文档下载
当前位置:文档库 › PADS Router 走线技巧

PADS Router 走线技巧

PADS Router 走线技巧
PADS Router 走线技巧

PADS Router 走线技巧

如果在 PADS Router 中按 F3 直线时经常出现 Pin6 这样的出线时, 应该是没有设置好,并不是软件本身的问题.

解决方法如下:

1.双击 PCB 空白的地方, 弹出 Design Properties 窗口, 打开 Pad Entry 选项卡, 将 Any

angle 去勾.

2.再打开 Same net 选项卡, 点击 Corner 弹出 Clearance Value 对话框, 输入 0.5 后点 OK.

接下来你再按 F3 拉线时就会自动修正, 变成美观, 别的地方走线也会变得美观.

饭牛于 2012-04-20 11:09

文档原始地址: https://bit.ly/PadsRouter1 (需翻墙)

Word中的制表符及其使用方法

制表符 打开Word10,可以在纸张的右上方看到一个“标尺切换”的图标“”,点击它,可以使Word10的界面显示横标尺和竖标尺。再一次点击它,就可以隐藏标尺。点击段落命令框中的“”,可以显示诸如空格、制表符操作等的标记。 在横标尺和竖标尺延长相交的地方可以看到一个图标,其就是“制表符切换”的图标,用鼠标点击它,可以使之在不同类型的制表符之间进行切换。各个不同类型的制表符的功能如下表所示: 所谓的制表位是指制表符在横标尺上的位置。首先,我们需要说明一下,Word10中的制表位分为两种:软件默认制表位和用户设置的制表位。默认制表位自标尺左端起

自动设置,默认间距为0.75厘米,即两个汉字宽。也就是说每隔0.75厘米在标尺上存在一个默认制表位。所以顶格的段落第一个字如果需要设置为空两格,可以直接按Tab 键即可达到目的。我们真正需要讨论的是用户设置的制表位。有两种方法可以在横标尺上添加用户制表位。 方法1:点击“制表符切换”图标,切换到所需的制表符上来。然后将鼠标移到“横标尺”上所需插入制表符的位置上,点击左键,即可插入一个制表符,生成制表位。 点击样式对话框中的红色高亮中的图标。 方法2:点击“开始→样式→新建样式→格式→制表位”打开“制表位对话框”。在制表位位置的框中输入数值大小,格式是:X厘米,X是一个数值。所对应的制表位的位置为:左对齐时向右的X厘米处。可以同时插入多个数值。

新建样式 例如A4的纸张,宽度为21厘米。左右页边距设置为2.5厘米,那么要使得制表位在纸张的正中央,则厘米;设置X=16厘米,那么制表位就在右对齐处的位置。 在“制表位对话框”中的“对齐方式”中所选定的就是在所在的制表位上插入哪种类型的制表符。 在“制表位对话框”中的“前导符”中可以选定某种前导符。前导符是填充键入Tab键后所产生的空位的符号。

常见天线以及调整方法及规范

常见天线以及调整方法及规范 1、板状天线调整方式 板状天线就是定向天线,板状天线是移动通信系统天线的一种,主要用于室外信号覆盖。无论是GSM还是CDM A LTE,板状天线是用得最为普遍的一类极为重要的基站天线。这种天线的优点是:增益高、扇形区方向图好、后瓣小、垂直面方向图俯角控制方便、密封性能可靠以及使用寿命长。 1.1天线方位角调整 使用扳手等工具对锯齿夹码处的螺丝进行松动(上图中红圈位置),然后将天线以安装抱杆为中心转动调节,达到期望方位角后再次将螺丝拧紧固定好。 板状天线方位角调整范围比较大,可以根据实际需求调整?

1.2下倾角的调节 1.2.1机械下倾角的调节 使用扳手等工具对连接臂处的螺丝进行松动(图片中红圈位置),然后对天线的机械角度进行调节,达到期望角度后将螺丝拧紧固定好。 电子下倾的调整 1.2.2 电子倾角的调节 板状天线电调有两种,一种是旋转调节,一种是插拔调节 上图为旋钮式调节电调。旋转旋钮(图中蓝色部分),电调滑标会移动,红色指针(图中箭头指示的地方)到达某一刻度电调即为多少度。

上图为插拔式调节电调。在调节电子下倾的时候直接通过插拔电调滑标(图中红圈标示部分)即可对其进行调节,滑标漏出的刻度即为当前电子下倾值。 电子下倾的可调范围一般在天线标签上都有标示,如下图: ODV3-065R18K-G \ 电调天线171O-2170MHz 产^>^8^710003-001 V4-0000 规恪代码 B 宙下喻角070应— 俪|]|删卿I执豐c囂:詈 CA1430053775 2U斗 2、美化天线的调节 随着移动通信网络的迅速发展,传统基站天线与周边环境的冲突越来越大,很难融入周边的环境,因此直接影响到城市的美好环境。另外,随着人们环保意识的提高,大多数市民因为对移动通信基站的不了解而对基站进入其周边大楼具有一种盲目的排斥心理。这些都极大地加大了移动通信运营商基站物业协调、工程实施和基站维护等工作的难度。天线美化工程作为一种手段,满足了人们对城市环境要求越来越高的需求,越来越受到有关各方的广泛关注。 美化天线一般可以分为以下几个类型分类: 1、美化排气管

高速信号布线技巧

高速信号布线技巧 原文引自夔牛的博客 https://www.wendangku.net/doc/e96386791.html,/seutommy 1.多层布线 合理选择层数能大幅度降低印版那个中间层尺寸,能充分利用中间层来设置屏蔽,能更好的实现就近接地,能有效的降低寄生电感,能有效缩短信号的传输长度,能最大限度的降低信号间的交叉干扰。 2.引线弯折越少越好 高速电路器件管脚间的引线弯折越少越好。高速电路布线的引线最好采用全直线,需要弯折,可用45°折线或圆弧线。 3.引线越短越好 高速电路器件管脚间的引线越短越好。引线越长,带来的分布电感和分布电容值越大,对系统的高频信号通过产生很多的影响,同时也会改变电路的特性阻抗。 4.引线层间的交替越少越好 高速电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”,是指元件连接过程中所用的过孔越少越好。据侧,一个过孔可带来约0.5pF的分布电容,导致电路的延迟明显增加,减少过孔数目能显著提高速度。 5.注意平行交叉干扰 高速电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为相互垂直。 6.底线包围 底线包围,也称地线隔离,对特别重要的信号线或局部单元实施地线包围的措施。有些信号对要求比较严格,要保证信号不受到干扰,比如时钟信号、告诉模拟信号、微小模拟信号等。为了保护这些信号尽量少受到周围信号线的串扰,可在这些信号走线的外围加上保护的地线,将要保护的信号线加在中间。 7.走线避免成环

各类信号走线不能形成环路,地线也不能形成电流环路。如果产生环路电路,将在系统中产生很大的干扰。 8.布置去耦电容 每个集成电路块的附近应该设置一个或者几个高频去耦电容。为集成片的瞬变电流提供就进的高频通道,使电流不至于通过环路面积较大的供电线路,从而大大减少了向外的辐射噪声。同时由于各集成片拥有自己的高频通道,相互之间没有公共阻抗,抑制了其阻抗耦合。 9.使用高频扼流环节 模拟地线、数字地线等接往公共地线时要用高频扼流环节。在实际装配高频扼流环节时用的网上是中心穿孔有导线的高频铁氧体磁珠. 10.避免分支和树桩 告诉信号布线应尽量避免分支或树桩。树桩对阻抗有很大影响,可以导致信号的反射和过冲,所以我们通常在设计时应避免树桩和分支。采用菊花链的方式,将对信号的影响降低。 11.信号线尽量走在内层 高频信号线走在表层容易产生较大电磁辐射,也容易受到外界电磁辐射或者因此的干扰。将高频信号先布线在电源和地线之间,通过电源还底层对电磁波的吸收,所产生的辐射将减少很多。

天线测试方法介绍

天线测试方法介绍 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。 图1:这些是典型的室内直射式测量系统,图中分别为锥形(左)和矩形(右)测试场。

WORD中的设置页码制表位

封面 页码设置的方法: 1、在需要设置不同的页码的前一页页尾,选菜单“插入”中“分隔符”/“下一页”。通过工具栏上“”按钮,可以看到设置的不同“节”。 2、对全文“插入”/“页码” 3、对封面页,通过“视图”/“页眉和页脚”中的“设置页码格式”,设置“首页不显示”。注意:不能作删除页码 4、通过上述方法对其它每一节文档设置不同的页码格式。 目录设置的方法:[利用制表位] 例如对下面的目录进行设置[位置由自己指定,下面仅是个例子] 目录 第一章 信息技术 (12) 第二章 信息技术概念……………………………………………………………3412 0 1 2 3 12345678901234567890123456789012345678 步骤: 1、将“目录”二字打好后,在“第一章”行,才能开始设置。 2、设置第一个制表位 利用“格式”/“制表位” 下一页需要设置不同的页码,那么在这里插入“分隔符”/“下一页” 设置第1个制表位,在第3个位置,左对齐 设置第2个制表位,在第8个位置,左对齐 设置第3个制表位,在第38个位置,右对齐,有前导符

按“设置”按钮,不能按“确定”,连续设置第二个制表位。 3、设置第二个制表位

4、设置第三个制表位 这里要选择“右对齐”、“前导符”,按“设置”/“确定”。 5、输入方法 按健盘上的“Tab”键,输入“第一章”,按“Tab”键输入“信息技术”,按“Tab”键输入页码。按回车健,用同样方法输入第二行。 第一章信息技术 (23) 第二章在一切工作 (766555) 在文档中的“前导符”,根据你输入的内容自动调整。

ALLEGRO DDR布线规则

ALLEGRO约束规则设置步骤(以DDR为例) Dyyxh@pcbtech tzyhust@https://www.wendangku.net/doc/e96386791.html, 本文是我对约束规则设置方面的一些理解,希望对新手能有所帮助.由于本人水平有限, 错误之处难免,希望大家不吝赐教! 在进行高速布线时,一般都需要进行线长匹配,这时我们就需要设置好constraint规则,并 将这些规则分配到各类net group上.下面以ddr为例,具体说明这些约束设置的具体步骤. 1. 布线要求 DDR时钟: 线宽10mil,内部间距5mil,外部间距30mil,要求差分布线,必需精确匹 配差分对走线误差,允许在+20mil以内 DDR地址,片选及其他控制线:线宽5mil,内部间距15mil,外部间距20mil,应走成 菊花链状拓扑,可比ddrclk线长1000-2500mil,绝对不能短 DDR数据线,ddrdqs,ddrdm线:线宽5mil,内部间距15mil,外部间距20mil,最好在 同一层布线.数据线与时钟线的线长差控制在50mil内. 2. 根据上述要求,我们在allegro中设置不同的约束 针对线宽(physical),我们只需要设置3个约束:DDR_CLK, DDR_ADDR,

DDR_DATA 设置好了上述约束之后,我们就可以将这些约束添加到net上了.点击physical rule set 中的attach……,再点击右边控制面板中的more, 弹出对话框 如上图所示,找到ckn0和ckp0,点击apply,则弹出 选中左边列表中的NET_PHYSICAL_TYPE, 在右边空格内输入DDR_CLK, 点击apply, 弹出 即这两个net已经添加上了NET_PHYSICAL_TYPE属性,且值为DDR_CLK. 类似的,可以将DDR数据线,数据选通线和数据屏蔽线的NET_PHYSICAL_TYPE设 为DDR_DATA, DDR地址线,片选线,和其他控制线的NET_PHYSICAL_TYPE设为 DDR_ADDR. 上述步骤完成后,我们就要将已经设好的约束分配到这些net group上. 如下图点击assignment table…… 弹出对话框 如下图所示,我们对不同的信号组选择各自的physical约束 有人可能会问,为什么你这还有area0,area1啊这是因为你的这些约束有的地方不可 能达到的,比如在bga封装的cpu内,你引线出来,线间距不可能达到

差分信号走线原则

设计规则1 我们处理差分信号的第一个规则是:走线必须等长。有人激烈地反对这条规则。通常他们的争论的基础包括了信号时序。他们详尽地指出许多差分电路可以容忍差分信号两个部分相当的时序偏差而仍然能够可靠地进行翻转。根据使用的不同的逻辑门系列,可以容忍500 mil 的走线长度偏差。并且这些人们能够将这些情况用器件规范和信号时序图非常详尽地描绘出来。问题是,他们没有抓住要点!差分走线必须等长的原因与信号时序几乎没有任何关系。与之相关的仅仅是假定差分信号是大小相等且极性相反的以及如果这个假设不成立将会发生什么。将会发生的是:不受控的地电流开始流动,最好情况是良性的,最坏情况将导致严重的共模EMI问题。 因此,如果你依赖这样的假定,即:差分信号是大小相等且极性相反,并且因此没有通过地的电流,那么这个假定的一个必要推论就是差分信号对的长度必须相等。差分信号与环路面积:如果我们的差分电路处理的信号有着较慢的上升时间,高速设计规则不是问题。但是,假设我们正在处理的信号有着有较快的上升时间,什么样的额外的问题开始在差分线上发生呢?考虑一个设计,一对差分线从驱动器到接收器,跨越一个平面。同时假设走线长度完全相等,信号严格大小相等且极性相反。因此,没有通过地的返回电流。但是,尽管如此,平面层上存在一个感应电流! 任何高速信号都能够(并且一定会)在相邻电路(或者平面)产生一个耦合信号。这种机制与串扰的机制完全相同。这是由电磁耦合,互感耦合与互容耦合的综合效果,引起的。因此,如同单端信号的返回电流倾向于在直接位于走线下方的平面上传播,差分线也会在其下方的平面上产生一个感应电流。 但这不是返回电流。所有的返回电流已经抵消了。因此,这纯粹是平面上的耦合噪声。问题是,如果电流必须在一个环路中流动,剩下来的电流到哪里去了呢?记住,我们有两根走线,其信号大小相等极性相反。其中一根走线在平面一个方向上耦合了一个信号,另一根在平面另一个方向上耦合了一个信号。平面上这两个耦合电流大小相等(假设其它方面设计得很好)。因此电流完全在差分走线下方的一个环路中流动(图3)。它们看上去就像是涡流。耦合电流在其中流动的环路由(a)差分线自身和(b)走线在每个端点之间的间隔来定义。 设计规则2 现在EMI 与环路面积已是广为人知了3。因此如果我们想控制EMI,就需要将环路面积最小化。并且做到这一点的方法引出了我们的第二条设计规则:将差分线彼此靠近布线。有人反对这条规则,事实上这条规则在上升时间较慢并且EMI 不是问题时并不是必须的。但是在高速环境中,差分线彼此靠得越近布线,走线下方所感应的电流的环路就越小,

WORD设置制表位技巧

设置制表位技巧 制表位是指在水平标尺上的位置,指定文字缩进的距离或一栏文字开始之处。多次单击 水平标尺左端的按钮,直至出现所需制表位类型,然后单击 标尺,即可设置制表位。 文档默认的制表位是2个字符,如要更改默认的制表位间距,可以在对话框的“默认制表位”微调框中输入所的制表位间距。 1 制表位的对齐方式 使用制表位能够向左、向右或居中对齐文本行;或者将文本与小数字符或竖线字符对齐。也可在制表符前自动插入特定字符,如句号或划线。 设置制表位的对齐方式的方法是选定要在其中设置制表位的段落。也可以先选定制表符,再输入文本,单击水平标尺(水平标尺指的是横穿文档窗口顶部并以度量单位(例如英寸)作为刻度的水平标尺栏。)最左端的“左对齐式制表符”处(单击它可以切换各种制表符),直到出现所需制表符类型,即“左对齐式制表符”、“右对齐式制表符”、“居中式制表符”、“小数点对齐式制表符”或“竖线对齐式制表符”。 在水平标尺上单击要插入制表位的位置。按下Tab键,这时就会出现一个制表符,然后输入文字,就会按照所设置制表位对齐所输入的文字了。 设置完第1行之后,必须在第2行相同的位置重新设置相同的制表位,然后按Tab键,才有与第1行相同的效果。 提示:若要设置精确的度量值,单击“格式”菜单上的“制表位”,在“制表位位置”下输入所需度量值,然后单击“设置”。 2. 设置制表位前导符 设置制表位的前导符的方法是,单击“格式”菜单上的“制表位”命令。打开如图所示的对话框。在“制表位位置”框中,输入新制表符的位置,然后单击“设置”按钮,也可在列表框中选择要为其添加前导符(前导符:在目录中使用或填充制表符空白位置的实线、虚线或点划线。)的已有制表位。

高速PCB布线差分对走线

高速PCB布线差分对走线 为了避免不理想返回路径的影响,可以采用差分对走线。为了获得较好的信号完整性,可以选用差分对来对高速信号进行走线,如图1所示,LVDS电平的传输就采用差分传输线的方式。 图1 差分对走线实例 差分信号传输有很多优点,如: ·输出驱动总的dI/dr会大幅降低,从而减小了轨道塌陷和潜在的电磁干扰; ·与单端放大器相比,接收器中的差分放大器有更高的增益; ·差分信号在一对紧耦合差分对中传输时,在返回路径中对付串扰和突变的鲁棒性更好; ·因为每个信号都有自己的返回路径,所以差分新信号通过接插件或封装时,不易受 到开关噪声的干扰; 但是差分信号也有其缺点:首先是会产生潜在的EMI,如果不对差分信号进行恰当的平衡或滤波,或者存在任何共模信号,就可能会产生EMI问题;其次是和单端信号相比,传输差分信号需要双倍的信号线。 如图2所示为差分对走线在PCB上的横截面。D为两个差分对之间的距离;s为差分对两根信号线间的距离;W为差分对走线的宽度;Ff为介质厚度。

使用差分对走线时,要遵循以下原则: ·保持差分对的两信号走线之间的距离S在整个走线上为常数; ·确保D>25,以最小化两个差分对信号之间的串扰; ·使差分对的两信号走线之间的距离S满足:S=3H,以便使元件的反射阻抗最小化; ·将两差分信号线的长度保持相等,以消除信号的相位差; ·避免在差分对上使用多个过孔,过孔会产生阻抗不匹配和电感。 图2 PCB上的差分对走线 以前,只有不到50%的电路板采用可控阻抗互连线,而现在这一比例已超过90%。如今有不到50%的电路板使用了差分对,相信在不久的将来,随着对差分对原理和设计规则的了解加深,将会有超过90%的电路板使用它 欢迎转载,信息来源维库电子市场网(https://www.wendangku.net/doc/e96386791.html,)

制表位的使用方法

制表位的使用方法 Q1.什么是制表位?有什么用处? 答:根据Word“帮助”的解释:制表位是指水平标尺上的位置,它指定文字缩进的距离或一栏文字开始的位置。制表位可以让文本向左、向右或居中对齐;或者将文本与小数字符或竖线字符对齐。 按我的理解,制表位是用来规字符所处的位置的。虽然没有表格,但是,利用制表位可以把文本排列得像有表格一样那样规矩。所以,把它称为制表位。 人们也可以利用空格键来规字符的位置,但是,一键一键地敲,那就太麻烦了,而且,也不能保证能排得很规矩。利用制表位就可以克服以上缺点。所以,当人们给出选择题的答案时;打印菜单时;写价目表时;编排公式时;编写文档目录时;写公文的单位落款时;在文件后署或日期时;……都需要使用制表位。 Q2.制表位有几种?它和制表符是什么关系? 答:根据根据Word“帮助”的解释:制表位有5种,分别用符号表示他们,这些符号就 叫制表符。这5种制表位的制表符是: 图15个制表符 左对齐是把字符编排到制表符的右面;右对齐是把字符编排到制表符的左面;居中是把字符编排在制表符的两侧;竖线对齐是在某一个段落中插入一条竖线;小数点对齐当然是把小数点对整齐了。 其实,除了这5种制表符以外,还有一个默认的制表符,它是按过“Tab”键以后产生的那个灰色向右的箭头。默认情况下,按一次Tab键,Word将在文档中插入一个制表符,其间隔为0.74厘米。所以,这个制表符本身也可以规字符的位置。 但是,要想保证在文本中有这个默认制表符出现,还需进行如下的设置:(1)用“工具”→“选项”命令调出“选项”窗口; (2)在“视图”选项卡的“格式标记”选项中勾选“制表符”或“全部”。 Q3.怎样利用默认的制表符制作一个菜谱? 答:用按“Tab”键的方法调出制表符就可以把相关容隔开了,而且它们可以自动对齐。例如:

天线设计规范

天线设计规范 深圳麦汉科技技术有限公司 研发部内部标准及对外培训资料 2013.7.10 编制:黄年宇

第1篇 项目评估基本概念

1-1 背景 根据公司年度经营计划,研发工程师要同客户建立积极主动地工作关系,不仅要现场分析和解决测试中遇到的问题,还要能够对客户的新项目进行现场评估和提出建议。而后者是目前大部分工程师的弱项,掌握基本的评估技巧和准则,不仅是公司实力的体现,也是个人能力的提升。 下面将分为几方面对项目的评估做基本的介绍: *天线的空间和性能 *直板机PIFA天线的评估 *直板机Monopole天线的评估 *翻盖机PIFA天线的评估 *翻盖机Monopole天线的评估 *滑盖机PIFA天线的评估 *滑盖机Monopole天线的评估 *双模机的评估 *SAR的评估 *装饰件的评估 *天线材质的选择 *人体模拟评估 *评估中的注意事项

1-2 天线空间和性能(PIFA ) 所需空间H>6.0mm S>400mm2H>6.5mm S>450mm2H>6.5mm S>450mm2H>7.0mm S>500mm2H>7.0mm S>500mm2H>7.0mm S>550mm2H>7.0mm S>600mm2H>7.0mm S>600mm2H>5.5mm S>200mm2H>7.0mm S>550mm2H>5mm S>150mm2频段 CDMA800 850&1900 900&1800 850&1800&1900 900&1800&1900 GSM 四频 GSM 三频+WCDMA GSM 四频+WCDMA GPS LTE-38、39、40 Bluetooth 可能达到的性能VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<1.5 EFF >50%VSWR<2 EFF >50%VSWR<2 EFF ≈50%

DDR走线规则

1.时钟信号 (1)差分布线,差分阻抗100欧姆,差分线误差±5mil。 (2)与其它信号的间距要大于25mil,而且是指edge to edge的间距 (3)CLK等长,误差±10mil。 2.数据信号: (1)数据信号分为八组,每组单独分开走线,第一组为DDR_DQ[0:7]、DDR_DQSP0、DDR_DQSN0、DDR_DQM0,以此类推,同组信号在同一层走线。 (2)DQ和DQM为点对点布线, (3)DQS为差分布线。差分线误差±5mil,差分阻抗100欧姆。 (4)组内间距要大于12mil,而且是指edge to edge的间距,同组内DQ与DQM以DQS为基准等长,误差±5mil。 (5)DQS与DDR2_CLKP等长,误差±5mil。 (6)不同组信号间距:大于20mil(edge to edge的间距) (7)DDR_CKN/P之间的并联100欧姆电阻,需要放置在信号一分二的分叉地方 (8)尽可能减少过孔 (9)叠层设计的时候,最好将每一层阻抗线宽,控制在差不多宽度 (10)信号走线长度,不超过2500mil 3.控制信号和地址信号: (1) 组内间距要大于12mil,而且是指edge to edge的间距 (2) 所有控制线须等长,误差±10mil。 (3 不同组信号间距:大于20mil(edge to edge的间距) 4.其它信号 DDR_VREF走线宽度20mil以上。 无论是PCB上使用芯片还是采用DIMM条,DDR和DDRx(包括DDR2,DDR4等)相对与传统的同步SDRAM的读写,我认为主要困难有三点: 1,时序。由于DDR采用双沿触发,和一般的时钟单沿触发的同步电路,在时序计算上有很大不同。DDR之所以双沿触发,其实是在芯片内部做了时钟的倍频(因为按照耐奎斯特准则,时钟频率应该至少是信号频率的2倍),对外看起来,数据地址速率和时钟一样。为了保证能够被判决一组信号较小的相差skew,DDR对数据DQ信号使用分组同步触发DQS信号,所以DDR上要求时序同步的是DQ

天线测试方法介绍

天线测试方法介绍 来源:Vince Rodriguez公司 对天线与某个应用进行匹配需要进行精确的天线测量。天线工程师需要判断天线将如何工作,以便确定天线是否适合特定的应用。这意味着要采用天线方向图测量(APM)和硬件环内仿真(HiL)测量技术,在过去5年中,国防部门对这些技术的兴趣已经越来越浓厚。虽然有许多不同的方法来开展这些测量,但没有一种能适应各种场合的理想方法。例如,500MHz 以下的低频天线通常是使用锥形微波暗室(anechoic chamber),这是20世纪60年代就出现的技术。遗憾的是,大多数现代天线测试工程师不熟悉这种非常经济的技术,也不完全理解该技术的局限性(特别是在高于1GHz的时候)。因此,他们无法发挥这种技术的最大效用。 随着对频率低至100MHz的天线测量的兴趣与日俱增,天线测试工程师理解各种天线测试方法(如锥形微波暗室)的优势和局限的重要性就愈加突出。在测试天线时,天线测试工程师通常需测量许多参数,如辐射方向图、增益、阻抗或极化特性。用于测试天线方向图的技术之一是远场测试,使用这种技术时待测天线(AUT)安装在发射天线的远场范围内。其它技术包括近场和反射面测试。选用哪种天线测试场取决于待测的天线。 为更好地理解选择过程,可以考虑这种情况:典型的天线测量系统可以被分成两个独立的部分,即发射站和接收站。发射站由微波发射源、可选放大器、发射天线和连接接收站的通信链路组成。接收站由AUT、参考天线、接收机、本振(LO)信号源、射频下变频器、定位器、系统软件和计算机组成。 在传统的远场天线测试场中,发射和接收天线分别位于对方的远场处,两者通常隔得足够远以模拟想要的工作环境。AUT被距离足够远的源天线所照射,以便在AUT的电气孔径上产生接近平面的波阵面。远场测量可以在室内或室外测试场进行。室内测量通常是在微波暗室中进行。这种暗室有矩形的,也有锥形的,专门设计用来减少来自墙体、地板和天花板的反射(图1)。在矩形微波暗室中,采用一种墙面吸波材料来减少反射。在锥形微波暗室中,锥体形状被用来产生照射。

与EMI相关的Layout走线规则

与EMI相关的Layout走线规则 1、PCB不能有直角走线,直角走线会导致阻抗不连续,导致信号发射,从而产生振铃或过冲,形成强烈的EMI辐射。 2、PCB走线特别是时钟线与总线的粗细应保持一致,粗细不一致时,走线阻抗会发生突变,导致信号发射,从而产生振铃或过冲,形成强烈的EMI辐射。直角时或粗细不一致时,导线横截面积改变,阻抗突变,会导致反射(电流振荡,方波上升沿上升时间变短,上升沿变陡,缚利叶变换时下降沿越平滑,高频范围变大,EMI FAIL风险变大)造成能量的叠加,导致EMI noise。另外有五种端接方式都是为了阻抗匹配。 3、尽量避免相邻布线层的层设置,无法避免时,应使相邻布线层中相互垂直或平行走线长度小于1000mil,减小平行走线之间的串扰。会形成杂散电容。 4、如果单板有内部信号走线层,则时钟等关键信号线布在内层。将关键信号布在内部走线层可以起到屏蔽的作用。 5、时钟线两侧建议包地线,包地线每隔3000mil接地,保证各包地线上各点电位相等,使信号的回流路径走在预先设定好的地线上,避免crosstalk和coupling到其它线路。 6、时钟、总线、射频线等关键信号走线和其他同层平行走线应满足3W原则,避免信号之间的串扰。原理同第三条。 7、电流大于等于1A电源所用的表贴保险丝、磁珠、电感、钽电容的焊盘应不少于两个过孔接到平面层,减少过孔等效阻抗。两个wire孔下地可以减小电感。 8、差分信号线应同层,等长,并行走线,保持阻抗一致,差分线间无其它走线,保证差分线对的共模阻抗相等,提高其抗干扰能力。差分信号大小相等,方向相等,从EE方面,如果信号到达时间不等,会造成误操作,从EMI考虑,差分信号平行走线noise能相互抵消。 9、关键信号走线一定不能跨分割区走线(包括过孔,焊盘导致的参考平面间隙),跨分割区走线会导致信号回路面积的增大。 10、信号跨其回流平面分割的情况不可避免时,建议在信号跨分割附近采用桥接电容方式处理,电容取值为1nF。信号跨分割时,常常会导致其回路面积增大,采用桥接地方式是人为的为其设置信号回路。加电容是高频充当导线。 11、单板上的滤波器(滤波电路)下方不要有其他无关信号走线,分布电容会削弱滤波器的滤波效果。 12、滤波器(滤波电路)的输入,输出信号不能相互平行,交叉走线,避免滤波前后的走线

SATA高速差分信号设计规则

PCB设计挑战和建议作为PC、服务器和消费电子产品中重要的硬盘驱动器接口,串行ATA(SATA)发展迅猛并日益盛行。随着基于磁盘的存储在所有电子市场领域中变得越来越重要,系统设计工程师需要知道采用第一代SATA(1.5Gbps)和第二代SATA(3.0Gbps)协议的产品设计中的独特挑战。此外,系统设计工程师还需要了解新的SATA特性,以使其用途更广,功能更强,而不仅仅是简单地代替并行ATA。充分利用这些新特性并克服设计中存在的障碍,对成功推出采用SATA接口的产品非常关键。 日趋复杂的PCB布局布线设计对保证高速信号(如SATA)的正常工作至关重要。由于第一代和第二代SATA的速度分别高达1.5Gbps和3.0Gbps,因此铜箔蚀刻线布局的微小改动都会对电路性能造成很大的影响。SATA信号的上升时间约为100ps,如此快的上升时间,再加上有限的电信号传输速度,所以即使很短的走线也必须当成传输线来对待,因为这些走线上有很大部分的上升(或下降)电压。 高频效应处理不好,将会导致PCB无法工作或者工作起来时好时坏。为保证采用FR4 PCB板的SATA设计正常工作,必须遵守下面列出的FR4 PCB布局布线规则。这些规则可分为两大类:设计使用差分信号和避免阻抗不匹配。 高速差分信号设计规则包括: 1.SATA是高速差分信号,一个SATA连接包含一个发送信号对和一个接收 信号对,这些差分信号的走线长度差别应小于5mil。使差分对的走线长度保持一致非常重要,不匹配的走线长度会减小信令之间的差值,增加误码率,而且还会产生共模噪声,从而增加EMI辐射。差分信号线对应该 在电路板表层并排走线(微带线),如果差分信号线对必须在不同的层走 线,那么过孔两侧的走线长度必须保持一致。 2.差分信号线对的走线不能太靠近,建议走线间距是走线相对于参考平面高 度的6至10倍(最好是10倍)。 3.为减少EMI,差分对的走线间距不要超过150mil。 4.SATA差分对的差分阻抗必须为100欧姆。 5.为减少串扰,同一层其它信号与差分信号线对之间的间距至少为走线相对 于参考平面高度的10至15倍。 6.在千兆位传输速度的差分信号上不要使用测试点。 避免阻抗不匹配的设计规则包括:

word排版技巧整理123(DOC)

第一章word排版技巧 一、快速定位到上次编辑位置 用WPS编辑文件时有一个特点,就是当你下次打开一WPS文件时,光标会自动定位到你上一次存盘时的位置。不过,Word却没有直接提供这个功能,但是,当我们在打开Word文件后,如果按下Shift+F5键您就会发现光标已经快速定位到你上一次编辑的位置了。 https://www.wendangku.net/doc/e96386791.html,/viewdiary.15509115.html 提示:其实Shift+F5的作用是定位到Word最后三次编辑的位置,即Word 会记录下一篇文档最近三次编辑文字的位置,可以重复按下Shift+F5键,并在三次编辑位置之间循环,当然按一下Shift+F5就会定位到上一次编辑时的位置了。 二、快速打印多页表格标题 选中表格的主题行,选择“表格”菜单下的“标题行重复”复选框,当你预览或打印文件时,你就会发现每一页的表格都有标题了,当然使用这个技巧的前提是表格必须是自动分页的。 三、快速定位到上次编辑位置 用WPS编辑文件时有一个特点,就是当你下次打开一WPS文件时,光标会自动定位到你上一次存盘时的位置。不过,Word却没有直接提供这个功能,但是,当我们在打开Word文件后,如果按下Shift+F5键您就会发现光标已经快速定位到你上一次编辑的位置了。 提示:其实Shift+F5的作用是定位到Word最后三次编辑的位置,即Word 会记录下一篇文档最近三次编辑文字的位置,可以重复按下Shift+F5键,并在三次编辑位置之间循环,当然按一下Shift+F5就会定位到上一次编辑时的位置了? 四、快速对齐段落 Ctrl+E :段落居中。 Ctrl+L :左对齐。 Ctrl+R :右对齐。 Ctrl+J :两端对齐。

天线基本原理

第一讲天线基本原理 一、天线的基本概念 1.天线的作用 在任何无线电通信设备中,总存在一个向空间辐射电磁能量和从空间接收电磁能量的装置,这个装置就是天线。 天线的作用就是将调制到射频频率的数字信号或模拟信号发射到空间无线信道,或从空间无线信道接收调制在射频频率上的数字或模拟信号。 2.天线问题的实质 从电磁场理论出发,天线问题实质上就是研究天线所产生的空间电磁场分布,以及由空间电磁场分布所决定的电特性。空间任何一点的电磁场满足电磁场方程——麦克斯韦方程及其边界条件。因此,天线问题是时变电磁场问题的一种特殊形式。 从信号系统的角度出发,天线问题可以理解为考察由一个电磁波激励源产生的电磁响应特性。从通信系统的角度出发,天线可以理解为信号发射和接收器,收发天线之间的无线电信号强度满足通道传输方程和多径衰落特性。 3.对天线结构的概念理解 采用不同的模型,对天线可以有不同的理解。典型的模型比如: ●开放的电容 [思考] 野外电台或电视发射塔,无线电视或电台接收机,为什么能构成一个天线,其电流回路在什么地方? ●开放的传输线 从传输线理论理解,天线可以看做是将终端开路的传输线终端掰开。 ●TM mn型波导 将天线辐射看做是在4π空间管道中传输的波导,则对应的传输波型是TM型波,但在传输过程中不断遇到波导的不连续性,因此不断激励高次模。

由电磁波源和电磁波传输媒质形成电磁波传输的机构 波的形成都需要波源和传输媒质。在一盆水中形成机械波纹,可以使用点激励源产生波,并在水面上传播。波的传播特性只与媒质特性有关而与波源无关。将一个肉包子扔出去,这个肉包子可能产生不同的结果,或者被狗吃了,或者掉在什么地方了,都与扔包子的人不再有任何关系。而对天线来说,馈点的激励源就是这种波源,天线导体和外界空间就是传输媒质。不过电磁波的传输媒质可以是真空。 [思考] 电磁波具有波粒二象性。频率越低,波动性越强;频率越高,粒子性越强。所以光波主要表现出粒子性,而长波表现出波动性。射频电磁波就是介于这二者之间的一种电磁波,它既有显著的波动性,又有显著的粒子性。只要认清这一点,许多问题就会变得易于理解。认清事物的本质规律我们才能很好地利用它,我们不能把一头驴当马使,否则就会出现许多荒唐的错误。有人认为射频很复杂,有人认为很简单,就是这个道理。 [哲学启示] 电磁波由于看不见,摸不着,所以在很多人看来它很抽象。但考虑到世界是普遍联系的,尽管不同的事物也有许多不相同点,但找到它们之间的联系,就能获得认识抽象事物的“火眼金睛”。 二、电磁场基本方程 1.麦克斯韦方程 (电生磁。若电场变化,则磁场随之变化) (磁生电。若磁场变化,则电场随之变化) (磁力线是无始无终的封闭闭合曲线) (电力线出发和终止于自由电荷) 麦克斯韦方程的物理含义:变化的电场可以产生磁场,变化的磁场可以产生电场,这是电磁波可以脱离辐射体在空间存在的物理基础。 [思考] 自然界存在一些有趣的现象,尽管机理与电磁波不完全一致,但是其过程却可以帮助我们加深对我们问题的理解。请大家考虑一下,孩童吹肥皂泡时,肥皂泡能够

高速信号走线规则

高速信号走线规则 随着信号上升沿时间的减小,信号频率的提高,电子产品的EMI问题,也来越受到电子工程师的关注。 高速PCB设计的成功,对EMI的贡献越来越受到重视,几乎60%的EMI问题可以通过高速PCB来控制解决。 规则一:高速信号走线屏蔽规则 在高速的PCB设计中,时钟等关键的高速信号线,走需要进行屏蔽处理,如果没有屏蔽或只屏蔽了部分,都是会造成EMI的泄漏。建议屏蔽线,每1000mil,打孔接地。如上图所示。 规则二:高速信号的走线闭环规则 由于PCB板的密度越来越高,很多PCB LAYOUT工程师在走线的过程中,很容易出现这种失误,如下图所示: 时钟信号等高速信号网络,在多层的PCB走线的时候产生了闭环的结果,这样的闭环结果将产生环形天线,增加EMI 的辐射强度。 规则三:高速信号的走线开环规则 规则二提到高速信号的闭环会造成EMI辐射,同样的开环同样会造成EMI辐射,如下图所示:

时钟信号等高速信号网络,在多层的PCB走线的时候产生了开环的结果,这样的开环结果将产生线形天线,增加EMI 的辐射强度。在设计中我们也要避免。 规则四:高速信号的特性阻抗连续规则 高速信号,在层与层之间切换的时候必须保证特性阻抗的连续,否则会增加EMI的辐射,如下图: 也就是:同层的布线的宽度必须连续,不同层的走线阻抗必须连续。 规则五:高速PCB设计的布线方向规则 相邻两层间的走线必须遵循垂直走线的原则,否则会造成线间的串扰,增加EMI辐射,如下图: 相邻的布线层遵循横平竖垂的布线方向,垂直的布线可以抑制线间的串扰。 规则六:高速PCB设计中的拓扑结构规则 在高速PCB设计中有两个最为重要的内容,就是线路板特性阻抗的控制和多负载情况下的拓扑结构的设计。在高速的情况下,可以说拓扑结构的是否合理直接决定,产品的成功还是失败。 如上图所示,就是我们经常用到的菊花链式拓扑结构。这种拓扑结构一般用于几Mhz的情况下为益。高速的拓扑结构我们建议使用后端的星形对称结构。

word20XX,表格使用制表位对齐

竭诚为您提供优质文档/双击可除word20XX,表格使用制表位对齐 篇一:图解如何用word20xx编辑选择题并使选项对齐 1.对于一张选项很乱的试卷来说对起来确实不好弄。 2.点击“编辑”“替换”打开“查找和替换”对话框,在“查找内容”输入一个空格,“替换为”不输入任何内 容,点击“常规”取消“区分全/半角”前面方块内的勾,点击“全部替换”就可以删除全部的空格了。 第1页共9页 3.还是用“查找和替换”对话框,在“查找内容”输入“^t”,“替换为”还是不输入任何内容,点选下面的“使用通配符”前面的勾,点击“全部替换”就删除了全部制表位。 4.在“查找内容”输入“[abcd]”,在“替换为”输入“^t^&”,点选下面的“使用通配符”前面的勾,点击“全部替换”就为每个选项添加了制表位。 第2页共9页 5.按“ctrl+a”选中全部内容,然后点击菜单“格式”“制表位”,弹出“制表位”对话框,在“制表位位置”栏

内分别输入“2”、“12”、“22”、“32”字符,并分别点击下 面的“设置”按钮,添加好制表位,确定后就可以看到所有选项对齐了。 第3页共9页 注意事项 输入[abcd]时,如果你的选项后面有点就输入“[abdd].” 如何用word20xx编辑选择题并使选项对齐 用word编辑试卷时,其中较为复杂的一项就是选择题 的录入和编辑。本人经过几年的实践,总结出两种编辑选择题的方法: 方法一、“项目符号和编号”,“制表位”与“新样式” 结合 一般情况下,题目与选项的录入格式是不同的,题目要求能自动编号,而选项为了美观,一定上下对齐。怎么样才能快速、美观地录入选择题呢?我们可以使用“新样式”来轻松达到这样的目的:题目会自动编号,题目录入完成后按回车键开始录入选项,选项的间距通过tab键一次对齐到位。这样录入可以省去不少重复操作。 第一步:为选择题题目设置自动编号并新建样式 1、为选择题题目编号 先录入一道题目和一行选项。然后将光标定位在题目所在行,击右键,弹出快捷菜单,选择“项目符号和编号”。

第六讲 手机天线类型比较和结构射频规则

第六讲手机天线类型比较和结构射频规则 一、各种手机内置天线的特点和演变过程 在常见的手机天线结构中,陶瓷介质天线由于Q值很高,带宽窄,损耗大,并且易受环境的影响而产生频率漂移,因此不推荐作为手机主天线使用,但由于其尺寸小的优势,可以用作对接收灵敏度要求不高的蓝牙天线。PCB板天线也一般仅仅是通过将外置单极子天线通过PCB过孔和PCB走线将辐射体做在PCB板上,并利用介质板的介电常数在一定程度上减小天线尺寸的形式,这种天线也由于介质板的损耗常数而产生一定的损耗,所以在大多数高端机情况下也不推荐使用,仅在少数低端机和工作频点较少的情况下才为节约成本而使用。PCB天线可作外置天线也可作内置天线。 PIFA天线自产生以来,一直到今天都一直是内置天线的主要形式,因为它尺寸较小,可以充分利用PCB板作为接地面,并通过接地片将谐振长度缩小为四分之一波长。但是随着手机小型化和集成度更高的发展要求,原有PIFA天线逐渐显示出一些对结构方面的严格限制。于是有不少业界领先的手机制造商Motorola、Samsung、Sony-Ericsson等公司逐渐改变手机天线的设计风格,改用各种变形的单极子天线设计,这样就减小了结构对天线的依赖性,增加了手机外观的灵活性。比如索爱E908的菱形天线设计,Samsung E708的城墙线(Meander)天线设计,以及Motorola V3中使用的一个金属铜棒作为天线的设计。这些新型的天线设计显示了高超的设计技巧,它们往往不易被天线其他天线厂家和手机厂家模仿,并逐渐发展成手机天线厂家之间和手机厂商之间竞争的一项核心技术。 二、PIFA天线和单极子天线的性能比较 前面我们已经分别对单极子天线和PIFA天线的一般特性进行过分析,下面我们在几种重要的特性方面比较一下两种天线性能的优劣。 1.空间结构要求 两种天线的设计对空间的预留都必须考虑Chu极限定理,但在组成上,PIFA要求必须有一个辐射单元和一个大的接地面,两者互相平行,并且辐射体和接地面之间必须有一个不小的间距。接地面和辐射体都是物理实体,它们必须位于手机上,所以对结构限制较大。采用PIFA天线手机不可能做得很薄。 而采用单极子天线进行设计,则天线仅有一个辐射体而没有地面,因此它对辐射空间的要求就仅仅是天线辐射体周围的空间而没有地面的限制,天线占用的辐射空间可以不在手机体上而在手机周围的外界空间。因此对结构的限制较小。

相关文档