文档库 最新最全的文档下载
当前位置:文档库 › 表面活性剂改性沸石制备缓释磷肥

表面活性剂改性沸石制备缓释磷肥

表面活性剂改性沸石制备缓释磷肥
表面活性剂改性沸石制备缓释磷肥

Surfactant-Modified Zeolite as a Slow Release Fertilizer for

Phosphorus

A MIT K UMAR

B ANSIWAL,S ADHANA S URESH R AYALU,*

N ITIN K UMAR L ABHASETWAR,A SHA A SHOK J UWARKAR,AND S UKUMAR D EVOTTA National Environmental Engineering Research Institute,Nehur Marg,Nagpur440020,India

The feasibility of using surfactant-modified zeolite(SMZ)as a carrier for fertilizer and for slow release of phosphorus(P)was investigated.Zeolite-A was modified by using hexadecyltrimethylammonium bromide,a cationic surfactant,to modify its surface to increase its capacity to retain anion,namely, phosphate(PO43-).SMZ was thoroughly characterized using X-ray diffraction,Fourier transform infrared,and scanning electron microscopy to study the effect of surfactant modification.Zeolite-A and SMZ were then subjected to P loading by treating them with fertilizer(KH2PO4).It was observed that the P loading on SMZ increased by a factor of4.9as compared to the unmodified zeolite-A.A comparative study of the release of P from fertilizer-loaded unmodified zeolite-A and SMZ and from solid KH2PO4was performed using the constant flow percolation reactor.The results show that the P supply from fertilizer-loaded SMZ was available even after1080h of continuous percolation,whereas P from KH2PO4was exhausted within264h.The results indicate that SMZ is a good sorbent for PO43-,and a slow release of P was achievable.These properties suggest that SMZ has a great potential as the fertilizer carrier for slow release of P.

KEYWORDS:Surfactant-modified zeolites;slow release fertilizers;phosphate

INTRODUCTION

Excessive use of chemical fertilizers causes serious environ-mental hazards as only a fraction is really absorbed by the soil. The excess fertilizer is washed off and leads to high concentra-tions of elements such as nitrogen,phosphorus,and potassium in surface water bodies,leading to eutrophication.The nutrients may also reach groundwater,leading to excessive dissolved solids such as nitrates in groundwater(1).Soil salinization by the excess fertilizer and damage to seedlings in arid zones by poor water quality also pose severe threats to mankind(2).The aforementioned problems can be resolved using slow release fertilizers(SRFs)(3-6).Recently,several types of SRFs have been developed and tested,including SRFs using various zeolites (7-15).However,SRFs are often expensive and the release of nutrients is slow at the time of high nutrient need(16). Zeolites are crystalline,hydrated aluminosilicates of alkali and alkaline earth cations,with a three-dimensional lattice, furrowed by an inner network of pores and channels.Zeolites have a high cation exchange capacity and have often been used as inexpensive cation exchangers for various applications(17). The studies on SRFs based on zeolites are limited to nutrients, which can be loaded in cationic forms such as NH4+and K+. However,if the nutrients are in anionic forms such as NO3-or PO43-,the loading is negligible on unmodified zeolites. Therefore,it is imperative that the material should have adequate affinity for anions so that the anionic nutrients can be efficiently loaded for its use as SRFs.Anionic properties can easily be imparted on the zeolitic surface using the concept of surface modification using surfactant.In1994,Haggerty et al.reported surfactant-modified zeolite(SMZ),a type of inexpensive anion exchanger,to remove anionic contaminants from water(18). Since then,SMZs have been studied extensively for sequestra-tion of various anions(19-26).The surfactant molecules form bilayers on zeolite external surfaces with the lower layer held by electrostatic interaction between the negatively charged zeolite surface and the positively charged surfactant headgroups while the upper layer is bound to the lower layer by hydrophobic forces between the surfactant tail groups in both layers(22). Under the surfactant bilayer configuration,the zeolite reverses its surface charge,resulting in a higher affinity for negatively charged anions,and the sorption and retention of anions are attributed to surface anion exchange.Because the surfactants are attached only on the external surface of the zeolite,the cation exchange sites situated inside the pores are still available for cation exchange.Therefore,loading of cationic nutrients such as K in the pores can be achieved simultaneously with the anionic nutrients such as NO3-or PO43-on their surface.It has also been reported that the use of SMZ as anion exchanger is economically more feasible as compared to synthetic anion exchange resins(24).It may also be emphasized that zeolites are commonly used as soil conditioners and therefore are very suitable for this application.Thus,SMZs offer a great promise as anion carriers for slow release of nutrients.

*To whom correspondence should be addressed.Tel:+917122247828.

Fax:+917122247828.Email:s_rayalu@neeri.res.in.

J.Agric.Food Chem.2006,54,4773?47794773

10.1021/jf060034b CCC:$33.50?2006American Chemical Society

Published on Web05/28/2006

The present study deals with the synthesis and characterization of SMZ.Nutrient uptake capacities of unmodified zeolite and SMZ modified with different surfactant loading were also studied.To study the slow release of nutrients,we used the percolation reactor at a constant flow of solution,so that the actual field conditions can be simulated to evaluate the nutrient supply capacity of SRFs.A comparative study of nutrient

leaching from nutrient-loaded unmodified zeolite,SMZ,and pure fertilizer was also undertaken.

MATERIALS AND METHODS

Synthesis of SMZ.The commercial zeolite-A used was procured from Degussa (Germany).Surfactant modification of the zeolite was carried out using the surfactant,hexadecyltrimethylammonium bromide (HDTMABr)(E.Merck,Germany).A preweighed quantity of washed zeolite sample was mixed with HDTMABr solution in a 1:100(solid:liquid)ratio.The concentrations of HDTMABr solutions used for preparation of SMZ-1,SMZ-2,and SMZ-3were 50,100,and 200mg/L,respectively.The solution was agitated for 7-8h at 150rpm on an orbital shaker.The solution was then filtered,and the solid residue was washed with double-distilled water and air-dried for 4-6h.The synthesized SMZ was then mechanically ground with a mortar and pestle to a fine particle size.As the surfactant is the only source of carbon in the system,the surfactant loading was monitored by total organic carbon (TOC)analysis of the initial and final solutions obtained during the synthesis of SMZ.The TOC analysis was carried out using a Shimadzu TOC analyzer (model:TOC-V CPH ).SMZs with surfactant loadings of 1.7,3.8,and 4.6mg g -1of zeolite were designated as SMZ-1,SMZ-2,and SMZ-3,respectively.The unmodified zeolite-A and SMZ-3were characterized using powder X-ray diffraction (XRD),scanning electron microscopy (SEM),Fourier transform infrared analysis (FTIR),and Brunauer -Emmett -Teller (BET)surface area estimation.Various physicochemical properties of the unmodified zeolite and SMZ-3are given in Table 1.

Synthesis of SRFs.The SMZs with different loadings of HDTMABr were subjected to treatment with KH 2PO 4to prepare the nutrient-loaded SRFs.To study the sorption behavior of phosphate on various zeolites,different quantities of zeolite were added to centrifuge tubes

containing

Figure 1.Experimental setup of the percolation reactor for nutrient

uptake.

Figure 2.XRD patterns of unmodified zeolite-A and SMZ-3.

4774J.Agric.Food Chem.,Vol.54,No.13,2006Bansiwal et al.

50mL of KH2PO4solution and the mixture was stirred for12h at150 rpm.The mixtures were then centrifuged,and the phosphate solution concentration was analyzed by addition of using ammonium molybdate

and stannous chloride solution,which results in development of a blue colored complex.The absorbance of the solutions was measured at 690nm using UV-visible spectrophotometer(Chemito,model UV 2100)(30).The amount of phosphate sorbed was calculated from the difference between the initial and the equilibrium solution concentra-tions.

To prepare SRFs,required quantities of SMZ were stirred with1.0 M solution of KH2PO4for8h and filtered,washed three times with deionized water,and air-dried.The solid:liquid ratio used was1:10 for the synthesis of phosphate-loaded zeolites.Similarly,nutrient loading was also carried out on unmodified zeolite to study the effect of surface modification on nutrient uptake capacity and slow release of nutrients as compared to SMZ.The amount of PO43-sorbed was calculated from the difference between the initial and the equilibrium solution concen-trations.

Soil.The soil was collected locally from a nearby garden.The soil was thoroughly characterized for various parameters using standard procedures(31).Bulk density,specific gravity,pore space percent,and water holding capacity were determined using a Keen-Raczkowski box experiment.pH and electrical conductivity were determined from water extracts of the soil prepared from a1:2.5soil:water suspension. The pH and electrical conductivity were measured using a pH meter (Cyberscan,model510)and conductivity meter(WTW),respectively. The percent organic carbon was determined by dichromate oxidation. The Ca,Fe,and Al were determined by inductuvely coupled plasma optical emission spectroscopy(Perkin-Elmer,model Optima4100). Various soil properties are shown in Table2.Soil was added to simulate the actual field conditions to study the release of P from various fertilizers.

Experimental Setup of Percolation Reactor for Nutrient Uptake. The experimental setup was basically the same as reported by Pino et al.,except that the Teflon reactor was replaced by a glass column reactor and the pumped flow was replaced by flow under gravity with precise flow controllers(3).The chemical reactor(Figure1)consisted of a glass column(internal diameter)1.5cm;height)25cm)through the top of which deionized water was continuously supplied at a flow rate of72(1mL day-1.Inside the reactor,10g of soil overlaid with 1.0g of fertilizer was placed.The leachates were collected to determine PO43-(as P)using the UV-visible spectrophotometric method.Three tests were performed as follows:two SRFs prepared from unmodified zeolite and SMZ and another with pure KH2PO4.A test was also performed using pure soil with no fertilizer added,to determine the contribution of P from soil.Parallel reactors were set up to perform the tests in duplicate,and average values are reported.The mean temperature during the experiment was30(0.2°C.

RESULTS AND DISCUSSION

Zeolite Characterization.To monitor the effect of surfactant

modification on structure stability,the powder XRD analysis

(using Cu K R as the source for X-rays)of unmodified zeolite-A

and SMZ-3was performed.The XRD patterns of unmodified

zeolite-A and SMZ-3are presented in Figure2.The d spacing

values used for reference are as follows:12.20(0.20,8.60(

0.20,7.05(0.15,4.07(0.08,3.68(0.07,3.38(0.06,3.26 (0.05,2.96(0.05,2.73(0.05,and2.60(0.05?.The closely matching d spacing values of all of these zeolites prove

that structure has been retained.The surface morphology of

SMZ-3was examined by SEM and is presented in Figure3.

The cubical geometry of zeolites has not changed much;

probably,there are changes in sharp edges and corners.FTIR

spectra obtained using KBr pellets of unmodified zeolite-A and

SMZ-3are presented in Figure4.The IR pattern of SMZ-3

shows the characteristic peaks at wavenumbers3402,1651,

1004,559,and464cm-1reported for zeolite-A(27).Besides,

the peaks at2923and2856cm-1in SMZ-3can be assigned to

HDTMABr sorbed on the zeolite surface as the corresponding

peaks are also observed in the IR pattern of HDTMABr only

Table1.Physicochemical Properties of Unmodified Zeolite and SMZ-3

property unmodified zeolite-A

(Degussa)SMZ-3

appearance white white

average particle size(μm)2?34?6

calcium binding capacity

(mequiv/100g dry sample)

550376

density(g/cm3) 2.03 2.8

pH of1%slurry9.511.2

crystalline form A type zeolite A type zeolite crystallinity(percent)96?9985

SiO2/Al2O3molar ratio 1.93 1.93

surface area(m2/g)590521

TCLP test a-Ve-Ve

a TCLP-ve;no toxic elements were leached.

Table2.Physicochemical Properties of Soil

parameter measurement values water holding capacity(%)61.30

pH(1:1soil:water)8.6

electrical conductivity(dS/m)0.63

organic carbon(%)0.91

porosity(%)56.01

specific gravity(g/cm3) 1.80

particle density(g/cm3) 2.29

bulk density(g/cm3) 1.01

Ca(mg/kg)20490

Fe(mg/kg)397

Al(mg/kg)

59080

Figure3.SEM of unmodified zeolite-A and SMZ-3.

Surfactant-Modified Zeolite as a Fertilizer J.Agric.Food Chem.,Vol.54,No.13,20064775

(peaks at 2918and 2848cm -1in Figure 4a ).The presence of characteristic peaks of zeolite-A confirms the structural stability of zeolite after surfactant modification.Also,the presence of HDTMABr peaks in the IR spectra of SMZ indicates the sorbed HDTMABr on the zeolite surface.

The surfactant loading was confirmed by using TOC analysis,as mentioned earlier.A substantial decrease in surface area was observed for SMZ-A as compared to unmodified zeolite-A,which is due to coverage of HDTMABr molecules (head size of about 6?)on the external surface (Table 1).

Phosphate Loading on SMZ.The sorption of PO 43-on unmodified zeolite and SMZs with different loadings of HDTMABr is shown in Figure 5.As evident from the figure,the surfactant modification greatly enhances anion sorption on zeolite.Furthermore,it is observed that the amount of phosphate sorbed increases with the increase in surfactant loading on zeolite,and a maximum sorption of 454.5mmol g -1is observed for SMZ-3.The percent loading of P on SMZ-3has increased by a factor of 4.9as compared to unmodified zeolite.Similar results have been reported for other oxyanions such as chromate (19).

The sorption of anionic species on zeolitic surfaces can be well-described by the Langmuir sorption isotherm:

where S is the amount of anions sorbed on solid surfaces at equilibrium (mmol g -1),C is the equilibrium anion concentration (mmol L -1),S m is the maximum sorption capacity (mmol g -1),and K L is the Langmuir sorption coefficient (mmol -1).

Langmuir coefficients,maximum sorption capacity,and the coefficient of regression are listed in Table 3.Because

the

Figure 4.FTIR spectra of SMZ-3and

HDTMABr.

Figure 5.Sorption of P on unmodified zeolite and SMZs with different

surfactant loading.

S )

K L S m C 1+K L C

(1)

4776J.Agric.Food Chem.,Vol.54,No.13,2006Bansiwal et al.

SMZ-3shows the highest phosphate sorption,it was selected for further study.

Slow Release of Phosphorus.The pure fertilizer (KH 2PO 4),P-loaded unmodified zeolite-A and SMZ-3were subjected to desorption using the chemical reactors.The reactor with soil and without fertilizer did not provide any detectable amount of P.Therefore,all of the P measured from the leachates obtained from reactors having soil plus fertilizer can be attributed to the fertilizer source exclusively.The variation of P concentration with time for the three fertilizers is presented in Figure 6.It can be observed from the data that at the start of the experiment,a maximum concentration of 44.5mmol L -1P is observed in the leachate from pure KH 2PO 4followed by 31.7and 20.1mmol L -1from unmodified zeolite and SMZ-3,respectively.Further-more,it can be seen that in the initial stage,P dissolution,from all three fertilizers,occurs rapidly and attains a concentration between 4.6and 3.5mmol L -1at about 120h,after which slow release is observed.The data also reveal that all of the available P in pure KH 2PO 4is exhausted after 264h while the release of P from unmodified zeolite continues till 624h,beyond which the concentration of P reached below detectable limits.However,the release of P from SMZ-3is continued even after 1080h,with concentrations ranging from 1.8to 1.4mmol L -1.The results clearly demonstrate the slow release of P from SMZ-3.Also,the level of P released is sufficient for soil microbial activity and plant growth (2).

In general,the desorption is somehow instantaneous,making it very difficult to fit the observed data to any desorption models.However,it has been reported that the slow release of fertilizers normally follows a first-order kinetics (3).Figures 7-9show the kinetics of P release from KH 2PO 4,P-loaded unmodified zeolite,and SMZ-3,respectively.The results show that the release takes place in different stages according to the solubility of the different fractions,so that the readily soluble P is leached

first.However,only one stage is observed for pure KH 2PO 4,characterized by a steep slope with a decay time of 264h.The corresponding rate constant is also higher for the pure KH 2PO 4than for any of the zeolite-based fertilizers (Figures 7-9),

Table 3.Sorption Maxima (S m ),Langmuir Sorption Coefficients (K L ),and Coefficients of Regression for P Sorption on SMZ (r 2)

fertilizer S m (mmol g -1)

K L (mmol -1×10-3)

r 2

unmodified zeolite 92.60.230.97SMZ-1131.60.350.99SMZ-2147.10.290.99SMZ-3

454.5

0.38

0.99

Figure 6.P release from pure fertilizer,unmodified zeolite-A,and SMZ-

3.

Figure 7.Kinetics of P release from pure KH 2PO 4

.

Figure 8.Kinetics of P release from unmodified

zeolite.

Figure 9.Kinetics of P release from SMZ.

Surfactant-Modified Zeolite as a Fertilizer

J.Agric.Food Chem.,Vol.54,No.13,20064777

indicating the instantaneous desorption of P.Two stages are observed for unmodified zeolite with a decay time of624h after which the P concentration reaches below detectable limits. It can be assumed that the available P has been completely released.SMZ-3also shows leaching of P in two stages(Figure 9).Stage one corresponds to fast release of P similar to unmodified zeolite.However,from120h onward,the P release curve for SMZ-3stabilizes progressively and a P concentration of about1.8-1.4mmol L-1is continued even after1080h. The SMZ-3presents a leaching pattern,which is in accordance with that of an SRF,characterized by two stages in which a first-order kinetic law describes the release process.The fast release of P in the first stages,in both cases,may be attributed to the readily soluble form of the salt that covers the zeolite particles and that has not been completely removed by the previous washing.Furthermore,the values of rate constants for initial stages for unmodified zeolite and SMZ-3are comparable to the rate constant values obtained for pure fertilizer,which confirms that the initial stage corresponds to unadsorbed, unwashed P present on the zeolite surface.

No attempt has been made in the present paper to explain the nature or desorption mechanism of P since it is well-documented and reported elsewhere(28,29).However,it is worth pointing out that SMZ-3fertilizer provides a nutrient supply,high enough to sustain a suitable plant development, even at the simulated field conditions such as those used in this work.The study has proved the efficacy of SMZ-3for slow release of nutrients like P.Moreover,the most favorable characteristic of zeolite,for its application as SRF,is the fact that it also functions as a soil conditioner.Besides,the composition of zeolites does not differ significantly from that of soil.It is,therefore,not expected to alter its characteristics, thus ensuring physicochemical stability and consequently higher plant growth.

ABBREVIATIONS USED

SMZ,surfactant-modified zeolite;SRF,slow release fertilizer; HDTMABr,hexadecyltrimethylammonium bromide;XRD, powder X-ray diffraction;FTIR,Fourier transform infrared analysis;SEM,scanning electron microscopy;BET surface area, Brunauer-Emmett-Teller surface area;TOC,total organic carbon.

ACKNOWLEDGMENT

Thanks are due to Jawaharlal Nehru Aluminum Research Development and Design Center(JNARDDC),Nagpur,for some of the material characterization studies.

LITERATURE CITED

(1)Nelson,D.W.;Logan,T.J.Chemical processes and transport

of phosphorous.In Agricultural Management and Water Quality;

Scaller,F.W.,Bailey,G.W.,Eds.;Iowa State University Press:Ames,Iowa,1983;pp65-91.

(2)Hershey, D.R.;Paul,J.L.;Carlson,R.M.Evaluation of

potassium-enriched clinoptilolite as a potassium source for potting media.Hortic.Sci.1980,15,87-89.

(3)Delpino,J.S.N.;Padron,I.J.A.;Martin,M.M.G.;Hernandez,

J.E.G.Phosphorous and potassium release from phillipsite-based slow-release fertilizers.J.Controlled Release1995,34, 25-29.

(4)Hernandez,J.E.G.;Martin,M.M.G.;Delpino,J.S.N.;

Rodriguez,C.D.A.Treatment of wastewater effluents with phillipsite-rich tuffs.En V iron.Pollut.1992,76,219-223. (5)Hernandez,J.E.G.;Martin,M.M.G.;Delpino,J.S.N.Removal

of Bacterial indicators of pollution and organic matter by phillipsite-rich tuff columns.Appl.Clay Sci.1992,7,323-333.

(6)Hernandez,J.E.G.;Delpino,J.S.N.;Padron,I.J.A.;Martin,

M.M.G.Phosphate and potassium fixation on a phillipsite-rich tuff as a slow-release fertilizer-Treatments with H2PO4.Agro-chimica1993,37,1-11.

(7)Williams,K.A.;Nelson,https://www.wendangku.net/doc/ec6425072.html,ing precharged zeolite as a

source of potassium and phosphate in a soil less container medium during potted chrysanthemum production.J.Am.Soc.

Hortic.Sci.1997,122,703-708.

(8)Pickering,H.W.;Menzies,N.W.;Hunter,M.N.Zeolite/rock

phosphate s A novel slow release phosphorous fertilizer for potted plant production.Sci.Hortic.2002,94,333-343.

(9)Guo,M.Y.;Liu,M.Z.;Zhan,F.L.;Wu,L.Preparation and

properties of a slow-release membrane-encapsulated urea fertil-izer with superabsorbent and moisture preservation.Ind.Eng.

Chem.Res.2005,44,4206-4211.

(10)Mumpton, F. A.;Roca,https://www.wendangku.net/doc/ec6425072.html,es of natural zeolites in

agriculture and industry.Proc.Natl.Acad.Sci.U.S.A.1999,96, 3463-3470.

(11)Park,M.;Komarneni,S.Occlusion of KNO3and NH4NO3in

natural zeolites.Zeolites1997,18,171-175.

(12)Park,M.;Komarneni,S.Ammonium-nitrate occlusion via cation

exchange in natural zeolites.Soil Sci.Soc.Am.J.1998,62, 1455-1459.

(13)Li,https://www.wendangku.net/doc/ec6425072.html,e of surfactant-modified zeolite as fertilizer carriers to

control nitrate release.Microporous Mesoporous Mater.2003, 61,181-188.

(14)Allen,A.J.;Braum,S.Method of preparing a slow release

fertilizer.U.S.Patent6,887,828,2005.

(15)Park,M.;Kim,J.S.;Choi,C.L.;Kima,J.E.;Heo,N.H.;

Komarneni,S.;Choi,J.Characteristics of nitrogen release from synthetic zeolite Na-P1occluding NH4NO3.J.Controlled Release 2005,106,44-50.

(16)Miller,R.W.;Gardiner,D.T.Soils in Our En V ironment,8th

ed.;Prentice Hall:Upper Saddle River,NJ,1998.

(17)Breck,D.W.Zeolite Molecular Sie V es;John Wiley&Sons:

New York,1974.

(18)Haggerty,G.M.;Bowman,R.S.Sorption of inorganic anions

by organo-zeolites.En V iron.Sci.Technol.1994,28,452-458.

(19)Li,Z.;Bowman,R.S.Counterion effects on the sorption of

cationic surfactant and chromate on natural clinoptilolite.En-V iron.Sci.Technol.1997,31,2407-2412.

(20)Li,Z.;Anghel,I.;Bowman,R.S.Sorption of oxyanions by

surfactant modified zeolite.J.Dispersion Sci.Technol.1998, 19,843-857.

(21)Li,Z.;Bowman,R.S.Retention of oxyanions by organokaolinite.

Water Res.2001,35,3771-3776.

(22)Bowman,R.S.Applications of surfactant-modified zeolites to

environmental applications.Microporous Mesoporous Mater.

2003,61,43-56.

(23)Faghihian,H.;Bowman,R.S.Adsorption of chromate by

clinoptilolite exchanged with various metal cations.Water Res.

2005,39,1099-1104.

(24)Bowman,R.S.;Li,Z.;Roy,S.J.;Burt,T.;Johnson,T.L.;

Johnson,R.L.Physical and Chemical Remediation of Contami-nated Aquifers;Kluwer Academic/Plenum Publishers:New York,2001;p161.

(25)Vujakovic,A.D.;Tomasevic-Canovic,M.R.;Dakovic,A.S.;

Dondur,V.T.The adsorption of sulphate hydrogenchromate and dihydrogenphosphate anions on surface modified clinoptilolite.

Appl.Clay Sci.2000,17,265-277.

(26)Krishna,B.S.;Murty,D.S.R.;Jai Prakash,B.S.Surfactant-

modified clay as adsorbent for chromate.Appl.Clay Sci.2001, 20,65-71.

(27)Gadsden,J. A.Infrared Spectra of Minerals and Related

Inorganic Compounds;Butterworths:Stoneham,MA,1975.

4778J.Agric.Food Chem.,Vol.54,No.13,2006Bansiwal et al.

(28)Sharpley,A.N.Effects of soil properties on the kinetics of

phosphorus desorption.Soil Sci.Soc.Am.J.1983,47,462-467.

(29)Sharpley,A.N.;Ahuja,L.R.A diffusion interpretation of soil

phosphorus desorption.Soil Sci.1983,135,322-326. (30)Standard Methods for Examination of Water and Wastewater,

21st ed.;American Public Health Association-American Water Works Association-Water Environment Federation:Washing-ton,DC,2005.

(31)Methods of Soil Analysis Part I and Part II;American Society

of Agronomy and American Society for Testing and Materials: Madison,WI,1965.

Received for review January4,2006.Revised manuscript received April 21,2006.Accepted April24,2006.Financial support from the Depart-ment of Biotechnology,Government of India(Grant No.BT/PR/4042/ BCE/270/2003),is gratefully acknowledged.

JF060034B

Surfactant-Modified Zeolite as a Fertilizer J.Agric.Food Chem.,Vol.54,No.13,20064779

一种改性活性炭的制备方法

一种改性活性炭的制备方法,黎福根,唐怀远Patents Publication number CN103043659 A Publication type Application Application number CN 201210548722 Publication date Apr 17, 2013 Filing date Dec 17, 2012 Priority date Dec 17, 2012 Publication number 201210548722.1, CN 103043659 A, CN 103043659A, CN 201210548722, CN-A-103043659, CN103043659 A, CN103043659A, CN201210548722, CN201210548722.1 Inventors 黎福根, 唐怀远 Applicant 湖南丰日电源电气股份有限公司 Export Citation BiBTeX, EndNote, RefMan Patent Citations (3), Classifications (1), Legal Events (3) External Links: SIPO, Espacenet 一种改性活性炭的制备方法 CN 103043659 A Abstract 本发明公开了一种改性活性炭的制备方法,所述改性活性炭是采用抑氢剂改性的活性炭;所述的抑氢剂为负载在活性炭表面的氧化铅;其制备过程是先使用活性炭吸附铅离子;再使用碱将铅离子沉积在活性炭表面;最后通过热处理使氢氧化铅分解成氧化铅,并负载在活性炭表面;活性炭、铅盐与碱通过球磨方法发生化学反应,然后在保护气环境下通过高温处理制备。本发明制备工艺简单,生产周期短,易于工业化生产,设备投资较少;绿色环保;应用广泛;能够增大活性炭的比电容。 Claims(2) 1. 一种改性活性炭的制备方法,其特征在于,所述改性活性炭是采用抑氢剂改性的活性炭;所述的抑氢剂为负载在活性炭表面的氧化铅;所述的改性活性炭的制备过程是:1.先使用活性炭吸附铅离子; 2.再使用碱将铅离子沉积在活性炭

活性炭改性方法及其在水处理中的应用

活性炭改性方法及其在水处理中的应用 活性炭是用生物有机物质(包括煤、石油和沥青等在内)经过炭化、活化等过程制成的一种无定形炭。它具有多孔结构、巨大的比表面积、吸附容量大、速度快和饱和可再生等特点,能够有效地去除水中的臭味、天然和合成溶解的有机物、微污染物以及一些大气中的污染气体等,但是普通活性炭比表面积小、孔径分布不均匀和吸附选择性能差,故普通活性炭需要进一步的改性,满足实验和工程需要。现在常采用工艺控制和后处理技术对活性炭的孔隙结构进行调整,对表面化学性质进行改性,进而提高其吸附性能。 标签:活性炭;改性方法;水处理 活性炭是一种吸附性很强的环境友好型吸附剂,有很好的吸附性能和催化性能。活性炭的原料来源广泛并且具有很高的安全性和稳定性,具有耐酸碱、耐热、易再生等特点。实践表明,活性炭对水中溶解的有机溶剂有很好的吸附性能,对水质浑浊有明显的澄清作用,并且能够去除水中的异味、臭味等,还能够过滤水中的微生物,因此在水处理行业中有着非常广泛的应用。本文就活性炭的改性方法和其在水处理方面的应用进行了简述,旨在为活性炭及其改性产物在水处理行业中的应用提供一定参考。 1、活性炭的改性方法 1.1表面氧化改性 表面氧化改性是通过氧化剂对活性炭进行处理,从而使活性炭表面的官能团发生氧化,提高含氧的官能团(羧基、酚羟基、酯基等)数量,增强活性炭的亲水性能,即极性,增强对极性物质的吸附能力的改性方法,常用的氧化剂主要是双氧水、硝酸、臭氧、高氯酸等。其中硝酸的氧化性最强,能够产生许多的酸性基团,其他氧化剂则相对温和,可以用于调整活性炭的表面酸性。氧化改性后的活性炭材料表面几何形状更加均匀,并且使用不同的氧化剂能够得到韩阳官能团数量和极性不同的活性炭材料,其中,酸性含氧官能团含量的多少与氧化程度有很大的关系。 1.2 活性炭表面化学性质的改性方法 活性炭表面化学性质的改变主要是通过一定的方法改变活性炭表面的官能团以及表面负载的离子和化合物,从而改变其表面的化学性质达到活性炭的吸附能力的提高。活性炭表面化学性质改性方法可分为:表面氧化法、表面还原法、负载原子和化合物法、酸碱法等。在改性过程中常常联合不同的改性方法对活性炭进行改性,从而达到更好的改性效果。 1.2.1 表面氧化法

改性沸石对重金属离子吸附性能的试验研究

改性沸石对重金属离子吸附性能的试验研究 谢华林1,2 李立波2 (1 湖南工学院化工系,衡阳 421008;2 中南大学化学化工学院应化系,长沙 410083) 摘 要 在静态和动态条件下,研究了改性斜发沸石对工业废水中重金属离子Cu2+、Zn2+、Cd2+、Pb2+的吸附。结果表明,改性斜发沸石对重金属离子有较好的吸附,p H值是影响吸附的主要因素。采用1mol/L HCl+NaCl(V/V=1∶1)混合溶液作为斜发沸石的再生剂,可使其重复再生使用。 关键词 改性沸石 吸附 重金属离子 再生 Experimental Study on Adsorption Capability about The Heavy Metal Ions from Water Using Modified Clinoptilolite Xie Hualin1,2 Li Libo2 (1 Department of Chemical Engineering,Hunan Institute of Technology,Hengyang 421008;2 College of Chemistry and Chemical Engineering, Central South University,Changsha 410083) Abstract The adsorption capability of natural clinoptilolite can be improved by modification.The adorption effect of modified clinoptilolite to heavy metal ions from waste water such as Cu2+,Zn2+,Cd2+and Pb2+was studied under static state condition and dynamic state condition.The results showed that modified clinoptilolite had better adsorbability for heavy metal ions,moreover p H value of solution was the main factor affecting adsorption. The mixed solution of1mol/L HCl+NaCl(V/V=1∶1)could be repeatedly used as the regeneration reagent of clioptilolite. K ey w ords modified clinoptilolite absorb heavy metal ions regenerate 工业废水中主要含有Cu2+、Zn2+、Cd2+、Pb2+等重金属离子。目前,我国多采用化学沉淀法处理含重金属离子的废水,但由于不同重金属离子生成氢氧化物沉淀时的最佳p H值不同,以及某些重金属离子可能与溶液中其他离子形成络合物而增加了它在水中的溶解度,所以处理效果并不理想;另外,重金属离子在碱性介质中生成的氢氧化物沉淀,一部分会在排放中随p H值的降低而重溶于水,也使处理效果不理想。 沸石是一族具有连通孔道、呈架状构造的含水铝硅酸盐矿物,特殊的晶体化学结构使沸石拥有离子交换、高效选择吸附、催化、耐酸、耐辐射等优异性能和环境属性。斜发沸石作为天然沸石家族的一员,被认为是一种有工业应用前景的矿物,国内外对其性能及应用的研究较多[1~5]。本文介绍了通过NaCl和N H4Cl将斜发沸石改性为钠型和铵型沸石,在静态和动态条件下,通过对水中Cu2+、Zn2+、Cd2+和Pb2+的吸附研究,探讨了它们的吸附机理和改性斜发沸石处理工业废水中重金属离子的可行性,取得良好的效果,为工业水处理提供了一种高效而实用的新方法。 1 试验 1.1 主要仪器与试剂 ICPS21000Ⅱ型等离子体原子发射光谱仪(日本岛津);p HS22型酸度计;7621型电动搅拌机;ST2 03A型比表面孔径测试仪;超级恒温水浴箱;马弗炉;烘箱;电动振荡器;粉碎机;棒磨机。 重金属标准溶液:Cu、Zn、Cd、Pb标准溶液(1000mg/L)由国家标准物质研究中心提供,然后据不同元素测定需要,配制成适当浓度的标准溶液。 NaCl、N H4NO3、H2SO4、HCl、HNO3、NaOH,均为分析纯;水为亚沸蒸馏水。 1.2 样品制备及其化学成分 选取一定量的块状斜发沸石原矿和烟煤,分别用粉碎机粗碎至3~5mm,再分别用棒磨机细磨至200目左右,然后过200目筛。将沸石粉和煤粉(质量比为 2.5∶1.0)充分混匀,加入适量水搅拌挤压成粒状,在l00℃下烘干后,于650℃马弗炉中灼烧60min,取出自然冷却至室温,制得20~40目、40~60目、60~80目、80~100目粒级,供试验用。 沸石的化学成分(%):SiO2,70183;CaO,3138; Al2O3,11178;Fe2O3,0167;MgO,1106;MnO,0104; TiO2,0131;K2O,2123;Na2O,0145。硅铝比SiO2/ Al2O3,10114;铵离子交换容量,12316mmoL/100g。 1.3 沸石改性 1.3.1 改性钠型斜发沸石:选取经破碎、筛分后粒 第28卷第1期2005年1月 非金属矿 Non2Metallic Mines Vol.28No.1 Jan.,2005

如何制作活性炭

现代农业以大量化肥代替原有农家有机肥的使用,以人工饲料代替农业废弃物饲料的使用,加之现代农业集约化和规模化的发展,打破了传统农业中废弃物的循环利用环节,结果造成了农业废弃物的大量积累,进而产生了较为严重的环境问题和资源浪费问题。因此,农业废弃物资源的合理利用已日益成为当前世界大多数国家共同面临的问题。国内外实践表明,农业废弃物的资源化利用和无害化处理,是控制农业环境污染、改善农村环境、发展循环经济、实现农业可持续发展的有效途径。 活性炭是一种具有特殊微晶结构、发达孔隙结构、巨大比表面积和较强吸附能力的含碳材料。其化学稳定性好,具有耐酸、耐碱、耐高温等特点。作为一种优良的吸附剂,人们对活性炭的应用开发研究越来越多。20世纪70年代前,活性炭在国内的应用主要集中于制糖、制药和味精工业:后来又扩展到水处理和环保等行业;20世纪90年代,除以上领域外,扩大到溶剂回收、食品饮料提纯、空气净化、脱硫、载体、医药、黄金提取、半导体等众多应用领域[1-5]。 2农业废弃物利用现状 农业废弃物(agriculturalresidue)是指在农业和林业生产与加工过程中产生的副产品、数量巨大、具有可再生、再生周期短、可生物降解、环境友好等诸多优点,是重要的生物质资源。主要有树皮、果壳、锯末、秸秆、蔗渣等。据有关资料,我国产生的农业废弃物按目前的沼气技术水平能转化成沼气3111.5亿

m3,户均达1275.2m3,可解决农村能源短缺。以农作物秸秆为例,将目前的6.5亿吨秸秆转化为电能,按1kg秸秆产生电1千瓦时计算,就具有产生6.5亿千瓦时电能的潜力;作为肥料可提供氮大约2264.4万吨、磷459.1万吨、钾2715.7万吨;作为饲料,仅玉米秸秆就能提供1.9~2.2亿吨。然而,目前我国农业废弃物的利用率却很低乃至没有利用。因此,农业废弃物一方面成为最大的搁置资源之一,另一方面又成为巨大的污染源[6]。 从资源经济学的角度上看,农业废弃物本身就是某种物质和能量的载体,是一种特殊形态的农业资源,蕴含着丰富的能源和营养物质。目前,随着石油、煤炭等不可再生资源的日益短缺,越来越多的国家特别是发达国家已经把农业废弃物等可再生资源的转化利用列入社会经济可持续发展的重要战略,以农业废弃物等可再生资源为原料制备工业新产品的研究引起了世界各国的关注。在我国,随着经济的迅速发展,开发利用农业废弃物资源,逐步补充或替代化石资源,是关系到我国社会经济可持续发展的重大问题。 3农业废弃物制备活性炭及其改性 目前活性炭制备原料的使用也是由木屑和木片到煤和各种 农林产品的充分利用。产品由单一品种向多品种发展:由低档活性炭向高档活性炭转变。农业废弃物制备活性炭的过程一般经过原料粉碎、压棒、炭化、活化、漂洗、烘干和活性炭粉碎等几个

活性炭的表面改性及其研究

活性炭的表面改性及其研究 摘要:活性炭表面的不饱和电子云和炭结构中存在的杂原子影响了其应用范围,为了满足应用要求,必须对其表面进行改性;介绍了活性炭表面改性的方法,包括对活性炭外观、形状的改变,采用碳沉积技术对孔结构的改变,针对不同应用条件对活性炭表面极性的改性等。 关键词:活性炭;表面改性;改形;极性基团 Abstract: unsaturated electron cloud on the surface of the activated carbon and structure of the carbon hetero-atom affected its application scope, in order to meet the application requirements, must be on the surface modification; The method of the surface modification of activated carbon are introduced, including the appearance, the shape of the activated carbon change, using carbon deposition technology to the change of pore structure, according to different application conditions on the surface polarity of the modified activated carbon, etc. Key words: activated carbon; The surface modification; Change shape; Polar groups 前言 1 【活性炭应用领域扩大对其性能提出了更新、更高的要求,在“高吸附、多功能、高强度”的总要求下,(减低活性炭的使用成本,扩大使用范围,提高利用效率的有效突进)【4,6】。出现了对专用炭质吸附材料需求量越来越多的趋势。目前用传统工艺生产出来的活性炭只能识活性炭表面结构的基础上,采用某种可行的途径对其进行表面改性,从而达到实际应用的目的。现在的活性炭种类少,技术含量低,缺少功能化高品质专用的活性炭,【3-5】】 一、前言 与树脂、硅胶、沸石等吸附剂相比,活性炭具有许多独特且不可替代的特性。 活性炭吸附剂的优点 1、活性炭的表面特性活性炭具有的表面化学性质、孔径分布和孔隙形状不同,是活性炭具有选择性吸附的主要原因。 2、化学性质稳定、容易再生活性炭的化学性质稳定、能耐酸、耐碱,所以能在较大的酸碱度范围内应用;活性炭不溶于水和其他溶剂,能在水溶液和许多溶剂中使用。 3、催化性质活性炭作为接触催化剂用于各种异构化、聚合、氧化和卤化反应中。它的催化活性是由于炭的表面和表面化合物以及灰分等的作用。 4、有较发达的孔隙结构活性炭具有发达的孔隙结构,除了活性分子筛以外,孔径分布范围较广,具有孔径大小不同的孔隙,能吸附分子大小不同的各种物质。

改性沸石处理含氨氮废水

改性沸石处理含氨氮废水 NH3-N是高耗氧性物质,每毫克NH3-N氧化成硝酸盐要消耗4157mg的溶解氧,较高的氨氮浓度会直接导致水质的黑臭。作为一种无机营养物质,NH3-N还是引起海洋、湖泊、河流及其它水体富营养化的重要原因,对鱼类及某些水生生物有毒害。桂林某旅游景区的污水处理系统原设计水量为180m3/d,投入使用后,由于实际服务人口增加,导致水量增加。该污水处理工艺未设污泥处理系统,长期以来,沉淀池的污泥通过排入化粪池达到减量目的。以上原因导致该工艺在运行三年后出水氨氮严重超标,污染周围水体,急需脱除水中的氨氮。对于氨氮废水的处理,用常规的生物化学方法去除氨氮效率低、周期长、成本高;用活性炭吸附、磷酸铵镁沉淀等物理化学方法也因其工艺本身的缺陷、成本高等原因而无法广泛应用。因此,寻求高效、切实可行的去除氨氮的方法十分必要。近年来,国内外开展了用沸石去除水中氨氮的研究。沸石是一种廉价的无机非金属矿物,利用它去除水中的氨氮具有效率高、工艺简单、易再生、处理成本低等特点。沸石在水处理中的应用已得到广泛关注。 一、实验部分 1、材料 沸石:采用α改性沸石,其红外光谱见图1。根据其粒径大小分为粗(016~110mm)、中(0125~016mm)、细(0118~0125mm)3种。其化学成分及其含量(wB)为SiO267199%, TiO20123%,Al2O313125%,Fe2O30167%,MnO0116%,CaO2192%,MgO0189%,K2O1127%,Na2O2165%,P2O501013%。含氨氮废水:取自某旅游景区的高浓度氨氮废水,其水质为ρ(CODCr)=200~

浸渍改性活性炭脱除低浓度H_2S的研究

浸渍改性活性炭脱除低浓度H 2 S的研究① 秦 悦,张永春,陈绍云 (大连理工大学精细化工国家重点实验室,辽宁大连 116012) 摘要:研究了活性炭种类、浸渍剂种类及浓度、添加剂种类及浓度、反应温度六种因素对改性活性炭脱硫效果的影响,结果表明活性炭和浸渍剂种类是决定改性活性炭硫容量的关键因素。最优的改性活性炭脱硫剂组成是光华GH216杏壳活性炭负载7%Na OH浸渍液,并以1%的MC M241分子筛作为添加剂,这样制得的改性活性炭硫容量可提高200%以上。 关键词:活性炭;浸渍;硫化氢;脱硫;添加剂 中图分类号:T Q42411文献标识码:A文章编号:100727804(2009)0420020204 doi:1013969/j1issn1100727804120091041005 Re m ova l of H2S of L ow Concen tra ti on by Im pregna ted Carbon Q IN Yue,Z HANG Yong2chun,CHE N Shao2yun (State Key Laborat ory of Fine Chem ical,Dalian University of Technol ogy,Dalian116012,China) Abstract:The effects of such six fact ors as the variety of activated carbon,the i m p regnant and its p r oporti on,the additive and its a mount,the temperature of reacti on on the sulfur capacity of the i m p regnated activated carbon have been investiga2 ted.It is concluded that the pore structure of activated carbon and variety of i m p regnant are the key fact ors t o deter m ine the sulfur capacity.The best desulfurizing agent is composed of GH216activated carbon,7%Na OH as i m p regnant and1% MC M241as additive,and its sulfur capacity may i m p r ove more200%than common one. Key W ords:activated carbon;i m p regnated;hydr ogen sulfide;desulfurizati on;additive 硫化氢是一种有毒有害气体,它不仅会危害人身健康,而且还会在湿热的环境下腐蚀金属管道和设备。工厂排放的尾气及天然气里即使很少量的硫化氢也会造成环境污染,所以硫化氢的排除尤其是低浓度的硫化氢的排除是急需解决的问题[122]。利用活性炭作为催化剂将硫化氢催化氧化成单质硫而脱除,是一种有效而经济的脱硫方法。在活性炭中浸渍某些金属化合物作为改性剂,可以显著增强其催化活性,既降低脱硫温度,又可大大提高硫容量[325]。本实验采用浸渍法对活性炭进行改性的方法来提高脱硫效率。 1 实验部分 111 活性炭的改性 实验中选择碳酸钠溶液、氢氧化钠溶液、碳酸钾溶液、氢氧化钾溶液和碘化钾溶液等作为浸渍液对活性炭进行改性[627]。首先用去离子水洗涤活性炭数次,然后将活性炭在去离子水中浸泡2h,在100℃下干燥12h,然后用一定浓度的浸渍液浸渍干燥好的活性炭2h,放入100℃的干燥箱内干燥12h,制得成品。 112 实验分析方法 实验结果分析是以每克活性炭所吸附的硫化氢的质量作为衡量硫容量(q)的标准,硫容量单位为mg/g,穿透硫容量的时间取出口硫化氢浓度为1×10-6的时间。硫化氢的检测采用上海天美科学仪器有限公司出品的GC7890FP型色谱,检测出口硫化氢浓度。色谱采用火焰光度检测器(FP D),气化温度为323K,检测柱温度为323K,检测器 第27卷第4期低温与特气Vol127,No14 2009年8月Low Te mperature and Specialty Gases Aug1,2009  ①收稿日期:2009205211

表面改性剂总结

表面改性剂:涂料油墨的点睛之笔 简介 为什么改变涂料表面特性 改变表面能 优化表面 消光蜡 蜡在涂料油墨中起什么作用 蜡的消光性能 回到改变表面能 怎样加入添加剂 实际应用 结论 简介 涂料和油墨的表面暴露在“外面的世界”里,必须经受一些严峻的环境考验,很可能导致体系本身的快速老化。除了这一点,表面还是形成涂料外观的主要原因,比如光泽和“质感”,这些都来自于表面。 绝大多数情况下,不加入改变涂料表面性能的特定添加剂――也就是表面改性剂,就无法得到优越的表面性能。加入不同种类的添加剂,现在我们可以改变以下性能: ?斥水性 ?耐刮擦、片落、损伤性能 ?耐磨性能 ?提高,或降低光泽 ?流动和流平性 ?柔和,平滑的质感 ?抗粘联性能 ?表面纹理 为什么要改变涂料的表面性能?

改变涂料的表面基本上有两个原因。第一个是需要降低表面张力/表面能,以便获得与此相关的特定性能。第二个原因,是获得不同的光学效果,比如消光,或者表面纹理。后一种添加剂不一定需要影响体系的表面能――不过这要根据化学结构来看――也有很多种类的添加剂,同时改变了这项特性。 改变表面能 设计涂料油墨配方时,必须明白表面张力和表面能的规律和关系,因为这个现象控制着很多我们需要的涂膜特性,比如流平性、润湿性、耐刮擦和损伤能力、斥水性以及表面“质感”等等。所有这些特性,都严重依赖涂膜的表面张力。 涂料和油墨中使用的大多数介质表现出高表面能。最常用的介质――比如以环氧为例――表面能是47达因/厘米(参见图表)。涂料油墨中使用的大多数其他介质――除了硅树脂以外――数值都在差不多的水平。由于一般涂膜具有这个相对较高的表面能数值,所以很难得到优越的流平性、质感和耐刮擦、损伤性能。硅树脂、各种蜡产品以及特定的表面活性剂,都是专门设计,用来提高这些性能的。我们将进一步讨论这些产品的优劣。尽管它们都能用来改变表面能,但它们的化学性质差别却很大。 优化表面 很多情况下,必须改变涂料或者油墨的表面光学效果,比如降低光泽或者特定纹理。要降低体系的光泽,可以通过引进一种“微观粗糙”的表面,来“破坏”高光涂膜的光滑表面,这样入射光线就会被反射到各个不同的方向(如图)

活性炭表面化学改性及应用研究进展

第8卷 第19期 2008年10月167121819(2008)1925463205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 18 No 119 Oct . 2008 Ζ 2008 Sci 1Tech 1Engng 1 化工技术 活性炭表面化学改性及应用研究进展 陈孝云 林秀兰 魏起华 林金春 欧水丽 (福建农林大学材料工程学院,福州350002) 摘 要 活性炭表面官能团的种类与数量决定了活性炭的表面化学性质,而化学性质决定了活性炭的化学吸附特性。通过改变活性炭表面官能团的种类与数量、消除某些基团或者负载增加活性中心,可以改善活性炭对特定吸附质的吸附能力。论述了活性炭表面化学性质的氧化、还原、酸碱、等离子体、金属负载和电化学等改性及其应用研究进展。关键词 活性炭 吸附 表面化学改性 表面化学性质中图法分类号 T Q42411; 文献标志码 A 2008年5月27日收到国家自然科学基金(30571461)、福建省科技 厅星火计划项目(3182)、福建省自然科学基金(2008J0225)、青年教师基金(08B20)资助 第一作者简介:陈孝云,男,硕士,讲师,研究方向:离子液体和炭材料。E 2mail:chenxy_dicp@1261com 。 活性炭因孔隙结构发达、比表面积大、表面官能团丰富、灰分含量低、化学性质(耐酸、耐碱、耐热)稳定、机械强度高、不溶于水和有机溶剂、可再生重复利用等优点,被广泛用于治理水体、空气、土壤等环境中有机、无机、细菌及尘埃等污染物 [1—3] 。 但由于活性炭品种少、技术含量低、缺少功能化高品质专用活性炭,制约我国活性炭行业迈向更高层次的应用 [3—5] 。将活性炭改性处理,研制出对污染物高效、深度净化的功能活性炭,是降低活性炭使用成本、扩大其使用范围、提高其利用效率的有效途径,是活性炭行业未来发展方向 [4,6] 。活性炭改性主要是通过一些物理、化学处理,改变其孔隙结构(如孔容、孔径大小与分布等);改变活性炭表面的酸、碱性;或者在活性炭表面引入或去除某些官能团使活性炭具有某种特殊的吸附性能和催化特性 [7—10] 。此外,采用不同的活化方法或不同的活化 剂也可以实现制备不同孔径分布及不同表面化学特性的活性炭 [11] 。目前,针对活性炭表面化学性质 改性的方法主要有氧化改性、还原改性、酸碱改性、等 离子体改性、金属负载改性和电化学改性等[8—15] 。 1 活性炭表面化学性质 活性炭的吸附特性不但取决于它的孔隙结构,而且取决于其表面化学性质,表面化学性质决定了活性炭的化学吸附 [9] 。化学性质主要由表面的化 学官能团的种类与数量、表面杂原子和化合物确定,不同的表面官能团、杂原子和化合物对不同的吸附质的吸附有明显差别 [16] 。因此对活性炭表面 化学结构进行化学改性,使其吸附具有更高的选择性具有重要的意义。活性炭表面官能团一般分为含氧官能团(图1)和含氮官能团(图2);含氧官能团主要有羧基、酚羟基、羰基、内酯基及环式过氧基等,含氮官能团可能存在形式有两类酰胺基、酞亚胺基、乳胺基,类吡咯基、类吡嘧啶基等 [11—13] 。 图1 活性炭表面含氧官能团

分子筛改性

分子筛改性- 沸石分子筛的改性方法 2沸石分子筛的结构及性能 2.1沸石分子筛的结构特点 沸石结构可以分为三个部分[3]:铝硅酸盐格架;格架中相互连结的孔隙(孔道和空穴):在孔道或空穴中的阳离子和水分子。在一般情况下,沸石的中心大空穴和孔道都充满水分子,这些水分子围绕着可交换阳离子形成水化球,通常在350℃或400℃下加热数小时或更长时间,沸石将失去水。这时,有效直径小到足以通过孔道的分子将易于被沸石吸附在脱水孔道和中心空穴中;而直径过大无法进入孔道的分子将被排斥,这就是大家所熟知的“分子筛”性质。 沸石的骨架中的每一个氧原子都为相邻的两个四面体所共用。构成沸石骨架的最基本的结构是硅氧(SiO4)四面体和铝氧(AlO4)四面体。几个硅(铝)氧四面体通过氧桥相互联结在一起,可以形成四元环、五元环、六元环、八元环、十二元环、十八元环等。而各种不同的多元环通过氧桥相互联结,又可形成具有三维空间的笼。由于铝原子是三价的,所以铝氧四面体中有一个氧原子的价电子没有得到中和,这样就使整个铝氧四面体带有一个负电荷,为了保持电中性,这个负电荷由处在骨架外的单价或多价阳离子来补偿。

沸石中的阳离子可被其它阳离子交换,并保持骨架结构不发生变化。由于阳离子的大小不同,以及在晶穴中位置的改变,可以影响沸石的孔径发生变化。另外,由于沸石中不同阳离子所产生的局部静电场不同,水合阳离子的离解度也不同,因而对吸附质分子的极化能的影响也不同,从而影响了沸石筛分分子的作用和吸附、催化性能,所以沸石的离子交换作用是沸石能够改性的原因之一。沸石中的阳离子位置可以发生改变,也可以被其它阳离子交换,并保持骨架结构不发生变化,这一点对沸石的应用是非常重要的。 沸石分子筛的结构特点归纳为以下几点: 1沸石分子筛具有高度有序的晶体结构和大量均匀的微孔,其孔径与一般物质的分子大小属同一数量级,空旷的骨架结构,使得晶穴体积约为总体积的40%~50%。 2分子筛具有很大的表面积,其表面积主要存在于晶穴内部,外表面积仅占总表面积的1%左右。 3明确的孔结构,对客体分子表现择形性。择形性是由反应物、产物或过渡态分子的扩散差别引起的,这方面已有大量的研究。沸石分子筛的这一性质可以通过孔道尺寸的剪裁来改变[4]。 4沸石呈现离子型电导性,这是由于阳离子可以通过孔道移动。阳离子携带电流的能力取决于离子的淌度、电荷大小和其在结构中的位置。 5沸石的酸碱稳定性各不相同,

沸石改性综述

L沸石的改性 一.引言 酸型沸石是一种广泛应用于石油精炼厂和石化生产过程的催化剂。由于沸石分子筛的酸强度及酸分布都会影响到沸石的稳定性和催化性能,因此沸石科学的早期人们就已经开始研究利用离子交换技术来改变沸石酸性质。例如,20世纪40 年代Barrer描述了丝光沸石的离子交换行为[i][ii]。Sherry[iii]和Breck [iv]已经总结出一套一般的离子交换方法[v],这种方法适用于分子筛离子交换已经得到证实[vi,vii]。接着,在20世纪六七十年代,焙烧作为一种主要的方法被用来研究Y(FAU)沸石[viii,ix]。沸石分子筛的催化性能受SiO2/Al2O3的影响,改变分子筛的SiO2/Al2O3也成了研究分子筛的重点,常常通过直接合成或者通过合成后处理的方法,得到高硅铝比的沸石分子筛,经脱铝处理的高稳定的USY分子筛为流化催化裂化奠定了基础,高硅铝比的丝光沸石也显示出了独特的催化性能。 分子筛的改性范围很广,从简单的离子交换直到结构完全崩塌的材料都属此范围。既包括对非骨架元素的改性也包括对骨架元素的改性。兰州炼油化工总厂石化研究院的高繁华等人总结了沸石改性的方法,主要包括三大类:一是结构改性,即改变沸石的SiO2/M2O3(M=Al或Fe,B,Ca等)从而达到改变沸石酸性的目的,水热脱铝是这类改性沸石的典型方法;二是沸石晶体表面改性,如加入不能进入沸石孔道的大分子金属有机化合物达到改性目的;三是内孔结构改性,即改变沸石的酸性位置或限制沸石的内孔的直径,例如金属阳离子交换。 目前工业上广泛应用的分子筛大多是需要提高其耐酸性能,分子筛骨架的酸碱性与分子筛骨架的硅铝比密切相关,所以往往需要对分子筛进行后处理来改变骨架的硅铝比,从而改变它的酸碱性和活性中心的数目和强度来适应催化反应的需要。改变分子筛的硅铝比,通常是在合成后对分子筛进行脱铝补硅处理,沸石分子筛脱铝补硅的方法很多[x,xi],主要有: (1)酸处理的方法可用无机酸或有机酸处理分子筛,使其骨架脱铝,可使用的酸有盐酸、硫酸、硝酸、甲酸[xii]、乙酸、柠檬酸[xiii]、乙二胺四乙酸(H4EDTA)等。根据分子筛耐酸性的差异,采用不同浓度的酸进行骨架脱铝。对于耐酸性好的高硅沸石多用盐酸漂法,以抽走骨架中的铝,结构仍保持完好。在骨架铝脱出的同时,孔道中非晶态物质也被溶解,这样减少了孔道阻力。对于耐酸性差的分

脱硫活性炭的作用详细说明介绍

脱硫活性炭的作用详细说明介绍 郑州永坤环保科技有限公司 脱硫活性炭的作用详细说明介绍,活性炭脱硫剂是一种高比表面积的微孔活性炭,具有发达的孔隙结构,无浸渍意味着在对H2S的催化、氧化过程中活性炭脱硫剂的所有孔径和表面积可供储存大量的硫元素。活性炭脱硫剂不同于当今市场所供的其他臭气吸附活性炭,是一种由特殊生产工艺、选用活性原料及科学配方生产的活性炭产品,活性炭脱硫剂有特别高的H2S去除能力。这种臭气控制活性炭

是不浸渍的,在运输、使用过程中和废料处理上都不会遇到象其它碱性浸渍炭那样所带来的严重的安全问题,活性炭脱硫剂的着火点大于450℃。 活性炭脱硫剂的发展历史介绍:活性炭脱硫剂是最早使用的干法脱硫剂之一,至今已有70多年的使用历史.早先的活性炭脱硫技术设

备庞大,再生和硫回收过程较复杂,操作烦锁。在20世纪50年代逐渐被湿法所取代。近年来由于再生方法得以改进和简化,又开发了精脱硫用的活性炭脱硫剂和常温精脱硫技术,有不少中、小型合成氨厂、尿素厂、联醇生产厂利用活性炭脱硫剂干法脱除原料气中的部分有机硫。此法具有硫容大,适应性强,操作温度低,并可再生反复使用且能回收硫磺等优点,而且活性炭脱硫剂的价格比较便宜。但活性炭脱硫剂仅限于有氧的情况,无氧时吸硫能力很低.就耐水性而言,活性炭脱硫剂优于氧化铁脱硫剂。

活性炭脱硫原理:活性炭脱硫机理是利用活性炭表面活性基团的催化作用加速气体中的H2S和O2发生下述反应: 2H2S+ O2 →2H2O+2S ΔH= -434.3kJ/mol ,H2S与O2在活性炭表面的反应实际上分两步进行,首先是活性炭表面吸附氧,形成活性中心的表面氧化物,然后气体中的H2S分子与化学吸附的氧发生反应,生成的硫磺沉积在活性炭发灰的微孔中。为了加速反应的进行,提高脱硫效果,实际O2/H2S之比需大于理论值0.5,其比值以大于3为好。活性炭脱硫剂可能过浸渍法引入活性金属如铜、碱金属划碱土金属等,以改性提高其催化活性。应用领域?臭气控制?污水处理厂?冶炼、纸浆和造纸厂?酸性气体,如:HCL、SO ?易挥发的有机化合物制备方法活性炭脱硫剂有两种:一种是用于粗脱硫的普通活性炭脱硫剂,还有一种是用于精脱硫的改性活性炭脱硫剂.前者常以煤为原料,以焦油为胶粘剂挤条成型后经炭化处理,再用水蒸气活化,经筛分后制成。后者常选用已成型的活性炭,用活性炭金属盐容液等浸渍后,再经干燥、焙烧和过筛后制得。如在活性炭上涂渍上乙醇胺等可以使活性炭得以改性,能脱除大部分的有机硫醚.再生:水洗再生

表面改性剂

一粉体表面改性概念 粉体表面改性, 是指用物理、化学、机械等方法对粉体材料表面或界面进行处理,有目的地改变粉体材料表面的物理化学性质,如表面能、表面润湿性、电性、吸附和反应特性、表面结构和官能团、等等,以满足现代新材料,新工艺和新技术发展的需要。 二表面改性的目的 (1)改善粉体颗粒的分散性、稳定性和相容性。 (2)提高粉体颗粒的化学稳定性,如耐药性、耐 光性、耐候性等。 (3)改变粉体的物理性质,如光学效应、机械强 度等。 (4)出于环保和安全生产目的。 三粉体表面改性技术的应用 ?(1)有机/无机复合材料(塑料、橡胶等) ?改善无机填料(包括增量无机填料和功能性无机填料)与有机(高聚物)基料的相容性,提高其分散性及复合材料的综合性能 ?(2)油漆、涂料 ?提高涂料、油漆中颜料的分散性并改善涂料的光泽、着色力、遮盖力和耐候性、耐热性、保光性、保色性等 ?(3)无机/无机复合材料 ?提高无机组分,特别是小比例无机组分在大比例无机组分中的分散性,如陶瓷颜料和多相陶瓷材料 ?(4)吸附与催化材料 ?提高选择性、活性和机械强度 ?(5)健康与环境保护 ?(6)超细和纳米粉体制备中的抗团聚 ?(7) 其它(插层改性) 四粉体表面改性的主要研究内容 ?(1)粉体表面改性的原理和方法 ?表面或界面性质与其应用性能的关系 ?表面或界面与表面改性剂或处理剂的作用机理和作用模型 ?各种表面改性方法的基本原理或理论基础,包括表面改性处理过程的热力学和动力学,模拟和化学计算等 ?(2)表面改性剂及其配方 ?种类、结构、分子量、活性基团与其应用性能或功能的关系 ?与粉体表面及复合材料的作用机理和作用模型 ?用量和使用方法 ?新型和专用表面改性剂的制备或合成 ?(3)表面改性工艺与设备 ?不同种类和不同用途粉体表面改性的工艺流程和工艺条件

活性炭改性实验

水污染控制工程实验 实验报告 题目:活性炭吸附实验 活性炭间歇吸附实验 一、实验目的 1.通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。 2.掌握用“间歇法” 、“连续流”法确定活性炭处理污水的设计参数的方法。 二、实验原理 活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,已达到净化水质的目的。活性炭的吸附作用产生于两个方面,一是由于活性炭内部分子在各个方向都受到同等大小的力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此为物理吸附;另一个是由于活性炭与被吸附物质之间的化学作用,此为化学吸附。活性炭的吸附是上述两种吸附综合的结果。当活性炭在溶液中的吸附速度和解吸速度相等时,即单位时间内的活性炭的数量等于解吸的数量时,此时被吸附物质在溶液中的浓度和在活性炭表面的浓度均不在变化,而达到平衡,此时的动平衡称为活性炭吸附平衡,二此时被吸附物质在溶液中的浓度称为平衡浓度。活性炭的吸附能力以吸附量q表示。 式中 q —活性炭吸附量,即单位重量的吸附剂所吸附的物质量,g/g; V —污水体积,L; C0、C —分别为吸附前原水及吸附平衡时污水中的物质浓度,g/L; X —被吸附物质重量,g;

M — 活性炭投加量,g ; 在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化称为吸附等温线,通常费用兰德里希经验公式加以表达。 n e e KC q 1= 式中 q — 活性炭吸附量,g/g ; C — 被吸附物质平衡浓度g/L ; K 、h — 溶液的浓度,pH 值以及吸附剂和被吸附物质的性质有关的常数。K 、h 值 求法如下:通过间歇式活性炭吸附实验测得q 、C 一一相应之值,将式取对数后变换 为下式: e e e C n K m C C q lg 1lg lg lg 0+=-= 将q 、C 相应值点绘在双对数坐标纸上,所得直线的斜率为1/n 截距则为k 。 由于间歇式静态吸附法处理能力低、设备多,故在工程中多采用连续流活性炭吸附法,即活性炭动态吸附法。 采用连续流方式的活性炭层吸附性能可用勃哈特和亚当斯所提出的关系式来表达。 公式: t KC v H KN B C C 0)1exp(ln 10ln 0-??????-=???? ??- ??? ? ??--=10ln 1000B C C K C H v C N t 式中 t — 工作时间,h ; V — 流速,m/h ; D — 活性炭层厚度,m ; K — 速度常数,L/mg·h; N0 — 吸附容量、即达到饱和时被吸附物质的吸附量,mg/L ; C0 — 进水中被吸附物质浓度,mg/L 。 CB —— 允许出水溶质浓度,mg/L 。

脱硫剂的研究进展样本

脱硫剂研究进展 谢璐,奕亚芬,胡新颜,郑文,马剑华 (温州大学化学与材料工程学院,浙江温州 325035) 摘要:当前脱硫剂使用已经越来越普遍了,针对当前各脱硫剂研究进展以及实验数据显示,本文重要简介各脱硫剂脱硫原理,最佳配方,性能,影响因素以及当前各脱硫剂在工业和生活上应用。核心词:脱硫剂原理配方性能工业应用 引言: 日前,脱硫问题已导致了诸多困扰,不但是反映过程中催化剂不良影响,还导致了很大环境问题。对于脱硫剂研究越来越受到注重了。脱硫剂是用于脱除燃料、原料或者气体物料种游离硫或者硫化合物;当前大量使用在工业和生活上煤气脱硫。由于大某些脱硫剂有再生反映可重复运用,使得脱硫剂研究更具备一定价值。脱硫剂按温度普通可分为高温、中温、常温型。氧化铁常温脱硫剂是当前最惯用脱硫剂之一。 1钙氧化物高温脱硫剂 1.1 钙氧化物高温脱硫剂原理 高温钙氧化物以脱去煤中硫为主,故其重要是运用钙氧化物与H2S进行反映。化学反映式为:CaO+H2S=CaS+H2O 通过将一定量钙氧化物和煤通过干燥解决后,加入气化炉中进行反映生成CaS,煤灰和硫化物从炉底排出。在此过程中CaO既有脱硫作用又具备了一定催化效果1。 1.2 钙氧化物脱硫剂最佳配方与制备

将配备好金属盐在恒温50℃水浴中进行中和沉淀后,过滤洗涤,120℃干燥24h,最后在700℃左右进行8h焙烧即可获得,此法是运用共沉淀法合成2。 1.3 钙氧化物脱硫剂性能 1.3.1机械强度 机械强度是高温脱硫剂重要指标。低机械强度会使脱硫剂效率明显减少。钙氧化物硫化后侧压强度有很大提高,再生后强度虽会下降但较最初仍有所提高。再生过程钙氧化物有良好机械强度,进一步证明其工业价值。 1.3.2再生性能 钙氧化物再生性能较好,通过三次持续脱硫-再生循环稳定运营,且硫容逐渐增大,脱硫效果较高,机械强度较高,有较好应用价值。 1.4 影响钙氧化物脱硫剂效果因素 1.4.1钙氧化物脱硫剂构成 高温脱硫剂是采用氧化铁和氧化钙以一定比例混合脱硫。其比例不同对脱硫效果影响也是不同,以硫容和脱硫效率作为衡量原则发现,氧化铁和氧化钙以摩尔比1:1进行效果为最佳3。 1.4.2焙烧温度对脱硫剂影响 不同焙烧温度对脱硫剂性能影响也是很大。焙烧温度过低会使脱硫剂形成尖晶石构造,影响脱硫效果,但当焙烧超过800摄氏度也会对脱硫剂构造导致影响,样品比表面积下降,从而使脱硫剂性能下降。普通来说随钙氧化物增长,起始烧结温度也随之增长。 1.4.3脱硫剂比表面积 比表面积不但影响脱硫剂机械性能,也会影响其焙烧温度。用美国ASAP型自

表面改性剂

第五章表面改性剂 粉体的表面改性,主要是依靠表面改性剂(或处理剂)在粉体颗粒表面的吸附、反应、包覆或包膜来实现的。因此,表面改性剂是粉体表面改性技术的重要内容之一,对于粉体的表面改性或表面处理具有决定性作用。 粉体的表面改性一般都有其特定的应用背景或应用领域。因此,选用表面改性剂必须考虑被处理物料的应用对象。例如,用作塑料、橡胶、胶粘剂等高聚物基复合材料的无机填料的表面改性所选用的表面改性剂既要能够与表面吸附或反应、覆盖于填料颗粒表面,又要与有机高聚物有较强的化学作用和亲和性,因此,从分子结构来说,用于无机填料表面改性的改性剂应是一类具有一个以上能与无机颗粒表面作用较强的官能团和一个以上能与有机高聚物基分子结合的基团并与高聚物基料相容性好的化学物质;而用作多相陶瓷、水性涂料体系的无机颜料的表面改性剂既要能与无机颜料有较强的作用,显著提高尤机颜料的分散性,还要与无机相或水相有良好的相容性或配伍性。 表面改性剂的种类很多,目前还没有一个权威的分类方法,常用的改性剂有偶联剂、表面活性剂、有机低聚物、不饱和有机酸、有机硅、水溶性高分子、超分散剂以及金属氧化物及其盐等,以下分别子以介绍。 5,1 偶联剂 偶联剂是具有两性结构的化学物质。按其化学结构和成分可分为硅烷类、钛酸酯类、铝酸酯类、锆铝酸盐及有机络合物等几种。其分子中的一部分基团可与粉体表面的各种官能团反应,形成强有力的化学键合,另一部分基团可与有机高聚物基料发生化学反应或物理缠绕,从而将两种性质差异很大的材料牢固的结合起来,使尤机粉体和有机高聚物分子之间建立起具有特殊功能的“分子桥”。 偶联剂适用于各种不同的有机高聚物和无机填料的复合材料体系。经偶联剂进行表面改性后的无料[填料,既抑制了填充体系“相”的分离,又使无机填料有机化,与有机基料的亲和性增强,即使增大填充量,仍可较好的均匀分散,从而改善制品的综合性能,特别是抗张强度、冲击强度、柔韧性和挠曲强度等。 5.1.1 钛酸酯偶联剂 钛酸酯偶联剂是美国KENRICH石油化学公司在20世纪70年代开发的一种新型偶联剂,至今已有几十个品种,是无机填料和颜料等广泛应用的表面改性剂。 第51页 (1)钛酸酯偶联剂分子结构及6个功能区的作用机理 钛酸酯偶联剂的分子结构可划分为6个功能区,每个功能区都有其特点,在偶联剂中发挥各自的作用。 钛酸酯偶联剂的通式和6个功能区: 功能区1,(RO)M为与无机填料、颜料偶联作用的基团。钛酸酯偶联剂通过该烷氧基团与无机颜料或填料表面的微量羟基或质子发生化学吸附或化学反应,偶联到无机颜、填料表面形成单分子层,同时释放出异丙醇。由功能区1发展成偶联剂的三种类型,每种类型由于偶联基团上的差异,对颜料或填料表面的含水量有选择性。一般单烷氧基型适用于干燥的仅含键合水的低含水量的无机颜料或填料;螯合型适用于高含水量的无机颜料或填料。 功能区2,Ti—O……酯基转移和交联基团。某些钛酸酯偶联剂能够和有机高分子中的酯基、羧基等进行酯基转移和交联,造成钛酸酯、填料或颜料及有机高分子之间的交联,促使体系粘度上升呈触变性。 功能区3,X-联结钛中心的基团。该基团包括长链烷氧基、酚基、羧基、磺酸基、磷酸基、焦磷酸基等。这些基团决定钛酸酯偶联剂的特性与功能,如磺酸基赋予一定的触变性,焦磷酸基具有阻燃、防锈、增加粘结性功能,亚磷酸配位基具有抗氧化功能等。通过这部分基团的选择,可以使钛酸酯偶联剂兼有多种功能。 功能区4,R`为长链的纠缠基团。长的脂肪族碳链比较柔软,能和有机基料进行弯曲缠绕,增强和基料的结合力,提高它们的相容性,改善无机填、颜料和基料体系的熔融流动性和加工性能,缩短混料时间,增加无机填料的填充量,并赋予柔韧性及应力转移功能,从而提高延伸、撕裂和冲

相关文档