文档库 最新最全的文档下载
当前位置:文档库 › 大学物理所有公式

大学物理所有公式

大学物理所有公式
大学物理所有公式

第五章 静电场

5.1库仑定律:真空中两个静止的点电荷之间相互作用的静电力F 的大小与它们的带电量q 1、q 2的乘积成正比,与它们

之间的距离r 的二次方成反比,作用力的方向沿着两个点电荷的连线。221041

r q q F πε= 基元电荷:e=1.602C 1910-? ;0ε真空电容率=8.851210-? ; 041

πε=8.99910? 5.2 r r q q F ?41

2210πε= 库仑定律的适量形式 5.3场强 0

q F E = 5.4 r r Q q F E 3

004πε== r 为位矢 5.5 电场强度叠加原理(矢量和)

5.6电偶极子(大小相等电荷相反)场强E 3041

r P πε-= 电偶极距P=ql 5.7电荷连续分布的任意带电体??=

=r r dq dE E ?4120πε 均匀带点细直棒 5.8 θπελθcos 4cos 2

0l dx dE dE x == 5.9 θπελθsin 4sin 20l dx dE dE y =

= 5.10[]j sos a i a r

E )(cos )sin (sin 40ββπελ-+-= 5.11无限长直棒 j r

E 02πελ= 5.12 dS

d E E Φ= 在电场中任一点附近穿过场强方向的单位面积的电场线数 5.13电通量θcos EdS EdS d E ==Φ

5.14 dS E d E ?=Φ

5.15 ???=

Φ=Φs E E dS E d 5.16 ??=Φs

E dS E 封闭曲面 高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的01ε

5.17 ?∑=

?S q dS E 01ε 若连续分布在带电体上=?Q dq 01ε 5.19 ) ?4120R r r r

Q E ?=(πε 均匀带点球就像电荷都集中在球心 5.20 E=0 (r

2εσ=E 无限大均匀带点平面(场强大小与到带点平面的距离无关,垂直向外(正电荷)) 5.22)11(400b a ab r r Qq A -=

πε 电场力所作的功 5.23 ?

=?L dl E 0 静电场力沿闭合路径所做的功为零(静电场场强的环流恒等于零) 5.24 电势差 ??=

-=b a b a ab dl E U U U 5.25 电势??=无限远

a a dl E U 注意电势零点

5.26 )(b a ab ab U U q U q A -=?= 电场力所做的功 5.27 r

r Q

U ?40πε= 带点量为Q 的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r 5.28 ∑==n i i i a r q U 104πε电势的叠加原理 5.29 ?

=Q a r dq U 04πε 电荷连续分布的带电体的电势 5.30 r

r P U ?430πε= 电偶极子电势分布,r 为位矢,P=ql 5.31 21220)(4x R Q

U +=πε 半径为R 的均匀带电Q 圆环轴线上各点的电势分布

5.36 W=qU 一个电荷静电势能,电量与电势的乘积 5.37 E E 00

εσεσ==或 静电场中导体表面场强 5.38 U

q C = 孤立导体的电容 5.39 U=R

Q

04πε 孤立导体球 5.40 R C 04πε= 孤立导体的电容 5.41 2

1U U q C -= 两个极板的电容器电容

5.42 d

S U U q C 021ε=-= 平行板电容器电容 5.43 )

ln(2120R R L U Q C πε== 圆柱形电容器电容R2是大的 5.44 r

U

U ε=电介质对电场的影响 5.45 0

0U U C C r ==ε 相对电容率 5.46 d S

d C C r r εεεε===0

0 ε= 0εεr 叫这种电介质的电容率(介电系数)

(充满电解质后,电容器的电容增大为真空时电容的r ε倍。)(平行板电容器)

5.47 r E E ε0

=在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r 1

5.49 E=E 0+E /

电解质内的电场 (省去几个) 5.60 203

3r R D

E r εερε==半径为R 的均匀带点球放在相对电容率r ε的油中,球外电场分布 5.61 222

1212CU QU C Q W === 电容器储能 第六章 稳恒电流的磁场 6.1 dt dq I =

电流强度(单位时间内通过导体任一横截面的电量) 6.2 j dS dI j ?垂直

= 电流密度 (安/米2) 6.4

???==S S dS j jd I θcos 电流强度等于通过S 的电流密度的通量 6.5

dt

dq dS j S -=??电流的连续性方程 6.6 ??S dS j =0 电流密度j 不与与时间无关称稳恒电流,电场称稳恒电场。

6.7 ?+-?=

dl E K ξ 电源的电动势(自负极经电源内部到正极的方向为电动势的正方向) 6.8 ??=L K dl E ξ电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功。在电源外部E k =0时,6.8

就成6.7了 6.9 qv

F B max = 磁感应强度大小 毕奥-萨伐尔定律:电流元Idl 在空间某点P 产生的磁感应轻度dB 的大小与电流元Idl 的大小成正比,与电流元和电

流元到P 电的位矢r 之间的夹角θ的正弦成正比,与电流元到P 点的距离r 的二次方成反比。 6.10 20sin 4r

Idl dB θπμ= πμ40为比例系数,A m T ??=-70104πμ为真空磁导率 6.14 ?-==)cos (4sin 42102

0θθπμθπμcon R I r Idl B 载流直导线的磁场(R 为点到导线的垂直距离) 6.15 R

I B πμ40= 点恰好在导线的一端且导线很长的情况 6.16 R I B πμ20=

导线很长,点正好在导线的中部 6.17 23222

0)

(2χμ+=R IR B 圆形载流线圈轴线上的磁场分布 6.18 R I

B 20μ= 在圆形载流线圈的圆心处,即x=0时磁场分布

6.20 3

02x IS B πμ≈在很远处时 平面载流线圈的磁场也常用磁矩P m ,定义为线圈中的电流I 与线圈所包围的面积的乘积。磁矩的方向与线圈的平面的

法线方向相同。

6.21 ISn P m = n 表示法线正方向的单位矢量。

6.22 NISn P m = 线圈有N 匝

6.23 3024x

P B m πμ= 圆形与非圆形平面载流线圈的磁场(离线圈较远时才适用) 6.24 R I B απ?μ40=

扇形导线圆心处的磁场强度 R L =?为圆弧所对的圆心角(弧度) 6.25 nqvS Q I ==t

△ 运动电荷的电流强度 6.26 20?4r

r qv B ?=πμ 运动电荷单个电荷在距离r 处产生的磁场 6.26 dS B ds B d ?==Φθcos 磁感应强度,简称磁通量(单位韦伯Wb )

6.27 ??=

ΦS m dS B 通过任一曲面S 的总磁通量 6.28 ?=?S

dS B 0 通过闭合曲面的总磁通量等于零 6.29

I dl B L 0μ=?? 磁感应强度B 沿任意闭合路径L 的积分 6.30 ?∑=?L I dl B 内0μ在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的

电流的代数和与真空磁导率0μ的乘积(安培环路定理或磁场环路定理)

6.31 I l N nI B 0

0μμ== 螺线管内的磁场 6.32 r

I B πμ20= 无限长载流直圆柱面的磁场(长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同) 6.33 r NI B πμ20=

环形导管上绕N 匝的线圈(大圈与小圈之间有磁场,之外之内没有) 6.34 θsin BIdl dF =安培定律:放在磁场中某点处的电流元Idl ,将受到磁场力dF ,当电流元Idl 与所在处的磁感应

强度B 成任意角度θ时,作用力的大小为:

6.35 B Idl dF ?= B 是电流元Idl 所在处的磁感应强度。

6.36 ?

?=L B Idl F 6.37 θsin IBL F = 方向垂直与导线和磁场方向组成的平面,右手螺旋确定 6.38 a

I I f πμ22102= 平行无限长直载流导线间的相互作用,电流方向相同作用力为引力,大小相等,方向相反作用力相斥。a 为两导线之间的距离。 6.39 a

I f πμ22

0= I I I ==21时的情况 6.40 θθsin sin B P ISB M m ?== 平面载流线圈力矩

6.41 B P M m ?= 力矩:如果有N 匝时就乘以N

6.42 θsin qvB F = (离子受磁场力的大小)(垂直与速度方向,只改变方向不改变速度大小)

6.43 B qv F ?= (F 的方向即垂直于v 又垂直于B ,当q 为正时的情况)

6.44 )(B v E q F ?+= 洛伦兹力,空间既有电场又有磁场 6.44 B

m q v qB mv R )(== 带点离子速度与B 垂直的情况做匀速圆周运动 6.45 qB

m v R T ππ22== 周期 6.46 qB

mv R θsin = 带点离子v 与B 成角θ时的情况。做螺旋线运动 6.47 qB mv h θπcos 2=

螺距 6.48 d

BI R U H H =霍尔效应。导体板放在磁场中通入电流在导体板两侧会产生电势差 6.49 vBl U H = l 为导体板的宽度 6.50 d

BI nq U H 1= 霍尔系数nq R H 1=由此得到6.48公式

6.51 0

B B r =μ 相对磁导率(加入磁介质后磁场会发生改变)大于1顺磁质小于1抗磁质远大于1铁磁质 6.52 '0B B B +=说明顺磁质使磁场加强

6.54 '0B B B -=抗磁质使原磁场减弱 6.55 )(0S L I NI dl B +=??μ 有磁介质时的安培环路定理 I S 为介质表面的电流

6.56 NI I NI S μ=+ r μμμ0=称为磁介质的磁导率 6.57 ∑?=?内I dl B

L μ

6.58 H B μ= H 成为磁场强度矢量

6.59 ?∑=?L I dl H 内 磁场强度矢量H 沿任一闭合路径的线积分,等于该闭合路径所包围的传导电流的代数和,与

磁化电流及闭合路径之外的传导电流无关(有磁介质时的安培环路定理)

6.60 nI H =无限长直螺线管磁场强度

6.61 nI nI H B r μμμμ0===无限长直螺线管管内磁感应强度大小

第七章 电磁感应与电磁场

电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,回路中就产生感应电动势。

楞次定律:闭合回路中感应电流的方向,总是使得由它所激发的磁场来阻碍感应电流的磁通量的变化

任一给定回路的感应电动势ε的大小与穿过回路所围面积的磁通量的变化率dt d m Φ成正比 7.1 dt

d Φ=

ξ 7.2 dt

d Φ-=ξ 7.3 dt

d N dt d Φ-=ψ-=ξ ψ叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通量的总和 7.4 Blv dt dx Bl dt d -=-=Φ-=ξ动生电动势 7.5 B v

e

f E m k ?=-=

作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷 7.6

??++??=?=__)(dl B v dl E k ξ 7.7 Blv dl B v b

a =??=?)(ξ 导体棒产生的动生电动势 7.8 θξsin Blv = 导体棒v 与B 成一任一角度时的情况 7.9 ?

??=dl B v )(ξ磁场中运动的导体产生动生电动势的普遍公式

7.10 IBlv I P =?=ξ 感应电动势的功率

7.11 t NBS ωωξsin =交流发电机线圈的动生电动势

7.12 ωξNBS m = 当t ωsin =1时,电动势有最大值m ξ 所以7.11可为t m ωωξξsin = 7.14 ??-

=s dS dt dB ξ 感生电动势 7.15 ??=L E dl 感ξ

感生电动势与静电场的区别在于一是感生电场不是由电荷激发的,而是由变化的磁场所激发;二是描述感生电场

的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他是

保守场,场强的环流恒等于零。

7.18 1212I M =ψ M 21称为回路C 1对C2额互感系数。由I1产生的通过C2所围面积的全磁通

7.19 2121I M =ψ

7.20 M M M ==21回路周围的磁介质是非铁磁性的,则互感系数与电流无关则相等

7.21 1

221I I M ψ=ψ= 两个回路间的互感系数(互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通) 7.22 dt dI M 12-=ξ dt

dI M 21-=ξ 互感电动势 7.23 dt dI dt dI M 21

12

ξξ-=-= 互感系数

7.24 LI =ψ 比例系数L 为自感系数,简称自感又称电感 7.25 I

L ψ=

自感系数在数值上等于线圈中的电流为1A 时通过自身的全磁通 7.26 dt dI L -=ξ 线圈中电流变化时线圈产生的自感电动势 7.27 dt

dI L ξ

-= 7.28 V n L 20μ=螺线管的自感系数与他的体积V 和单位长度匝数的二次方成正比 7.29 22

1LI W m = 具有自感系数为L 的线圈有电流I 时所储存的磁能 7.30 V n L 2μ= 螺线管内充满相对磁导率为r μ的磁介质的情况下螺线管的自感系数

7.31 nI B μ=螺线管内充满相对磁导率为r μ的磁介质的情况下螺线管内的磁感应强度 7.32 22

1H w m μ=

螺线管内单位体积磁场的能量即磁能密度 7.33 ?=V

m BHdV W 21磁场内任一体积V 中的总磁场能量 7.34 r

NI H π2= 环状铁芯线圈内的磁场强度 7.35 22R Ir H π=圆柱形导体内任一点的磁场强度 第八章 机械振动

8.1 022=+kx dt

x d m 弹簧振子简谐振动 8.2 2ω=m

k k 为弹簧的劲度系数 8.3 0222=+x dt

x d ω弹簧振子运动方程 8.4 )cos(?ω+=t A x 弹簧振子运动方程

8.5 )sin('?ω+=t A x 2'π??+

= 8.6 )sin(?ωω+-==t A dt

dx u 简谐振动的速度 8.7 x a 2ω-=简谐振动的加速度

8.8 πω2=T ωπ

2=T 简谐振动的周期 8.9 T

1=

ν简谐振动的频率 8.10 πνω2= 简谐振动的角频率(弧度/秒) 8.11 ?cos 0A x = 当t=0时 8.12 ?ωsin 0

A u =-

8.13 2202

0ωu x A += 振幅

8.14 00x u tg ω?-= 0

0x u a r c t g ω?-= 初相 8.15 )(sin 2

1212222?ωω+==

t mA mu E k 弹簧的动能 8.16 )cos(2

121222?ωω+==t kA kx E p 弹簧的弹性势能 8.17 222

121kx mu E += 振动系的总机械能 8.18 2222121kA A m E ==ω总机械能守恒 8.19 )cos(?ω+=t A x 同方向同频率简谐振动合成,和移动位移 8.20 )cos(212212221??-++=

A A A A A 和振幅 8.21 2

2112211cos cos sin sin ?????A A A A tg ++= 第九章 机械波

9.1 νλλ

==T v 波速v 等于频率和波长的乘积

9.3 为介质的密度,介质的杨氏弹性模量介质的切变弹性模量纵波横波ρρρ

Y N Y v N v ==(固体) 9.4 ρB v =纵波 B 为介质的荣变弹性模量(在液体或气体中传播) 9.5 )(cos λωx

t A y -= 简谐波运动方程 9.6 )(2cos )(2cos )(2cos x vt A x T t A x

vt A y -=-=-=λπλπλπ νλ=v 速度等于频率乘以波长(简谐波运动方程的几种表达方式) 9.7 )(2)(121

2

x x v v --=?--=?λπ?χχω?或简谐波波形曲线P2与P1之间的相位差负号表示p2落后 9.8 )(2cos )(2cos )(cos λ

πλπωx T t A x vt A v x t A y +=+=+=沿负向传播的简谐波的方程 9.9 )(sin 21222v x t VA E k -?=

ωωρ 波质点的动能 9.10

)(sin )(21222v x t A V E P -?=ωωρ波质点的势能 9.11

)(sin 21222v x t VA E E p k -?==ωωρ波传播过程中质元的动能和势能相等 9.12

)(sin 222v x t VA E E E p k -?=+=ωωρ质元总机械能 9.13

)(sin 222v x t A V E -=?=ωωρε波的能量密度 9.14 222

1ωρεA =波在一个时间周期内的平均能量密度 9.15 vS ε=P 平均能流 9.16 2221ωρεvA v I =

= 能流密度或波的强度 9.17 0

log I I L = 声强级 9.18 )cos(21?ω+=+=t A y y y 波的干涉 9.20

,2,1,02)(2)(1212=±=--

-=?k k r r πλπ???波的叠加(两振动在P 点的相位差为派的偶数倍时和振幅最大) 9.21

,3,2,1,0)12()(2)(1212=+±=--=?-k k r r πλπ

??? 波的叠加两振动在P 点的相位差为派的偶数倍时和振幅最小 9.22 ,2,1,0,2221=±=-=k k r r λ

δ两个波源的初相位相同时的情况 9.23 ,2,1,0,2)12(21=+±=-=k k r r λ

δ

第十章 电磁震荡与电磁波 10.1 0122=+q LC dt

q d 无阻尼自由震荡(有电容C 和电感L 组成的电路) 10.2 )cos(

0?ω+=t Q q 10.3 )sin(0?ω+-=t I I 10.4 LC 1=ω LC T π2= LC 121π

υ=震荡的圆频率(角频率)、周期、频率 10.6 μ

ε00B E =电磁波的基本性质(电矢量E ,磁矢量B ) 10.7 B E με1= 和磁导率分别为介质中的电容率和με 10.8 )(212μ

εB E W W W m e +=+= 电磁场的总能量密度 10.10 EB v W S μ1

=?= 电磁波的能流密度 με

1=v 第十一章 波动光学

11.1 12r r -=δ 杨氏双缝干涉中有S 1,S 2发出的光到达观察点P 点的波程差 11.2 222

1)2

(D d x r +-= D 为双缝到观测屏的距离,d 为两缝之间的距离,r1,r2为S1,S2到P 的距离 2222)2

(D d x r ++= 11.3 D

d x ?=δ 使屏足够远,满足D 远大于d 和远大于x 的情况的波程差 11.4 D

d x ?=?λπ?2相位差 11.5 )2,1,0( ±±==k d

D k x λ 各明条文位置距离O 点的距离(屏上中心节点) 11.6 )2,1,0(2

)12( ±±=?+=k d D k x λ各暗条文距离O 点的距离 11.7 λd D x =? 两相邻明条纹或暗条纹间的距离 11.8 明条纹)

2,1,0(222==+=k k h λ

λ

δ 劈尖波程差 暗条纹) 2,1,0(2)12(22=+=+

=k k h λλδ 11.9 2sin λθ=

l 两条明(暗)条纹之间的距离l 相等 11.10 R k r k λ= 牛顿环第k 几暗环半径(R 为透镜曲率半径) 11.11 2λ

?=?N d 迈克尔孙干涉仪可以测定波长或者长度(N 为条纹数,d 为长度)

11.12 时为暗纹中心)

3,2,1(22sin =±=k k a λ

? 单缝的夫琅乔衍射 ?为衍射角,a 为缝宽 11.13 时为明纹中心))( 3,2,1(2

2sin =+±=k k a λ

? 11.14 a λ

??=≈sin 半角宽度 11.15 a f

ftg x λ?22≈=?单缝的夫琅乔衍射中央明纹在屏上的线宽度 11.16 D m λ

θδθ22.1=<如果双星衍射斑中心的角距离m δθ恰好等于艾里斑的角半径即11.16此时,艾里斑虽稍有重

叠,根据瑞利准则认为此时双星恰好能被分辨,m δθ成为最小分辨角,其倒数11.17 11.17 λ

δθ22.11D m R == 叫做望远镜的分辨率或分辨本领(与波长成反比,与透镜的直径成正比) 11.18 )3,2,1,0(sin =±=k k d λ? 光栅公式(满足式中情况时相邻两缝进而所有缝发出的光线在透镜焦平面上p 点会聚时将都同相,因而干涉加强形成明条纹

11.19 a I I 20cos = 强度为I0的偏振光通过检偏器后强度变为

第十二章 狭义相对论基础 12.25 2')(1c

v l l -= 狭义相对论长度变换 12.26 2

'

)(1c v t t -?=

?狭义相对论时间变换 12.27 2''1c

vu v u u x x x ++= 狭义相对论速度变换 12.28 20

)

(1c v m m -= 物体相对观察惯性系有速度v 时的质量 12.30 dm c dE k 2= 动能增量

12.31 2

02c m mc E k -= 动能的相对论表达式

12.32 200c m E = 2mc E =物体的静止能量和运动时的能量 (爱因斯坦纸能关系式) 12.33 4

20222c m p c E +=相对论中动量和能量的关系式p=E/c

第十三章 波和粒子 13.1 202

1m mv eV =

V 0为遏制电压,e 为电子的电量,m 为电子质量,v m 为电子最大初速 13.2 A hv mv eV m -==2021 h 是一个与金属无关的常数,A 是一个随金属种类而不同的定值叫逸出功。遏制电压与入射光的强度无关,与入射光的频率v 成线性关系 13.3 A mv hv m +=22

1 爱因斯坦方程

13.4 22c

hv c m =

=ε光 光子的质量 13.5 λh c hv c m p ==?=光光子的动量

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

大学物理上册所有公式

第一章 质点运动学和牛顿运动定律 1.1平均速度 v =t △△r 1.2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim 0△t 0△t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a= lim 0△t →△t △v =dt dv 1.8瞬时加速度a=dt dv =2 2dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 21at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ???????-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ???-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 20 1.20射高Y=g a v 22sin 20 1.21飞行时间y=xtga —g gx 2

1.22轨迹方程y=xtga —a v gx 2202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同a n =R v 2 1.27切向加速度只改变速度的大小a t =dt dv 1.28 ωΦR dt d R dt ds v === 1.29角速度 dt φωd = 1.30角加速度 22dt dt d d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 221r m m G 为万有引力称量=6.67×10-11N ?m 2/kg 2 1.40 重力 P=mg (g 重力加速度) 1.41 重力 P=G 2r Mm 1.42有上两式重力加速度g=G 2r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变) 1.43胡克定律 F=—kx (k 是比例常数,称为弹簧的劲度系数) 1.44 最大静摩擦力 f 最大=μ0N (μ0静摩擦系数)

大学物理上下册常用公式

大学物理第一学期公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ;222z y x r 角位置:θ 2.速度:dt r d V 平均速度:t r V 速率:dt ds V ( V V )角速度:dt d 角速度与速度的关系:V=rω 3.加速度:dt V d a 或 2 2dt r d a 平均加速度:t V a 角加速度:dt d 在自然坐标系中n a a a n 其中dt dV a (=rβ),r V n a 2 (=r 2 ω) 4.力:F =ma (或F =dt p d ) 力矩:F r M (大小:M=rFcos θ方向:右手螺旋法则) 5.动量:V m p ,角动量:V m r L (大小:L=rmvcos θ方向:右手螺旋法则) 6.冲量: dt F I (=F Δt);功: r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势能形式不同 且零点选择不同其形式不同,在默认势能零点的 情况下: 机械能:E=E K +E P 9.热量:CRT M Q 其中:摩尔热容量C 与过程 有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: n tS I S F P 3 2 11. 分子平均平动能:kT 23 ;理想气体内能:RT s r t M E )2(2 12. 麦克斯韦速率分布函数:NdV dN V f )((意义:在V 附近单位速度间隔内的分子数所占比率) 13. 平均速率: RT N dN dV V Vf V V 80 )( 方均根速率: RT V 22 ;最可几速率: RT p V 3 14. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数) 15. 电场强度:E =F /q 0 (对点电荷:r r q E ?42 ) 16. 电势: a a r d E U (对点电荷r q U 04 );电势能:W a =qU a (A= –ΔW) 17. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 18. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。 mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 (万有引力) →r Mm G =E p r r Qq ?420 (静电力) →r Qq 04

大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律 1.1 平均速度 v =t △△r 1.2 瞬时速度 v=lim 0 △t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1.8瞬时加速度 a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+2 1at 2 1.14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 0220 0 1.17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y=g a v 22sin 20 1.21飞行时间y=xtga —g gx 2 1.22轨迹方程y=xtga —a v gx 2 202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2 n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同 a n =R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦ R dt d R dt ds v === 1.29角速度 dt φ ωd = 1.30角加速度 22dt dt d d φ ωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。

大学物理公式大全

第一章 质点运动学和牛顿运动定律 平均速度 v = t △△r 瞬时速度 v= lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 平均加速度a = △t △v 瞬时加速度(加速度)a= lim 0△t →△t △v =dt dv 瞬时加速度a=dt dv =22dt r d 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at 变速运动质点坐标x=x 0+v 0t+ 2 1at 2 ; 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动 ?????===gy v at y gt v 22122 ???????-=-=-=gy v v gt t v y gt v v 2212 0220 0 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 射程 X=g a v 2sin 2 射高Y=g a v 22sin 20 飞行时间y=xtga —g gx 2 轨迹方程y=xtga —a v gx 2 202 cos 2 向心加速度 a=R v 2 # 圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 加速度数值 a=2 2n t a a + 法向加速度和匀速圆周运动的向心加速度相同a n =R v 2 切向加速度只改变速度的大小a t = dt dv ωΦR dt d R dt ds v === 角速度 dt φ ωd = 角加速度 22dt dt d d φ ωα== 角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t =αωR dt d R dt dv == ; 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 2 2 1r m m G 为万有引力称量=×10-11N ?m 2/kg 2 重力 P=mg (g 重力加速度)

大学物理上公式集(必备)

大学物理上公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中: k z j y i x r ++=;2 2 2 z y x r ++=角位置:θ 2. 速度:dt r d V =平均速度:t r V ??= 速率:dt ds V =(τ V V =)角速度:dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a =或22dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ (= rβ),r V n a 2=(=r 2 ω) 4. 力:F =ma (或F =dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:?=dt F I (=F Δt);功:? ?= r d F A (气 体对外做功:A=∫PdV )

7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不 同其形式不同,在 默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容 量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: ω n tS I S F P 3 2 =?== 11. 分子平均平动能:kT 2 3=ω;理想气体能:RT s r t M E )2(2 ++=μ 12. 麦克斯韦速率分布函数:NdV dN V f =)((意义:在V 附近单位速度间隔的分子数所占比率) mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?420 πε(静电力) →r Qq 0 4πε

大学物理上册所有公式

大学物理上册所有公式 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

第一章 质点运动学和牛顿运动定律 平均速度 v = t △△r 瞬时速度 v=lim △t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim △t 0 △t △t △r 平均加速度a = △t △v 瞬时加速度(加速度)a=lim △t →△t △v =dt dv 瞬时加速度a=dt dv =22dt r d 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at 变速运动质点坐标x=x 0+v 0t+ 2 1at 2 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 射程 X=g a v 2sin 2 射高Y=g a v 22sin 20

飞行时间y=xtga —g gx 2 轨迹方程y=xtga —a v gx 2 202 cos 2 向心加速度 a=R v 2 圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 加速度数值 a=2 2n t a a + 法向加速度和匀速圆周运动的向心加速度相同a n =R v 2 切向加速度只改变速度的大小a t = dt dv ωΦR dt d R dt ds v === 角速度 dt φ ωd = 角加速度 22dt dt d d φ ωα== 角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。

大学物理公式大全

大学物理公式大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 0220 0 1.17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga —g gx 2 1.22轨迹方程y=xtga —a v gx 2 202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相 同a n =R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦ R dt d R dt ds v === 1.29角速度 dt φ ωd = 1.30角加速度 22dt dt d d φ ωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速 直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与

最新大学物理常用公式

大学物理常用公式 一、普通带电体的场强、电势分布 1)点电荷:2)均匀带电球体的电场(球体半径r): 3)无限长的均匀带电直线(电荷线密度:方向:垂直于带电直线。 4)无限长均匀带电圆柱面(线电荷密度:5)无限均匀带电平面的电场(表面电荷密度:方向:垂直于平面。 二、静电场定理 1、高斯定理: 静电场是一个活跃的场。 指高斯平面中包含的电量的代数和;指高斯表面上的电场强度,由高斯表面内外的所有电荷产生。指通过高斯平面的电通量,由高斯平面中的电荷决定。 2、循环定理: 静电场是保守场、电场力是保守力,它能引入电势能。 三、 场强计算的两种方法1、利用场强叠加原理计算场强 分离电荷系统:连续电荷系统:2、用高斯定理计算场强 四、两种计算潜在的方法 1、使用电势叠加原理计算电势 分离电荷系统:连续电荷系统:2、使用电势的定义来计算电势 五、应用 点电荷力:电势差:a点电势能:a到b的电场力做功等于电势能增

量的负值6 、导体周围的电场 1、静电平衡的充分必要条件: 1)、导体中的综合场强为0,导体为等电位体。 2)、导体表面上的场强在任何地方都垂直于导体表面。表面。导体的表面是等电位的。 静电平衡时导体上的2、电荷分布; 1)固体导体:净电荷分布在导体的外表面。 2)导体腔内无电荷:电荷全部分布在导体外表面,腔内表面无电荷。 3)导体腔内有电荷+q,导体的电量为q:当静电平衡时,腔内表面有感应电荷-q,外表面有电荷q+q。 3、导体表面附近的场强: 七、电介质和电场 1、在外电场的作用下,非极性分子介电分子的正电荷中心、负电荷中心将发生相对位移,并在外电场的作用下产生位移极化。 极性分子电介质分子沿着外部电场偏转,产生取向极化。 2、电位移矢量-介电常数-介电相对介电常数。 3、没有中值的公式将被(或更高级)替换,即,有中值的公式。 八、电容 1、电容器电容: 2、平行板电容器: 3、串联电容:并联电容:

大学物理(上)所有公式

1.a n = 22 2)(ωωR R R R v == a t =αωR dt d R dt dv == 2.F=dt dP dt mv d =)(=ma 3.冲量I=F ?t =?21t t Fdt 4.动量定理的微分形式Fdt=mdv dp= ? 2 1 t t Fdt =?2 1 )(v v mv d =mv 2-mv 1 5.动量定理 I=P 2-P 1=mv-mv 0 6,质点系的动量守恒定律(系统不受外力或外力矢量和为零) ∑=n i i i v m 1 =∑=n i i i v m 1 =常矢量 7.L =R ×P =R ×m V 力矩M=R ×F 8.dt dL M ==R ×F 9 000 ωωJ J L L dL Mdt L L t t -=-==? ? 10质点的角动量守恒L=L 0=常矢量,(拉小球有心力,枪打杆) 11J= ∑i mir 2 定轴转动定理M=J β(滑轮)类F=ma 角 动量L=Jw 12环中J=2/3mr 2 边J=5/3mr 2 ,盘中J=1/2mr 2 边J=3/2mr 2 杆中J=1/12ml 2 边J=/3ml 2 13刚体的机械能守恒mgz c +1/2J ω2 =常数(杆摆下θ时角速度l g θ ωsin 3= ,θsin 21l z c =) 14热力学温度 T=273.15+t 15.==22 2111T V P T V P 常量 即 T V P =常量 16PV= RT M M mol 17理想气体压强公式 P=23 1 v mn =2/3n εt 平均动能ε t =1/2mv 2 =2/3KT (只与温度有关) P= V N n nkT T N R V N mV N NmRT V M MRT A A mol ====( 18kT i t 2 = ε i 为自由度数=3,5,7 29E=RT i M M E M M E mol mol 2 00== υ 20 Q=?E+A dQ=dE+dA 准静态Q=?E+ ? 2 1 dv V V P dQ=dE+Pdv 21.等容过程 2 211 T P T P V R M M T P mol ===或常量 )(12T T C M M Q v mol v -= =?E=)(2 12T T R i M M mol - 22.等压过程)(12T T C M M Q p mol p -= C P =R+C V =A+?E 2211 T V T V P R M M T V mol ===或常量 R C C v p =- R i C R i C p v 2 2 2+== 23内能增E 2-E 1= RdT i M M dE mol 2 = 24.等温:1 2ln V V RT M M A Q mol T = =(全部转化为功) 25绝热 )(12T T C M M E A v mol -- == 261 212 111Q Q Q Q Q Q A -=-== η 27.2 12 2Q Q Q A Q -= =ω Q2为从低温热库中吸收的热量 28卡诺η=211211- 1T T T T T -=- 2 121T T Q Q = 29电偶极子(大小相等电荷相反)E 3 041 r P πε-= 电偶极距P =q l

最新大学物理之热学公式篇

热 学 公 式 1.理想气体温标定义:0 273.16lim TP p TP p T K p →=?(定体) 2.摄氏温度t 与热力学温度T 之间的关系:0 //273.15t C T K =- 华氏温度F t 与摄氏温度t 之间的关系:9325 F t t =+ 3.理想气体状态方程:pV RT ν= 1mol 范德瓦耳斯气体状态方程:2 ()()m m a p V b RT V + -= 其中摩尔气体常量8.31/R J mol K =?或2 8.2110/R atm L mol K -=??? 4.微观量与宏观量的关系:p nkT =,23kt p n ε= ,32 kt kT ε= 5.标准状况下气体分子的数密度(洛施密特数)253 0 2.6910/n m =? 6.分子力的伦纳德-琼斯势:12 6 ()4[()()]p E r r r σ σ ε=-,其中ε为势阱深度, σ= ,特别适用于惰性气体,该分子力大致对应于昂内斯气体; 分子力的弱引力刚性球模型(苏则朗模型):06 000, ()(), p r r E r r r r r φ+∞

大学物理所有公式定理

-` 第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim 0 △t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 1.6 平均加速度a = △t △v 1.7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ??? ? ???-=-=-=gy v v gt t v y gt v v 2212 0220 0 1.17 抛体运动速度分量?? ?-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y=g a v 22sin 20 1.21飞行时间y=xtga —g gx 2 1.22轨迹方程y=xtga —a v gx 2 202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2 n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同 a n =R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦR dt d R dt ds v === 1.29角速度 dt φ ωd = 1.30角加速度 22dt dt d d φ ωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 2 2 1r m m G 为万有引力称量=6.67×10-11 N ?m 2 /kg 2 1.40 重力 P=mg (g 重力加速度) 1.41 重力 P=G 2r Mm 1.42有上两式重力加速度g=G 2r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)

大学物理所有公式

第七章 电磁感应与电磁场 电磁感应现象:当穿过闭合导体回路的磁通量发生变化 时,回路中就产生感应电动势。 楞次定律:闭合回路中感应电流的方向,总是使得由它所 激发的磁场来阻碍感应电流的磁通量的变化 任一给定回路的感应电动势ε的大小与穿过回路所围面 积的磁通量的变化率dt d m Φ成正比 7.1 dt d Φ = ξ 7.2 dt d Φ -=ξ 7.3 dt d N dt d Φ -=ψ-=ξ ψ叫做全磁通,又称磁通匝链数,简称磁链表示穿过过各匝线圈磁通 量的总和 7.4 Blv dt dx Bl dt d -=-=Φ- =ξ动生电动势 7.5 B v e f E m k ?=-= 作用于导体内部自由电子上的磁场力就是提供动生电动势的非静电力,可用洛伦兹除以电子电荷 7.6 ??+ +??=?=_ _ )(dl B v dl E k ξ 7.7 Blv dl B v b a =??=?)(ξ 导体棒产生的动生电动势 7.8 θξsin Blv = 导体棒v 与B 成一任一角度时的情况 7.9 ? ??=dl B v )(ξ磁场中运动的导体产生动生电动势 的普遍公式 7.10 IBlv I P =?=ξ 感应电动势的功率 7.11 t NBS ωωξsin =交流发电机线圈的动生电动势 7.12 ωξNBS m = 当t ωsin =1时,电动势有最大值m ξ 所以7.11可为t m ωωξξsin = 7.14 ??-=s dS dt dB ξ 感生电动势 7.15 ? ?= L E dl 感ξ 感生电动势与静电场的区别在于一是感生电场不是 由电荷激发的,而是由变化的磁场所激发;二是描述感生电场的电场线是闭合的,因而它不是保守场,场强的环流不等于零,而静电场的电场线是不闭合的,他 是保守场,场强的环流恒等于零。 7.18 1212I M =ψ M 21称为回路C 1对C2额互感系数。由 I1产生的通过C2所围面积的全磁通 7.19 2121I M =ψ 7.20 M M M ==21回路周围的磁介质是非铁磁性的, 则互感系数与电流无关则相等 7.21 1 2 21I I M ψ=ψ= 两个回路间的互感系数(互感系数在数值上等于一个回路中的电流为1安时在另一个回路中的全磁通) 7.22 dt dI M 12-=ξ dt dI M 21-=ξ 互感电动势 7.23 dt dI dt dI M 21 12 ξξ- =- = 互感系数 7.24 LI =ψ 比例系数L 为自感系数,简称自感又称电 感 7.25 I L ψ = 自感系数在数值上等于线圈中的电流为1A 时通过自身的全磁通 7.26 dt dI L -=ξ 线圈中电流变化时线圈产生的自感电动势 7.27 dt dI L ξ - = 7.28 V n L 2 0μ=螺线管的自感系数与他的体积V 和单位 长度匝数的二次方成正比 7.29 2 2 1LI W m = 具有自感系数为L 的线圈有电流I 时所储存的磁能 7.30 V n L 2 μ= 螺线管内充满相对磁导率为r μ的磁介 质的情况下螺线管的自感系数 7.31 nI B μ=螺线管内充满相对磁导率为r μ的磁介质 的情况下螺线管内的磁感应强度 7.32 22 1 H w m μ= 螺线管内单位体积磁场的能量即磁能密度 7.33 ?= V m BHdV W 2 1 磁场内任一体积V 中的总磁场能量

大学物理公式大全下册

电磁学 1.定义: ①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:? ∞ ?= r r d E U 电势差:?-+ ?=l d E U 电动势:? + - ?= l d K ε(q F K 非静电 =) ③电通量:???=S d E e φ磁通量:???=S d B B φ磁通链: ΦB =N φB 单位:韦伯(Wb ) 磁矩:m =I S =IS n ? ④电偶极矩:p =q l ⑤电容:C=q/U 单位:法拉(F ) *自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I = dt dq ; *位移电流:I D =ε 0dt d e φ 单位:安培(A ) ⑦*能流密度: B E S ?= μ 1 2.实验定律 ①库仑定律:0 204r r Qq F πε= ②毕奥—沙伐尔定律:204?r r l Id B d πμ?= ③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dt d B φ 动生电动势:?+ -??= l d B V )(ε 感生电动势:? - + ?=l d E i ε(E i 为感生电场) *⑤欧姆定律:U=IR (E =ρj )其中ρ为电导率 3.*定理(麦克斯韦方程组) 电场的高斯定理:?? =?0 εq S d E ??=?0 εq S d E 静 (E 静是有源场) ??=?0S d E 感 (E 感是无源场) 磁场的高斯定理:??=?0S d B ??=?0S d B (B 稳是无源场) E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G ) Θ ⊕ -q l

大学物理公式大全

第一章 质点运动学与牛顿运动定律 1、1平均速度 v = t △△r 1、2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 1、6 平均加速度a = △t △v 1、7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1、8瞬时加速度a=dt dv =2 2dt r d 1、11匀速直线运动质点坐标x=x 0+vt 1、12变速运动速度 v=v 0+at 1、13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1、14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1、15自由落体运动 1、16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 02200 1、17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1、18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1、19射程 X=g a v 2sin 2 1、20射高Y= g a v 22sin 20 1、21飞行时间y=xtga —g gx 2 1、22轨迹方程y=xtga —a v gx 2 202 cos 2 1、23向心加速度 a=R v 2 1、24圆周运动加速度等于切向加速度与法向加速度矢量与a=a t +a n 1、25 加速度数值 a=2 2 n t a a + 1、26 法向加速度与匀速圆周运动的向心加速度相同 a n =R v 2 1、27切向加速度只改变速度的大小a t = dt dv 1、28 ωΦR dt d R dt ds v === 1、29角速度 dt φ ωd = 1、30角加速度 22dt dt d d φ ωα== 1、31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1、39 F=G 2 2 1r m m G 为万有引力称量=6、67×10-11 N ?m 2 /kg 2 1、40 重力 P=mg (g 重力加速度) 1、41 重力 P=G 2 r Mm 1、42有上两式重力加速度g=G 2 r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)

大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r = dt dr 1. 3速度v=dt ds = = →→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22 dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????== =gy v at y gt v 22122 ???????-=-=-=gy v v gt t v y gt v v 2212 022 00 1.17 抛体运动速度分量? ? ? -==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=2 0021 sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga — g gx 2 1.22轨迹方程y=xtga — a v gx 2 2 02cos 2 1.23向心加速度 a= R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2 n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同 a n = R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦR dt d R dt ds v === 1.29角速度 dt φωd = 1.30角加速度 22 dt dt d d φωα= = 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =2 2 2 )(ω ωR R R R v == a t = αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 2 21r m m G 为万有引力称量=6.67× 10-11 N ?m 2 /kg 2 1.40 重力 P=mg (g 重力加速度) 1.41 重力 P=G 2 r Mm 1.42有上两式重力加速度g=G 2 r M (物体的重力加速度与 物体本身的质量无关,而紧随它到地心的距离而变) 1.43胡克定律 F=—kx (k 是比例常数,称为弹簧的劲度

相关文档