文档库 最新最全的文档下载
当前位置:文档库 › 低频数字式相位测量仪

低频数字式相位测量仪

低频数字式相位测量仪
低频数字式相位测量仪

中北大学

课程设计说明书

学生姓名:王瑾琦学号:0518140104

学院: 电子与计算机科学技术学院

专业: 电子科学与技术

题目: 低频数字式相位测量仪

系主任任勇峰

指导教师:李圣昆职称: 讲师

2008 年 1 月 5 日

一、 设计目的

① 掌握电子电路的一般设计方法和设计流程; ② 学习使用PROTEL 软件绘制电路原理图及印刷板图;

③ 掌握应用EWB 对所设计的电路进行仿真,通过仿真结果验证设计的正确性。

二、 设计要求

设计一个简易低频数字式相位测量仪,具体要求如下: 1. 频率范围:10Hz ~10kHz 。

2.相位测量仪的输入阻抗≥100千欧。 3. 相位测量绝对误差≤2度。

三、 设计内容

(一) 相位差测量 1.原理分析

输入两路同频率的正弦波信号,其波形表达式分别为:

)sin(111?ω+=t V v m

)s i n (222?ω

+=t V v m 其中1v 、2v 为电压瞬时值,1m V 、2m V 为电压的幅值,ω为角频率,1?、2?为初始相角,当

两路信号的频率相同时,相角差2θ??1=-是一个与时间无关的常数

将此两路正弦波信号经过放大整形成两路占空比为50%的正方波信号f1、f2,经过异或门输出一个脉冲序列A ,与晶振产生的基准脉冲波B 进行与操作得到调制后的波形C ,在一定的时间范围

内对B 、C 中脉冲的个数进行

计数得C N 、b N ,则其相位差计算公式为

C N 360×N 2

b

ο

θ=

,采用多个周期计数取平均值

的方式以提高测相精度。系统框图如图2-1-2所示:

2.原理电路

①前级放大整形电路:

两列正弦波信号经过一级电压跟随器以提高测量仪的输入阻抗,选用高精度、低漂移型运放TLE2074使输入阻抗达到兆欧数量级,由LM311构成的迟滞回环比较器可以有效的避免在过零点时信号的干扰和抖动所引起的电压跳变,最后通过一级单门限电压比较器输出两路TTL电平信号,经异或门得到方波的脉冲序列。该前级放大整形电路的基本原理图如下:

②相位差测量电路

通过理论分析,基准频率越高,记得的窄脉冲个数越多,相位差的测量也越精确,但是受到8254极限工作频率的影响,最终选取8.000MHz的晶振,由单片机I/O口控制两片8254分别对两路脉冲进行计数,将8254内含的两路计数器进行级联以提高计数位数,对32位的计数结果进行浮点运算使得相位差测量的分辨率达到0.1o,其原理图如图2-1-4所示:

③ 相位极性判别电路

在图2-1-4所示的相位测量电路中,只能 给出相位差的大小,无法判断波形的超前或者 滞后,因此将波形整形电路的两路输出

方波送入D 触发器中进行相位极性判别, 当0U 超前1U 时,Q 端输出高电平,反之输出低 电平,极性判别的原理图如右图2-1-5所示。

注:此次实验,也曾设想过设计更完整的电路。现在将完成的电路的原理附在后面,见附页三。

(二)相位测试模块流程图如图3-1-1所示:

四、 原理图和印刷板

1. 前级放大整形电路部分:

图3-1-1 相位测试流程图

通过Protel制作的电路原理图

PCB印刷板

封装名:

Part Type Designator Footprint

2K RC AXIAL-1.0

2K RA AXIAL-1.0

2K RB AXIAL-1.0

2K RD AXIAL-1.0

9.1K R4 AXIAL-1.0

9.1K R3 AXIAL-1.0

10K R2 AXIAL-1.0

10K R1 AXIAL-1.0

74ALS86 UE DIP-14

100K R9 AXIAL-1.0

100K R5 AXIAL-1.0

100K R10AXIAL-1.0

100K R6 AXIAL-1.0

500 R8 AXIAL-1.0

500 R7 AXIAL-1.0

LM311 U2 DIP-8

LM311 U1 DIP-8

LM311 U3 DIP-8

LM311 U4 DIP-8

TLE2074 UD DIP-8

TLE2074 UB DIP-8

TLE2074 UA DIP-8

TLE2074 UC DIP-8

所生成的网络表见附页一与附页二。

2.相位差测量电路部分:

通过Protel制作的电路原理图

封装名:

Part Type Designator Footprint

74HC20 U5 DIP-14

74HC20 U4 DIP-14

8254 U2 DIP-24

8254 U1 DIP-24

VPULSE V1

五、仿真图形和仿真结果

由于无法找到相关器件,所以无法使用EWB软件进行仿真。

使用Prosys6.9.04软件对总体电路即下图进行仿真,原理及仿真图见附页三。

六.相位测量电路误差分析

在相位测量过程中,受电子元器件性能的影响,在正弦波经过零检测电路整成方波的过程之中,两路信号不可能做到时延特性完全的一致,前端放大电路以及过零检测电路会带来方波信号相对于输入信号的过零点偏移,所以得到的两个方波信号的相位差实际上是输入信号的相位差和两路过零比较电路相位差的综合相差,由于是在一定的时间内对脉冲的个数进行计数,因此将引入截断误差,尤其当两路信号的相位差较小时,截断误差的存在将在很大程度上对相位测量的精度造成影响。

七.设计结论

本系统实现了题目基本部分以及发挥部分的要求,经过测试,相位测量仪的测量范围为:电压(峰峰值):0.2V~30V;频率:2Hz~65kHz;显示分辨率为0.01度,测量的绝对误差在2o以内。

八. 设计心得体会

a)根据指导教师布置的课题,学会了找参考书籍、查阅手册、图表和文献资料等。通

过独立思考,深入钻研有关问题,学会了自己分析解决问题的方法。

b)掌握了电子线路的焊接技术,了解了印制版的制作技术。

c)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,初步掌握

了简单实用电路的分析方法和工程设计方法。

d)掌握了常用仪器设备的正确使用方法,学会了简单电路的实验调试和整机指标测试

方法,提高了动手能力。

e)了解了与课题有关的电子线路以及元器件工程技术规范。

f)培养了严肃认真的工作作风和科学态度。

九. 主要参考文献

①童诗白.模拟电子技术基础.北京:高等教育出版社,2002

②张建华.数字电子技术.北京:机械工业出版社,2004

③陈汝全.电子技术常用器件应用手册.北京:机械工业出版社,2005

④毕满清.电子技术实验与课程设计.北京:机械工业出版社,2005

⑤潘永雄.电子线路CAD实用教程.西安:西安电子科技大学出版社,2002

⑥张亚华.电子电路计算机辅助分析和辅助设计.北京:航空工业出版社,2004

附页一:前级放大整形电路部分网络表(一)

附页二:前级放大整形电路部分网络表(二)

附页三:总体设计原理及电路图

设计思路及原理:

采用锁相环CD4046组成的高精度相位测量电路,用于测量两信号的相位时精度可达0.1度。

被测信号ΨΑ和ΨΒ加到用运算放大器U1和U2构成的输入隔离电路上,实现放大和整形,然后分别经过运算放大器U3和U4构成的两个基准信号比较器,产生ΨΑ’和ΨΒ’。图中的比较器是作为零相位校准开关而设置的,当基准信号同时加到两个通道时(开关K拨至“校零”,基准信号由ΨΑ端输入),通过两个通道中的比较器输入端1KΩ电位器的调节,将两个通道中的相位差调到零。从而显示器显示为零,校零完毕后,被测信号从ΨΑ和ΨΒ端输入,开关K拨至“测量”。电路中的锁相环PLL 芯片CD4046的输出频率在3600倍以上,于是CD4046管脚4的输出信号是与ΨΑ端输入信号同相,且频率为ΨΑ端输入信号频率3600倍的脉冲,作为相位差计数器的计数器的计数时钟。

电路实现相位差测量的原理是对ΨΑ脉冲上升沿和ΨΒ脉冲上升沿之间的间隔时间进行测量,并用七段显示器显示测量结果。

电路中的相位差计数器由四片十进制计数器/译码器CD4046级联构成,最大计数器为9999。ΨΑ’脉冲上升沿经400PF和1KΩ电阻构成的微分电路产生一个正的脉冲作用在CD4046的CLD端(管脚4),使CD4046复位,同时ΨΑ’脉冲上升沿使U5(触发器D)置位。QA变为高电平,启动计数器计数;此时禁止显示器显示。当ΨΒ’脉冲上升沿来时,触发U6,使QΒ变为高电平,从而U5异步复位,U6也随之复位;QΑ变为低电平,禁止继续计数,同时选通显示器,显示计数结果。当ΨΑ脉冲上升沿再次到时,重复上述工作过程。

由上可知:U5和U6在这里用作ΨΑ’和ΨΒ’脉冲上升沿检测电路来控制计数器和显示器的工作。

本电路可以在直流到500HZ的输入信号频率范围内工作,频率的上限由所用锁相环的频率上限决定。

为了减少相位校准时的误差,提高校准精度,用开关选择锁相环的外接阻容元件R1,R2,C.

续附页三(一)

通过Prosys6.9.04软件仿真的结果

相位测量仪

辽宁工业大学 电子综合设计与制作(论文)题目:低频数字式相位测量仪 院(系):电子与信息工程学院 专业班级:电子班 学号: 学生姓名: 指导教师: 教师职称: 起止时间:2013.12.13-2014.1.10

电子综合设计与制作(论文)任务及评语

摘要 该设计是低频数字式相位测量仪,设计思路为输入一个低频正弦信号通过分支路正常输出,另一路不通过移相器输出一个相位改变频率不变的正弦波。得到上述两路频率相同相位不同的信号后就要测出两信号的相位差和频率,在做此工作前先要经过相位测量前置级信号处理电路,由阻抗变换和放大、限幅、电平转换、整形电路组成。经过相位测量前置级信号处理电路得到两路方波,通过异或门输出一个脉冲序列与晶振产生的基准脉冲波进行与操作得到调制后的波形,在一定的时间范围内对脉冲的个数进行计数通过计算得到相位差和频率。再通过单片机控制显示器显示出所需结果。 关键词:低频;正弦;移相器;异或门;整形;

目录 第1章可编程增益放大器设计方案论证 (1) 1.1可编程增益放大器的应用意义 (1) 1.2可编程增益放大器设计的要求及技术指标 (1) 1.3 设计方案论证 (2) 1.4 总体设计方案框图及分析 (3) 第2章可编程增益放大器各单元电路设计 (4) 2.1 输入调整电路设计 (5) 2.2 中间级放大电路设计 (5) 2.3 输出级电路设计 (5) 2.4 增益调整电路设计 (6) 第3章可编程增益放大器整体电路设计 (7) 3.1 整体电路图及工作原理 (7) 3.2 电路参数计算 (7) 3.3 整机电路性能分析 (8) 第4章设计总结 (9) 参考文献 (10)

单片机数字相位差计的设计

XXXXXX项目式教学 设计报告 课程名称:电路综合设计 项目名称:单片机数字相位差计的设计专业班级: 学生姓名: 指导教师: 开课时间: 报告成绩:

数字相位差计的设计与实现 摘要 随着数字电子技术的发展,由数字逻辑电路组成的控制系统逐渐成为现代检测技术中的主流,数字测量系统也在工业中越来越受到人们的重视。 在实际工作中,常常需要测量两列频率相同的信号之间的相位差,来解决实践中出现的种种问题。例如,电力系统中电网合闸时,要求两电网的电信号之间的相位相同,这时需要精确测量两列工频信号之间的相位差。如果两列信号之间的相位差达不到相同,会出现很大的电网冲激电流,对供电系统产生巨大的破坏力,所以必须精确地测量出两列信号之间的相位差。本设计由STC89C51构成的最小系统,通过外围扩展,精确测量工频电压的相位差,采用LCD1602显示相位差,功耗小,精确度高,稳定性能好,读数方便且不需要经常调试。 关键词:单片机、低频、相位差、LCD

一、绪论 1.1课题的意义 众所周知,相位是交变信号的三要素之一,而相位差则是研究两个相同频率交流信号之间关系的重要参数。相位差的测量是电气测量的一项基本内容,其含义为测量两个同频率周期信号的相位差值。 例如某一电路系统输入信号与输出信号之间的相位差,三相交流电两个相电压或两个线电压之间的相位差,相电压与相电流之间的相位差等。 又如,在自动控制理论中,系统的相频特性为在不同频率正弦信号作用下,系统的输出信号与输入信号之间的相位和频率的函数关系。 此外,同频率正弦信号的相位差测量在工业自动化、智能控制及通讯电子等许多领域都有着广泛的应用。如电工领域中的电机功角测试,等等。 因此相位差的测量是研究网络相频特性中不可缺少的重要方面。 1.2课题要求 本设计研究了一种可测20Hz-20kHz 内波形(正弦波、三角波、矩形波)数字相位差测量仪的设计方法。主要内容是以STC89C51为控制核心,实现对音频范围内的正弦交流信号的相位的测量,可测的信号相位差在0~360? 度范围内,测量精度可达0.1? 。两路信号(同频、不同相)通过过零比较器电路整形成矩形波信号,再通过鉴相器,D 触发器二分频得到相位差信号。这样就构成了相位测量系统的测量电路。再将该相位差信号送入单片机的外部中断端口,通过单片机对数据的处理,最后方可得到所要测量的相位差,并在液晶上显示出测量结果。 二、相位测量方案论证与选择 2.1设计方案论证 方案1:相位——电压转换法 相位--电压转换式数字相位计的原理框图如图2-1

数字式相位差测量仪说明书4

目录 绪论 (1) 摘要 (2) 1 结构设计与方案选择 (3) 1.1 基于过零检测法的数字式相位差测量仪方法概述 (4) 1.1.1 相位-电压法 (4) 1.1.2 相位-时间法 (5) 1.2 方案的比较与选择 (6) 2 相位-时间法单元电路的原理分析与实现方法 (6) 2.1 前置电路设计与分析 (6) 2.1.1 放大整形电路的分析与实现 (6) 2.1.2 锁相倍频电路的分析与实现 (7) 2.2 计数器及数显部分的设计与分析 (9) 2.2.1 计数器部分的分析与实现 (9) 2.2.2 译码显示部分的分析与实现 (10) 3 结论 (12) 4 参考文献 (13) 附录1:元器件名细表 (14) 附录2:相位时间法总体电路原理图 (15) 附录3:相位时间法总体电路PCB板 (16) 附录4:相位时间法总体电路PCB板3D视图 (17)

随着科学技术突飞猛进的发展,电子技术广泛的应用于工业、农业、交通运输、航空航天、国防建设等国民经济的诸多领域中,而电子测量技术又是电子技术中进行信息检测的重要手段,在现代科学技术中占有举足轻重的作用和地位。数字相位差测试仪在工业领域中是经常用到的一般测量工具,比如在电力系统中电网并网合闸时,需要两电网的电信号相同,这就需要精确的测量两工频信号之间的相位差。更有测量两列同频信号的相位差在研究网络、系统的频率特性中具备重要意义。相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。为此,我们设计了一种数字相位差测量仪,实现了两列信号相位差的自动测量及数显。近年来,随着科学技术的迅速发展,很多测量仪逐渐向“智能仪器”和“自动测试系统”发展,这使得仪器的使用比较简单,功能越来越多。 本低频数字相位测量仪主要是测量电压和电流的相位差,由整形放大电路、基本门电路、锁相倍频、计数译码等集成电路构成。测量的分辨率可达到0.1°,可测信号的频率范围为0Hz~250Hz,幅度为0.5Ⅴ,由于74HC4046的性能比较好,使得所制得的仪器精度相对较高,达到了任务书中所规定的要求。

低频数字式相位测量仪(缪学进)

低频数字式相位测量仪 该系统由相位测量仪、数字式移相信号发生器和移相网络三个模块构成,分别由两块单片机独立地实现控制与显示功能。采用DDS技术生成两路正弦波信号,并通过改变存储器中数据读取的起始地址来实现数字移相的功能,用Ф-T变换技术来实现相位差的测量,使得显示分辨率精确到0.01o,测得的频率与相位差值送入LCD进行显示,加入红外键盘以及语音播报的功能,使得系统具有智能化、人性化的特色。 关键词:相位测量频率测量数字移相DDS语音播报 一方案论证与设计 1 相位测量方案 方案一:采用脉冲填充计数法。将正弦波信号整成方波信号,对两路方波信号进行异或操作之后输出脉冲序列的脉宽可以反映两列信号的相位差,以输入信号所整成的方波信号作为基频,经锁相环倍频得到的高频脉冲作为闸门电路的计数脉冲,由单片机对获取的计数值进行处理得到两路信号的相位差。 方案二:鉴相部分同方案一,将两路方波信号异或后与晶振的基准频率进行与操作,得到一系列的高频窄脉冲序列。通过两片计数器同时对该脉冲序列以及基准源脉冲序列进行计数,一路方波信号送入单片机外部中断口,作为控制信号控制两片计数器。得到的两路计数值送入单片机进行处理得相位差值。 对以上方案进行比较,方案一在所测频率较高时,受锁相环工作频率等参数的影响会造成相位差测量的误差,采用方案二由高精度的晶振产生稳定的基准频率,可以满足系统高精度、高稳定度的要求。 2频率测量方案 方案一:用专用频率计模块来测量频率,如ICM7216芯片,其内部带放大整形电路,可以直接输入正弦信号,外部振荡部分选用一块高精度晶振和两个低温度系数电容构成10MHz振荡电路,其转换开关具有0.01s,0.1s,1s,10s四种闸门时间,量程可以自动切换,待计数过程结束时显示测频结果。该方案外围硬件电路较为复杂。 方案二:利用可编程计数器来实现频率的测量,将被测信号转换为方波信号输入可编程计数器8254的某一路Clk端口,并将Gate端置为高电平,利用单

相位测量仪

目录 前言 (2) 一、功能特点 (3) 二、技术指标 (3) 三、结构外观 (4) 1.结构尺寸 (4) 2.面板布置 (4) 3.键盘说明 (5) 四、液晶界面 (6) 五、使用方法 (10) 六、打印功能 (13) 七、注意事项 (13) 附录:三相三线计量接线48种接线结果 (14) 差动保护正确矢量图 (16)

前言 随着电力行业的发展和微机综合自动化产品的推广应用,保护回路和计量回路的接线正确与否直接影响到电力系统工作的稳定性和电费计量的准确性,而这两点正是电力系统非常重要的两个方面。由于保护装置和高压计量装置的接线比较多,容易造成错误接线,而又不易被察觉,(尤其是差动保护的复杂接线,有时高低侧同时引入,又存在不同的联结组别,极易接错,而在平时运行中又可能不会误动或拒动,存在很大的隐患)。武汉华亿通电气有限公司根据现场测试需要,适时开发出SL型矢量分析仪。它集多功能于一身,即可做相位仪校验主变差动保护和母线差动的正确性,又可作为电参量测试仪测试电力系统必要的参数,还可用做三相三线电能计量接线检测仪器。采用dsp交流采样,可同时测量3路电压和6路电流模拟量,仪器首创9通道矢量同屏显示,人机对话界面友好,使用简便,大大方便了现场使用,是电力工作者的得力助手。

一、功能特点 1、大容量锂电池供电,连续工作长达4小时。 2、3路电压,6路电流矢量同屏显示,国内首创。 3、集保护矢量分析;相位伏安测试;电能计量接线矢量分析多种仪器于 一身。 4、大屏幕、高亮度的液晶显示,全汉字菜单及操作提示实现友好的人机 对话,触摸按键使操作更简便,宽温液晶带亮度调节,可适应冬夏各季。 5、用户可随时将测试的数据通过微型打印机将结果打印出来。 6、体积小重量轻:283×218×128,2kg 7、预留双USB接口,可外接优盘等移动存储设备。 二、技术指标 1、输入特性 电压测量范围:0~450V。 电流测量范围:0~6A。 2、准确度 电压、电流、频率:±0.2% 功率:±0.5% 3、工作温度:-15℃~ +40℃ 4、充电电源:交流160V~260V 5、绝缘:⑴、电压、电流输入端对机壳的绝缘电阻≥100M?。 ⑵、工作电源输入端对外壳之间承受工频2KV(有效值),历时1 分钟实验。 6、体积:32cm×28cm×13cm 7、重量:2Kg

低频数字式相位测量仪

低频数字式相位测量仪(C 题) 一、任务 设计并制作一个低频相位测量系统,包括相位测量仪、数字式移相信号发生器和移相网络三部分,示意图如下: 二、要求 1、基本要求 (1)设计并制作一个相位测量仪(参见图1) a .频率范围:20Hz ~20kHz 。 b .相位测量仪的输入阻抗≥100k 。 c .允许两路输入正弦信号峰-峰值可分别在1V ~5V 范围内变化。 d .相位测量绝对误差≤2°。 e .具有频率测量及数字显示功能。 f . 相位差数字显示:相位读数为0o ~359.9o ,分辨力为0.1°。 (2)参考图2制作一个移相网络 a .输入信号频率:100Hz 、1kHz 、10kHz 。 b .连续相移范围:-45°~+45°。 c .A '、B '输出的正弦信号峰-峰值可分别在0.3V ~5V 范围内变化。 2.发挥部分 (1)设计并制作一个数字式移相信号发生器(图3),用以产生相位测量仪所需的输入 图3 数字式移相信号发生器 图1 相位测量仪

正弦信号,要求: a.频率范围:20Hz~20kHz,频率步进为20Hz,输出频率可预置。 b.A、B输出的正弦信号峰-峰值可分别在0.3V~5V范围内变化。 c.相位差范围为0~359°,相位差步进为1°,相位差值可预置。 d.数字显示预置的频率、相位差值。 (2)在保持相位测量仪测量误差和频率范围不变的条件下,扩展相位测量仪输入正弦电压峰-峰值至0.3V~5V范围。 (3)用数字移相信号发生器校验相位测量仪,自选几个频点、相位差值和不同幅度进行校验。 (4)其它。 三、评分标准 四、说明 1、移相网络的器件和元件参数自行选择,也可以自行设计不同于图2的移相网络。 2、基本要求(2)项中,当输入信号频率不同时,允许切换移相网络中的元件。 3、相位测量仪和数字移相信号发生器互相独立,不允许共用控制与显示电路。

计量检定规程电学部分

JJG 47~1990 抖晃仪检定规程 JJG 48~1990 硅单晶电阻率标准样片检定规程 JJG 64~1990 超低频信号发生器检定规程 JJG 66~1990 高频电容损耗标准试行检定规程 JJG 69~1990 高频Q标准线圈试行检定规程 JJG 120~1990 波形监视器检定规程 JJG 121~1990 视频杂波测试仪检定规程 JJG 122~1986 DO6型精密有效值电压表检定规程 JJG 123~1988 直流电位差计检定规程 JJG 124~1993 电流表、电压表、功率表及电阻表检定规程 JJG 125~1986 直流电桥检定规程 JJG 126~1995 交流电量变换为直流电量电工测量变送器检定规程JJG 127~1986 HP4191A型高频阻抗分析仪试行检定规程 JJG 137~1986 CC-6型小电容测量仪检定规程 JJG 138~1986 CCJ-IC型精密电容测量仪检定规程 JJG 153~1996 标准电池检定规程 JJG 163~1991 电容工作基准检定规程 JJG 166~1993 直流电阻器检定规程 JJG 169~1993 互感器效验仪检定规程 JJG 173~1986 XFC-6A型标准信号发生器检定规程 JJG 183~1992 标准电容器检定规程 JJG 183~1992 标准电容器检定规程

JJG 218~1991 电感工作基准检定规程 JJG 230~1980 XFD-7A型低频信号发生器试行检定规程 JJG 242~1995 特斯拉计检定规程 JJG244-2003 感应分压器检定规程 JJG 250~1990 电子电压表检定规程 JJG 251~1997 失真度测量仪检定规程 JJG 252~1981 RS-2及RS-3型校准接收机检定规程 JJG 253~1981 用Д1-2型衰减标准装置检定衰减器检定规程JJG 254~1990 补偿式电压表检定规程 JJG 255~1981 三厘米波导热敏电阻座检定规程 JJG 256~1981 DYB-2型电子管电压表检定仪检定规程 JJG 262~1996 模拟示波器检定规程 JJG 278~2002 示波器校准仪检定规程 JJG 279~1981 WFG-IB型高频微伏表检定规程 JJG 280~1981 M4-1(MTO-1)型标准热敏电阻桥检定规程JJG 281~1981 波导测量线检定规程 JJG 282~1981 同轴热电薄膜功率座检定规程 JJG 303~1982 频偏测量仪检定规程 JJG 307~1988 交流电能表(电度表)检定规程 JJG 308~1983 超高频毫伏表检定规程 JJG 313~1994 测量用电流互感器检定规程 JJG 314~1994 测量用电压互感器检定规程

数字式相位差测量仪

专业方向课程设计报告 课题名称:数字式相位差测试仪姓名: 学号: 班级: 专业: 归口系部: 起迄日期: 指导教师: 提交报告日期: 2015年12月18日

数字式相位差测试仪 目录 一、设计任务和目的 _________________________________ - 1 - (一)设计任务 ___________________________________ - 1 - (二)设计目的 ___________________________________ - 1 - 二、设计要求 ________________________________________ - 1 - 三、工作原理 _______________________________________ - 1 - 四、设计框图 _______________________________________ - 2 - 五、主要参考器件(软件仿真,用Proteus) ____________ - 2 - 六、各模块电路分析 _________________________________ - 3 - (一)移相电路部分_______________________________ - 3 - (二)放大整形电路部分___________________________ - 3 - (三)锁相倍频电路部分___________________________ - 4 - (四)计数器及数字显示部分_______________________ - 5 - (五)相位超前于滞后显示部分_____________________ - 6 - 六、仿真___________________________________________ - 7 - 七、心得体会 _______________________________________ - 8 - 八、参考文献 _______________________________________ - 8 - 附:数字式相位差总电路图_____________________________ - 9 -

低频数字式相位测量仪(余蜜)

电子测量原理 低频数字式相位测量仪 班级:电子信息工程 姓名:何静峰 学号:20114075158 日期:2014年4月15日

系统方案 1 相位测量仪方案 方案一:单周波计数法。将有相位差的两路方波信号进行”异或”后作为闸门,在高电平时,利用外部高频信号进行计数,在下降沿将数据读出,低电平时对计数器清零。设晶振频率为f c ,测得信号的频率为f r ,计数值为N ,则相位差ph as e为 o c r N f f phase 180??= 方案二:定时间计数。将高频时钟信号和两路信号异或得到的信号进行“与”,在设定时间s 内利用其上跳变沿计数,设高频时钟频率为f c,计数值为N,则 o c sf N phase 180?= 方案三:多周期同步计数法。设被测信号的频率为f,则将一被测信号进行f1倍(f 取整)分频,则在f 1周期内(保证测量时间在1s左右),被测信号异或与参考高频信号相与的信号sin gal1的计数为N1,同时期参考高频信号的计数为N,则 o N N phase 1801?= 以上三种方案都可以采用一个D 触发器将相位测量的相位扩展到o 0-o 360。方案一需高速时钟,按题目要求,在20kHz 信号时的相位差分辨率为0.1o,则要求时钟最少为72MHz ,实现困难。而方案二测量时间段一定,存在遗漏0~1个周波的情况,从而引入较大的误差。方案三的读数与异或得到的信号同步,不存在遗漏问题,误差很小,故采用此方案。 2 移相信号发生器

⑴频率合成器方案 方案一:采用函数发生器8038。可以同时产生正弦波、三角波、方波,频率可由调制电压控制,但此方案难以实现相移,而且输出频率不稳定。 方案二:采用直接数字频率合成(DDFS)方案。用存储器存储所须的波形量化数据,采用不同时钟频率的地址计数器,根据计数值读出存储器中的量化数据,再经D/A转换后滤波整形输出。此方案可以很好地控制两路波形的相位差以及频率。 经上述比较,我们采用方案二。 ⑵幅度控制 方案一:利用可调电位器手动调节电压幅值。 方案二:通过控制D/A的参考电压控制输出波形的幅度。参考电压可通过对另一D/A置数从而输出不同电压,进而控制输出波形的幅度。 方案二可以预置幅值,并且比较精确,方便操作,故选方案二。 经上面方案论证,我们采用如下的系统方案: 设计技术指标 (1)相位测量仪 a.频率范围:20Hz~20kHz。

数字相位差测量仪的设计

目录 1.设计任务书。 2.设计方案概述。 3.V/f变换测量相位差角的工作原理。 4.电路的组成及参数选择。 4.1整形电路及信号C的形成。 4.2滤波电路的参任务计划书。 4.3V/f变换电路的设计。 4.4 89C52内部资源的利用。 5.应用实例。 6.结论。 7.总结。 一、设计任务书 (一)任务 设计仿真一数字相位计 (二)主要技术指标与要求: (1)输入信号频率为0HZ~250HZ可调 (2)输入信号的幅度为0.5V (3)采用数码管显示结果,相位精确到0.1° (4)采用外部5V直流电源供电 (三)对课程设计的成果的要求(包括图表) 设计电路,安装调试或仿真,分析实验结果,并写出设计说明书。要求图纸布局合理,符合工程要求,所有的器件的选择要有计算依据。 二、设计方案概述 根椐设计任务书的要求,我们参考了一些相关资料书,经过小组的讨论分析,提出了一种用v/f变换测量交流电的相位差的新方法:首先产生出其幅度正比与相位差大小的直流电,再有v/f变换器转换成反映相位差大小的频率信号,在单片机的配合下,最终得到相位差。这种方法具有分辨率高,适应与大范围的各种输入频率等优点。 正弦交流电电信号相位差的测量可以用多种方法实现。比较直接的数字式测量方法是在已知信号周期的前提下用定时的方法测得相位差角对应的时间,然后根据已知的周期将其换算成相位差角度。但

是,这种方法的测量精度依赖于定时器的精度和分辨率。在信号频率较高或频率虽不高但相位差较小时,都可以出现较大的误差。另外,由于直接测量得到的是时间,相位差角要由这一中间结果与信号的周期运算后才能得到,所以周期的测量不可缺少,其测量的精度也将影响相位差的精度。 在此用一种新的思路进行相位差的测量,用v/f变换器把相位差转换成一个其频率与之成正比的脉冲列,通过计算在一定时间内的脉冲个数测量相位差角。这种测量方法与信号的周期无关,可以得到较高的精度。题达到了0.1的测量精度,与此同时工业运行控制中现场操作,修改和设置等问题也得到了很好的解决,以上这些都在工业运行中得到了厂方的认可。存在的问题主要是本仪器通用性很不强,很难在更大的范围应用和推广,只能运用与某些特定的企业。今后的工作主要硬件和软件的改进上,列入增加一些通用行很强的功能模块。 3.V/f变换测量相位差角的工作原理 首先将输入的两个同频率但存在着相位差的信号进行整形,使之变成方波。如图1示A和B 再对A,B进行异或处理, 异或输出信号C 的脉冲宽度则反映相位差角.C 的脉宽T1对应的电角度是相位差角,C 的周期T2 是信号周期T 的1/2.如果信号角频率为w 则T1= /w. C为幅值为U 的方波其平均值Ud=UT1/T2=U 由此可见,C 的平均值( 亦即直流分量)仅与相位差角和脉冲幅 度有关与信号周期无关

数字式相位差测量仪

《电子技术》课程设计报告课题:数字式相位差测量仪 班级电气1112 学号 1111205423 学生姓名孟雷 专业电气工程及其自动化 院系电气学院电子系 指导教师专业方向课程设计指导小组 淮阴工学院 电子信息工程系 2014年12月

一、设计目的与任务 《电子信息工程专业方向》课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的、系统的、综合的工程训练。在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程、设计要求、完成的工作内容和具体的设计方法,掌握必须提交的各项工程文件。其基本目的是:培养理论联系实际的设计思想,训练综合运用电路设计和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固,加深和扩展有关电子类方面的知识。 通过课程设计,应能加强学生如下能力的培养: (1)独立工作能力和创造力; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)查阅图书资料、产品手册和各种工具书的能力; (4)工程绘图的能力; (5)编写技术报告和编制技术资料的能力。 二、设计要求 1、被测信号为正弦波(或者是方波),频率为40~60Hz,幅度大于等于0.5V;相位测量精度为1度;用数码管显示测量结果。 2、主要单元电路和元器件参数计算、选择; 3、画出总体电路图; 4、提交格式上符合要求、内容完整的设计报告

三、总体设计 在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频信号的相位差。例如,电力系统中电网并网合闸时,要求两电网的电信号之间的相位相同,这需要精确测量两列工频信号的相位差。相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。为此,我们设计一种数字式相位差测量仪,该仪以可编程逻辑器件(PLD) 和锁相环(PLL) 倍频电路为核心,实现了两列信号相位差的自动测量及数显。 相位差测量仪的原理框图(以分辨率为1°为例)如图1 所示。基准信号(相位基准) f R 经放大整形后加到锁相环的输入端,在锁相环的反馈环路中设置一个N = 360 的分频器,使锁相环的输出信号频率为360f R ,但相位与f R 相同,这个输出信号被用作计数器的计数时

高精度相位测量仪的介绍及测量

高精度相位测量仪的介绍及测量 相位介绍 相位是与电路结构有关的参数。 相位是反映交流电任何时刻的状态的物理量。交流电的大小和方向是随时间变化的。比如正弦交流电流,它的公式是i=Isin2πft。i是交流电流的瞬时值,I是交流电流的最大值,f是交流电的频率,t是时间。随着时间的推移,交流电流可以从零变到最大值,从最大值变到零,又从零变到负的最大值,从负的最大值变到零。 相位(phase)是对于一个波,特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。是描述讯号波形变化的度量,通常以度(角度)作为单位,也称作相角。当讯号波形以周期的方式变化,波形循环一周即为360° 。常应用在科学领域,如数学、物理学等 相位调整 相位调整是指在有些超低音音箱上加装的一个控制机构。用于对超低音音箱所重放出的声音稍许加以延迟,从而让超低音音箱的输出能够和前置主音箱同相位,即具有相同的时间关系。 相位噪声 相位噪声是频率域的概念,是对信号时序变化的另一种测量方式,其结果在频率域内显示。 如果没有相位噪声,那么振荡器的整个功率都应集中在频率f=fo处。但相位噪声的出现将振荡器的一部分功率扩展到相邻的频率中去,产生了边带(sideband)。从图2中可以看出,在离中心频率一定合理距离的偏移频率处,边带功率滚降到1/fm,fm是该频率偏离中心频率的差值。 相位噪声通常定义为在某一给定偏移频率处的dBc/Hz值,其中,dBc是以dB为单位的该频率处功率与总功率的比值。一个振荡器在某一偏移频率处的相位噪声定义为在该频率处1Hz带宽内的信号功率与信号的总功率比值。 相位差 两个频率相同的交流电相位的差叫做相位差,或者叫做相差。这两个频率相同的交流电,可以是两个交流电流,可以是两个交流电压,可以是两个交流电动势,也可以是这三种量中的任何两个。

低频数字式相位测试仪—开题报告

低频数字式相位测试仪的研究 一、设计背景和意义: 相位测量技术的应用已深入到许多领域,广泛应用于国防、科研、学校和厂矿,传统相位测量使用的是指针式仪表,但随着电子技术的发展,数字显示相位仪不断涌现。利用了51单片机的高速硬件捕获功能来实现频率和相位的测量;并利用A/D转换器对数据进行进一步的处理,在高低频段分别采用多次测量、滤波算法、矢量分解、便宜修正等算法消除干扰提高精度,采用大屏幕液晶显示测量详细信息;利用AVRmega8515配合16.384MHZ的高速晶振,采用软件DDFS实现双路数字式移相信号发生器,使用优化算法是当今科技发展对低频数字式相位测量仪的新要求。 二、设计的主要内容以及具体要求: 2.1设计的主要内容 低频数字是相位测量仪实际需要设计和制作的三个独立的部分:(1)数字相位测量仪;(2)数字式移相信号发生器;(3)移相网络。本系统由两块独立的CPU组成。 本系统以51单片机以及可编程逻辑器件为核心,由模拟移相网络、数字式相位测量仪(含测频功能)、数字式移相位测量仪的核心为数字鉴相器及高速计数器,频率计采用高精度恒定误差测频法。信号发生器使用直接数字频率合成(DDFS)技术,并使用汉字液晶显示模块,操作界面友好。系统的测量精度及其它指标均达到了设计要求。 2.2设计的具体要求 (1)设计并制作一个相位测量仪 a.频率范围:20Hz~20KHz。 b.允许两路输入正弦信号峰-峰值可分别在1V~5V范围内变化。 c. 相位测量仪的输入阻抗≥100K。 d. 相位测量绝对误差≤。 e. 具有频率测量及显示功能。 f. 相位差数数字显示:相位读数为~,分辨力为。 (2)移相网络 a.输入信号频率:100Hz,1K,10Kz。 b.连续相移范围:~ c. A`,B`输出的正弦信号峰-峰值可分别在0.3V~5V范围内变化。 十进制数字显示,显示刷新时间1~10秒连续可调,对上述三种测量功能分别用不同颜色的发光二极管指示。 三、设计的实现方案: 方案论证 数字移相技术的核心是:先将模拟信号或移相角数字化,经移相后再还原成模拟信号。移相方案主要有以下几种。 方案一:利用D/A转换实现相移

数字式相位差测量仪

一、设计目的与任务 《电子信息工程专业方向》课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的、系统的、综合的工程训练。在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程、设计要求、完成的工作内容和具体的设计方法,掌握必须提交的各项工程文件。其基本目的是:培养理论联系实际的设计思想,训练综合运用电路设计和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固,加深和扩展有关电子类方面的知识。 通过课程设计,应能加强学生如下能力的培养: (1)独立工作能力和创造力; (2)综合运用专业及基础知识,解决实际工程技术问题的能力; (3)查阅图书资料、产品手册和各种工具书的能力; (4)工程绘图的能力; (5)编写技术报告和编制技术资料的能力。 二、技术指标与要求 1、被测信号为正弦波(或者是方波),频率为40~60Hz,幅度大于等于0.5V;相位测量精度为1度;用数码管显示测量结果。 2、主要单元电路和元器件参数计算、选择; 3、画出总体电路图; 4、提交格式上符合要求、内容完整的设计报告 三、工作原理

在电工仪表、同步检测的数据处理以及电工实验中,常常需要测量两列同频信号的相位差。例如,电力系统中电网并网合闸时,要求两电网的电信号之间的相位相同,这需要精确测量两列工频信号的相位差。相位测量的方法很多,典型的传统方法是通过显示器观测,这种方法误差较大,读数不方便。为此,我们设计一种数字式相位差测量仪,该仪以可编程逻辑器件(PLD) 和锁相环(PLL) 倍频电路为核心,实现了两列信号相位差的自动测量及数显。 相位差测量仪的原理框图(以分辨率为1°为例)如图1 所示。基准信号(相位基准) f R 经放大整形后加到锁相环的输入端,在锁相环的反馈环路中设置一个N = 360 的分频器,使锁相环的输出信号频率为360f R ,但相位与f R 相同,这个输出信号被用作计数器的计数时钟。被测信号f S 经放大整形再2 分频后得到的f S/ 2与f R/ 2 送入由异或门组成的相位比较电路,其输出脉冲A 的脉宽tp 反映了两列信号的相位差;利用这个信号作为计数器的闸门控制信号使计数器仅在f R 与f S的相位差tp 内计数,这样计数器计得的数即为f R 与f S 之间的相位差。于计数时钟频率为360f R ,因此,一个计数脉冲对应1°。计数的值经锁存译码后通过LED 数码管显示。这种测量方法可以从波形图图2 得到理解和说明。图中D 触发器用于判断f R 与f S 的相位关系,当Q 为1 时, f R 超前于f S ,相位取正值,符号位数码管显示全黑; 当Q 为0 时, f R 滞后于f S ,相位取负值,符号位数码管显示“ - ”。

数字相位测量仪

电子设计竞赛报告 电子设计竞赛报告 题目: 数字相位测量仪设计报告 院系名称:电气工程学院专业班级:电气F1104班学生姓名:陈x超学号: 指导教师:教师职称:副教授 评语及成绩: 指导教师: 日期:

摘要 本设计提出了一种基于c8051f020单片机开发的低频数字相位测量仪的方案。主要包括相位测量模块、单片机最小系统、显示模块的设计。可以对低频率范围的信号进行相位等参数的精确测量,测相绝对误差不大于1°。相位测量模块采用对输入的两路信号(同频率、不同相位)通过比较器整形、鉴相器异或之后得到的相位差,输入到单片机的中断口进行数据采集处理;采用数码管显示被测信号的相位差。硬件结构简单,软件采用汇编语言实现,程序简单可读写性强、效率高。与传统的电路系统相比,其有处理速度快、稳定性高、性价比高的优点。 关键词相位差单片机比较器整形数码管

目录

1.方案设计 1.1设计方案论证 从功能角度来看,相位测量仪要完成信号相位差的测量。相位测量仪有两路输入信号,也是被测信号,他们是两个同频率的正弦信号,频率范围为20Hz~20KHz (正好是音频范围),幅度为U PP =1~5V ,但两者幅度不一定相等。 相位和相位差的概念[4]: 令正弦信号为: ()()0sin ?ω+=t A t A m (2.1) 2.1式中Am 称为幅值(最大值),且A A m 2=,A 称为有效值;()0 ?ωθ+=t t 称为相位,0?称为初相位,ω称为角频率。Am 、ω、0?称为正弦量的三要素。 只有两个同频率的(正弦)信号才有相位差的概念。不妨令两个同频率的正 弦信号为: ()()()() 02220111sin sin ?ω?ω+=+=t A t A t A t A m m (2.2) 则相位差: ()()02010201???ω?ωθ-=+-+=t t (2.3) 由2.3式中可看出,相位差在数值上等于初相位之差,θ是一个角度 不妨令θωθT =,其中θT 是相位差θ对应的时间差,且令T 为信号周期,则有比例关系: θθ:360:T T = (2.4) 可以推导得到: ()360/?=T T θθ (2.5) 式子2.5中可以说明,相位差θ与θT 一一对应,可以通过测量时间差θT 及信号周期T ,计算得到相位差θ,这就是相位差的基本测量原理。 由于相位差的基本测量原理可知,相位差的测量本质上是时间差θT 及信号周期T 的测量,也就是时间的测量,而时间的测量不可避免地要用到电子计数器。 时间的测量有多种方法,而设计题目关于相位测量仪的技术指标要求会影响到我们对方案的选择,MCU 应用系统一般能较好的实现各种不同的测量及控制功能,往往还能满足一些设计要求比较高的技术指标,因此,我们在进行电子系统设计时,可用MCU 实现系统功能,完成系统指标。

用单片机低频数字式相位测量仪430

低频数字式相位测量仪c11 石油大学(华东) 尚海燕曹善甫梁锴 摘要 本系统由两片独立的CPU组成。用MSP430实现基本要求中的相位、频率、电压测量及其数字和图形显示功能;用AVRmega8515实现扩展要求中的数字式移相信号发生器及其设置频率和相位的功能。本设计充分利用了MSP430的高速硬件捕获功能来实现频率和相位的测量,并利用AD转换器对数据进行进一步处理,在高低频段分别采用多次测量、滤波算法、矢量分解、偏移修正等算法消除干扰提高精度,采用了大屏幕液晶显示测量的详细信息。利用AVRmega8515配合16.384MHz的高速晶振,采用软件DDFS实现双路数字式移相信号发生器,由于使用优化算法,实现了高达每秒655.36K次的双路相位计算,输出频率为20Hz-40.48KHz,可实现20Hz的步进,系统硬件结构简单,频率、相位稳定度高;采用数码管显示和按键设置频率及相位差。移相网络安题目要求由常规的模拟器件组成。本系统主要由相位测量、移相网络和数字式移相信号发生器三大模块组成。 一、方案比较与论证 1 、相位测量部分 方案一:传统的模拟法。该方案采用倍频、计数、门控等电路。此方法难以实现大频率

范围的相位测量,精度低、稳定性差。 方案二:采用双通道高速A/D对输入的信号进行采集,然后FFT和基波的矢量分解的方法计算出这两个信号的基频和相位。该方案精度高,算法简单,对畸变波形有一定的处理能力。但要求在AD采集前作频率测量,在信号频率较高时,需要使用超高速AD转换器并且需要较高的计算能力,一般需要使用DSP进行信号处理。硬件复杂,难度较高。 方案三:整形鉴相法。将输入的两相位不同的正弦波通过比较器进行整形,变成方波。然后将两方波进行异或比较输出,从而得到两输入信号的过零时间差和两信号的周期,通过计算获得信号的频率和相位。该方案较简单,但普通单片机需要通过扩展外部电路,增强计时、计数能力才能达到满足题目要求的精度。 方案四:采用较高性能的混合信号处理器MSP430,采用方案三和方案二相结合的方式对输入信号进行处理,在高低频段混合采用矢量分解和两相比较器输出方波信号跳变时间的分析,准确计算出频率和相位差。此方法由于使用了混合信号处理器MSP430,集成度高,片内包含多路高速且有缓冲存储能力的俘获单元,可以准确记录方波信号跳变时间,片内包括速度高达200k sps且有连续操作和缓冲存储能力的12位ADC,为扩展各项功能提供了支持。软件部分实现了自动频率测量、相位测量、信号源电压测量、信号波形显示,用软件采用平均、矢量等算法进行多次复合测量消除噪声干扰、接触不良等引起的误差,并能在输入信号异常(如直流分量高、信号严重畸变、信号太小、输入信号超量称等)状态下自动报警,给出提示。此方案硬件比方案二和方案三都简单,而且测量精度高,功耗低,体积小。 2、数字式移相信号的产生部分 方案一:采用单片机的定时器产生数字信号,通过滤波或锁相等环节输出正弦信号。该方案对单片机要求低,但产生的信号频率低,频率步进大,模拟部分产生较大相移,难以保证输出的相位精度,很难达到设计要求。方案二:采用硬件直接数字频率合成(DDFS)技术产生数字信号。直接频率合成方法具有频率转换时间短、近载频相位噪声性能好、精度高,产生的信号频率范围宽等优点,但由于需要采用地址,相位计算,访问存储器操作等环节,导致直接频率合成器结构复杂、体积庞大、成本高,功耗大。而且即使使用大规模的PLD,也需要单片机来实现键盘、显示的控制等工作。 方案三:采用软件DDFS方法产生数字信号。该方案硬件实现简单,产生的信号精度高,频率范围宽。采用高速的AVR单片机,使用16.384MHz的晶体振荡器可实现软件DDFS算法,可以以655.36K的速度刷新双D/A,可实现20Hz的频率步进和从20Hz到40.96KHz的可移相的0~360度的信号输出。完全可以满足题目的要求。此方案由于使用了较高性能的单片机和充分优化的软件结构,在不降低系统性能的条件下,硬件简单、成本低、功耗低、可靠性高,具有较高的实用性。 3、模拟移相部分 采用常见的模拟器件电阻,电位器,电容和运放的组合电路实现移相。直接对模拟信号进行移相,如阻容移相,变压器移相等,早期的移相通常采用这种方式。采用这种方式制造的移相器有许多不足之处,如:输出波形受输入波形的影响,移相操作不方便,移相角度随所接负载和时间等因素的影响而产生漂移等。该方案由于使用模拟器件,因此精度不是很高,硬件系统比较复杂。 此类方案形式较多,但都难以消除作为模拟系统的弱点,在此不作详细讨论。 题目的基本要求部分既是采用此方案,我们按要求完成了这部分电路。

数字相位计

数字相位计 摘要:目前广泛使用的是直读式数字相位计,其原理是基于时间间隔测量法,通过相位-时间转换器,将相位差为ψ的两个信号(分别称参考信号和被测信号)转换成一定的时间间隔τ的起始和停止脉冲。然后用电子计数器测量其时间间隔。 关键词:数字相位计 正文: 一、原理 目前广泛使用的是直读式数字相位计,其原理是基于时间间隔测量法,通过相位-时间转换器,将相位差为ψ的两个信号(分别称参考信号和被测信号)转换成一定的时间间隔τ的起始和停止脉冲。然后用电子计数器测量其时间间隔。如果让电子计数器的时钟脉冲频率倍乘36*10n(n为正整数),则显示值即为以度为单位的相位差值,其简单原理如图所示。也可以用相位—频率转换器,把两信号之间的相位差变成频率,用电子计量器测量。此外可采用相位-电压转换器,把相位转换为电压,用电压表测量。 以上是时间间隔测量基本的原理,其间隔时间为 式中,N是在tψ时间内计数脉冲的个数;T0是时标信号周期。 式中,f为被测信号频率,f0为时标信号频率。 若让计数器在1s内连续计数,即1s内有f个门控信号,则其累计数为N1=f*N. 则 若取时标频率f0=360Hz,则

可见,计数器在1s内脉冲的累计数就是以度为单位的两个被测信号的相位差。若取f0=3600Hz,则每个计数脉冲表示0.1°,可以提高测量准确度。 二、 电路图及具体原理分析 电路由常用CMOS异或门74HC86和CMOS四比较器LM124组成。LM124中的A1B,A1C为输入信号的过0检测器。为了保护LM124集成块,用四只二极管(VD1-VD4)将比较器同相输入端的信号对地钳位,即把同相输入信号的幅值限制在二极管的正负管压降之内。异或门74HC86的U2A,U2B为缓冲器(当开关S1断开时)。电阻R10,R11接到U2A,U2B 的输入端,这两个缓冲器的输出驱动另外两个并接的异或门U2C和 U2D,并联的目的是为了减小输出阻抗。在U2C和U2D的输出端,电阻R4,R5,R P1和电容C1构成分压器和低通滤波器,对输出信号分别进行标定和滤波。由于U2C和U2的输出时一个正脉冲,它与U ia和U ib两路输

基于FPGA的数字显示相位差测量仪

基于FPGA的数字显示相位差测量仪 [摘要] 本文主要介绍了数字显示相位差测试仪的设计方案和硬件部分。针对FPGA的特点,在数字相位差测量系统的设计思想上,给出了一种用FPGA 芯片EP1K10TC144-3实现相位差智能化测量仪的方案。该测量仪只需少量的外围电路,有效将测量信号正弦波,方波、三角波信号移相放大,整形为所需要的方波信号,且不失真,测量这些信号的相位差,硬件电路简单,实现了输入阻抗大,误差小,精度高,抗干扰强。 [关键词] FPGA 相位差测量晶振 1.基于该题目 数字显示相位差测量仪,我们在方案设计上采用了三种不同的方案,各方案各有优缺点,在综合考虑了几种方案后,我们选定了基于FPGA的数字显示相位差测量仪,因为FPGA是在可编程专用集成电路(ASIC)的设计基础上发展起来的。由于它们集成度高、可重复编程,并能实现系统级编程(ISP),在近10年内得到迅速发展。FPGA的集成度、工作速度不断提高,包含的资源越来越丰富,可实现功能越来越强大,具有静态可重复编程或在线动态重构的特性,使得硬件功能可以像软件一样通过编程来修改,不仅使设计修改变得十分容易,而且大大提高了电子系统的灵活性和通用能力,已成为当今实现电子系统集成化的重要手段。该测量仪只需少量的外围电路,有效将测量信号正弦波,方波、三角波信号移相放大,整形为所需要的方波信号,且不失真,测量这些信号的相位差,硬件电路简单,实现了输入阻抗大,误差小,精度高。 2.系统设计思想 2.1系统设计 整个测量我们分为两个部分,一部分是测量输入的信号A的频率,在这一部分中,将一个78125的晶振经一个计数分频得到频率为0.5HZ的信号(0.5HZ 信号的周期为T=2),当原信号A与0.5HZ的信号与非的时候,其低电平半周期时(也就是T=1S时),会有一段脉冲个数,将此脉冲个数送入计数器计数输出,输出的值即为原信号的频率值;另一部分则是测量输入的两个同频异相信号A 和B的相位差,而我们输入的都是单个的模拟信号,所以在测试相位差的时候首先应产生两个同频异相的信号。因此必须使输入原信号A通过一个移相网络,得到两个同频异相的信号(两个输出信号中一个是原信号A,另一个是移相后的信号B)。然后将A,B两个信号经放大整形进行异或得到相位差信号C,同时将A信号3600倍频,在将C信号与3600倍频后的信号3600fc进行与非,然后将输出信号D通过计数器计数,将所得计数值N经过算法计算后得到信号的相位差值送往数码管显示。 那数码管显示的值和相位差又有什么关系呢?我们可以先看下面的算法:

相关文档
相关文档 最新文档