文档库 最新最全的文档下载
当前位置:文档库 › 氨合成催化剂升温还原方案

氨合成催化剂升温还原方案

氨合成催化剂升温还原方案
氨合成催化剂升温还原方案

JR型合成塔A202氨合成催化剂升温还原方案

1、氨合成岗位试压和置换结束后,向高压系统充氨50~100Kg(3~5g/Nm3)。锅炉应在氨合成升温前开始通蒸汽煮废锅,并在升温还原期间,控制好温度,充分利用余热,减轻电炉负荷。

2、温度升到120℃排水一次,200℃时开启水冷器上水阀,250℃时氨冷器开始加液氨,并控制气氨压力,380℃以上每小时排水一次,380℃开始做水汽浓度,430℃以上每半个小时排一次水。

3、进入还原主期时,补气阀保持常开,用塔后放空阀控制系统压力,CH4≥4%时开大塔后放空阀,同时开大补气阀确保系统压力稳定。

4、水汽浓度尽可能控制在2.5~3.0mg/L,并参考出水量控制升温速度,出水量大、水汽浓度较高时应恒温。是否提温以水汽浓度和出水量为准。

5、当循环机跳闸急停时,立即紧急切断电炉,开大塔后放空阀,关闭补气阀;循环机开车恢复送气后,即可开电炉,缓慢提升电炉电流、电压,恢复升温还原前的工况。

6、当电炉跳闸时,立即开大系统近路和循环机近路阀,关补气阀和塔后放空阀;电炉恢复送电后缓慢提升电流、电压,视温升趋势关小系统近路和循环机近路阀,直至恢复停电前的原工况。

7、催化剂还原结束条件:(1) 水汽浓度连续2小时≤0.2mg/L。(2) 底部温度提到460℃以上,恒温6~10小时即可降温转低负荷生产。

8、在还原过程中,以高空速、高氢、高电炉功率和低氨冷温度、低压、低水汽浓度的“三高三低”原则执行。

9、由于此次还原循环量不够,在进入还原主后期时,要根据情况及时、逐渐增压。

附:A202型触媒?1000内冷绝热型氨合成塔升温还原计划表

生产部

2012.11.17

合成氨的工艺流程 (1)

合成氨工艺流程 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。 德国化学家哈伯1909年提出了工业氨合成方法,即“循环法”,这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式如下: N2+3H2≒2NH3 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 1.合成氨的工艺流程 (1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。 ① 一氧化碳变换过程 在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:CO+H2OH→2+CO2 =-41.2kJ/mol 0298HΔ 由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。 ② 脱硫脱碳过程 各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。 粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。 一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Selexol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。 4

氨合成催化剂操作指导手册

氨合成催化剂 操作手册 中石化集团南京化学工业有限公司 催化剂厂 二〇〇二年

感谢 选用中石化集团南京化学工业有限公司催化剂厂红三角牌催化剂!南化催化剂厂愿与广大红三角牌催化剂用户携手共进,共创美好未来!

目录 1、引言 2、物化性能及工业使用条件 3、催化剂的使 3.1选型 3.2装填 3.3还原 3.4 轻负荷期 3.5停车 3.6维护保养 4、催化剂的微机管理

1、引言 中国石化集团南京化学工业有限公司催化剂厂是我国最早生产催化剂的企业,也是催化剂行业第一家通过质量体系认证(ISO9002)的专业生产厂。目前能够生产40多个品种、90多个型号的化肥、石油化工、有机化工催化剂。氨合成催化剂是传统的优势产品,广泛用于国内大、中、小型各类高低压或等压制氨装置,并出口多个国家和地区。 合成氨工业的最终目标是氢、氮化合生成氨。氨的合成则是通过催化过程来实现的。氨合成催化剂的合理正确使用是用户效益体的关键所在。 氨合成催化剂的使用,包括从催化剂的选型开始,到催化剂的装填、活化、正常操作、维护保养以及状态预测等一系列过程。催化剂的性能只有通过工业化应用才能得以体现。催化剂使用水平的高低影响着催化剂性能的发挥。为了您更好的使用好催化剂,在使用氨合成催化剂前,敬请阅读本手册 2、催化剂的特性 南化催化剂厂现有A110-1、Ac(A201)、A202、ZA-5、NC(ICI)74-1等多个型号的氨合成催化剂及其预还原产品。 2.1物化性能 2.2化学组成 2.3活性指标及执行标准

2.4工业使用条件 3、催化剂的使用 3.1选型 确定了合成氨的生产工艺和合成塔内件型式以后,如何选用合适的催化剂是首要的。催化剂选用得当,不仅其性能可以在使用条件下得以充分发挥,满足设计要求,且可以突出和证实该合成氨工艺和合成塔结构的特点。催化剂的选用一般包括催化剂型号的确定和粒度的选择。 3.1.1型号的确定 合成氨生产工艺不同,特别是合成塔内件存在差异,必然要求与之相适应、相匹配的催化剂。通过对各类催化剂的性能比较,以及各种制氨流程和合成塔使用催化剂的状况分析,一般认为对于个别使用温度较高,合成塔需长期处于高温状态的尽可能采用如A106、A109高温型催化剂;而对于大型节能流程(如AMV、Braun、LCA等)或目前我国中小型绝大多数中压产氨流程以及各类型塔内件来说,都希望催化剂具有低温下的优良品质,甚至在低压下也能很好地运行。这一类型催化剂有A110-1、AC、A202、ZA-5、NC(ICI)74-1及其预还原产品。 预还原催化剂近年来不仅在大型氨厂得到普遍推广,而且在中小型化肥厂也得以广泛应用,是因其具有显而易见的优越性。 首先是缩短氨厂大量的非生产时间。对于全炉使用预还原催化剂来讲,催化剂的还原时间仅占氧化态催化剂还原时间的1/3左右,相对增加了合成氨的有效生产时间,且降低开车费用。 其次,预还原催化剂的还原实际上只是钝化膜的脱除。由于被钝化部分的氧含量仅占未还原催化剂氧含量的8%~10%(随颗粒大小而略有不同),而且钝化膜中氧与铁的结合较为松驰,因而在催化剂还原时很容易脱除,还原温度比氧化态催化剂大约低 100℃左右。随着还原的进行,可利用产氨反应热来弥补加热器能力之不足。 此外,由于预还原催化剂在还原时出水量少,相对生成的稀氨水的量也有限,避免了因处理大量流出物而带来的麻烦;而且在还原过程中水汽也容易控制,减少了催化剂水汽中毒的可能性。 使用预还原催化剂所获得的经济效益也是显著的。通过对使用该型号 催化剂综合能耗的粗略计算,对于日产1000吨合成氨的大型氨厂来说,提前一天转入正常生产,即可创效益百十万元;而中、小型厂也将有几万至几十万的收益。预还原催化剂将成为未来制氨装置的主要选择。 3.1.2 粒度的选择 对气固相催化反应扩散效率因子和反应动力学模型分析表明,要使氨合成催化剂有较高的表面利用率,必须有较为适宜的颗粒尺寸。事实上,对于氨合成催化剂而言,催化剂的还原进程和还原质量都与催化剂的颗粒大小有着密切的关系。首先,催化剂的还原是由表及里“掘井”式进行的,必然存在扩散控制,因而也就影响着催化剂的还原速率;此外,氨合成催化剂还原产物之一是水,而水又是该催化剂的毒物,当还原反应受扩散控制时,势必增加水在孔道中的停留时间,致使催化剂已还原部分氧化,造成活性下降。基于两方面的认识,催化剂的粒度应是越小越好。但是对于工业化使用催化剂而言,这种要求不可能是无限的。

合成氨化工实习心得

合成氨化工实习心得 1. 实习单位介绍 山钟情,水毓秀,三明的山水和人文名闻海西。位于闽西北部的三明化工有限责任公司是福建省老字号国企,成立于1958年,2000年10月经省政府批准,从工厂制改为公司制。2015年1月18日,经省政府决定整体划入福建省三钢(集团)有限责任公司,跨越发展,风鹏正举。公司是福建省最大的化肥生产企业,是以生产基本化工原料和化肥为主的国家大型一档企业。企业具有强烈的使命感和厚重的文化底蕴,“斑竹”和“聚星”是公司的著名商标。公司主要装置能力:年产总氨32万吨、加工尿素45万吨、三聚氰胺万吨、精甲醇15万吨、甲醛5万吨、年发电亿千瓦时、供热310万吉焦耳、年机械加工能力2000吨。具有一、二类压力容器制造许可资质。 2. 实习概况 实习时间安排在2011-2012学年第二学期的第一周到第四周(2月13日-3月9日),实习单位为福建三钢集团三明化工有限责任公司。首先要进行实习动员,学习实习大纲和实习计划,明确实习目的与要求、方法和步骤,做好准备。到达实习地点后,在指导老师的指导下,熟悉工作环境和相关工作,按学校以及实习单位的要求完成有关实习任务。然后学习公司安全、消防知识以及合成氨各流程的工艺知识。

接着分别在第一造气、净化、合成和尿素4个车间轮流实习,实习期间做好实习记录,记载每天的实习内容、心得体会和存在的问题,完成实习作业,要求不仅对该车间及其相关车间的工作有“面”上的认识,同时在某一点上深入学习,积极与工人师傅交流,切实了解实习单位具体的生产实践与相关管理和销售环节,全面培养从事相关领域工作的能力。实习结束后,及时完成个人实习总结和实习报告,将本科学生实习手册上交学院,作为毕业实习考核的依据。、 3. 实习具体内容 氨的合成是人类从自然界制取含氮化合物的最重要方法,氨则是进一步合成含氮化合物的最重要原料,而含氮化合物在人们生活和工农业生产中都是必不可少的。实习期间主要学习合成氨造气、净化、合成3段工艺和尿素生产工艺,简单参观三聚氰胺车间。 1) 安全与消防知识教育 合成氨工厂生产存在高温、高压、易燃、易爆、有毒、有害,必须严格执行安全生产要求,确保实现期间的人身和生产安全。因此由工厂的安全工程师为我们做工厂劳动保护、安全技术、防火、防爆、防毒等内容的安全生产教育。 a) 注意着装,不能穿裙子,不能披散长发,不能穿高跟鞋。 b) 严禁接触阀门、仪表、按钮。 c) 工厂区禁止吸烟。

合成氨催化剂的生产和技术

合成氨催化剂的生产和技术 钱伯章 (金秋石化科技传播工作室,上海200127) 摘 要 介绍了世界合成氨催化剂发展历程、新开发的合成氨催化剂种类,同时评述了我国化肥催化剂研发和生产近况,对我国化肥催化剂性能进行了评价。 关键词 合成氨 催化剂 化肥 生产 技术 进展 收稿日期:2003-07-14。 作者简介:钱伯章,高级工程师,1963~1996年任职于中国石化上海高桥分公司,2001年创立金秋石化科技传播工作室,从事石油化工技术和经济信息调研和传播工作,获各种各级荣誉奖60余项,出版著作3部,发表论文500余篇。 1 合成氨催化剂的开发历程 世界需求氮肥(折氮量)将从2001年11060亿吨增加到2003年11112亿吨,世界氮肥(折氮量)能力现为11327亿吨/年(合成氨能力116亿吨/年)。 2005年前,全世界将有约6150Mt/a 合成氨装置投产。沙特阿拉伯化肥公司(SAFCO)(沙特基础工业公司子公司)兴建的世界最大单系列合成氨装置将于2005年投产,该装置能力为3kt/d(约110Mt/a),它比现有的最大装置大50%。另外,4kt/d 规模的装置也已完成初步设计。 现在,世界最大单系列新建装置为阿根廷Profertil 公司的2105kt/d 装置,采用海尔德-托普索技术。印度尼西亚博廷拥有2kt/d 装置。巴斯夫在比利时拥有2106kt/d 装置,由乌德公司建设。KBR 公司在特立尼达建有3套1185kt/d 装置,第4套装置正在建设中,第3套装置由加勒比氮肥公司运作,产能已达2kt/d,所有这几套装置都采用KBR 公司KAAP 技术(KB R 先进合成氨工艺)用于氨合成。 大型装置可实现经济规模,单系列装置规模翻番,可减少投资费用约20%,按照当今技术,放大到313kt/d 也是可行的。KBR 己设计了4kt/d 装置,除主转化器和氨转化器为并列设置外,所有其他设备均为单系列。 世界大约10%的能源用于合成氨生产,所以,合成氨工艺和催化剂的改进将对矿物燃料的消费量产生重大影响。 自上个世纪80年代后期以来,合成氨技术继续向前发展,并建设了规模更大的装置,每吨合成氨生产的能耗也降到了28GJ 。一种铁钴催化剂引入了ICI 公司的LC A 流程,LC A 工艺中合成内件 的操作压力为8MPa 。1992年,第一个无铁的氨合 成催化剂由凯洛格公司(现KB R 公司)应用于其KAAP(Kellogg 高级氨合成工艺)工艺中。这种钌催化剂以一种石墨化的碳作为载体。据称其活性是传统的熔铁催化剂的10~20倍。在反应中,这种催化剂具有不同的动力学特征,内件可在低于化学计量的氢/氮比及约9MPa 压力下操作。 自从Haber 和Mittasch 研究之后,几乎没有发现高活性的催化剂,因此熔铁催化剂仍是广泛应用的催化剂。它具有高内在活性,长使用寿命和高密度特点,除这些优点外,它最公认的优点是价格便宜。 尽管熔铁催化剂有很多优点,但人们一直在努力开发新型催化剂,并对无铁类催化剂产生了浓厚兴趣。上个世纪70~80,日本积极寻求开发钌基催化剂。继在ICI AMV 和LCA 工艺中推出铁-钴系催化剂后,在KAAP 工艺中采用的以碳为载体的钌催化剂推动了氨合成催化剂的发展。完全不含铁、不含钌的催化剂(如Cs/Co 3Mo 3N 催化剂),其活性介于熔铁类和钌系催化剂之间,活性低于钌系催化剂。Cs/Co 3Mo 3N 催化剂、KM1R 催化剂(托普索的熔铁催化剂)和以碳为载体的含钡6%、含钌617%的催化剂在氢/氮比各为3B 1和1B 1的工艺条件下作出的对比可以看出,Cs/Co 3Mo 3N 催化剂的动力学特征介于熔铁和钌基催化剂之间,但它在600e 空气中焚烧时可再生成

合成氨仿真实习报告

合成氨仿真实习报告 篇一:合成氨仿真实习报告 南京工业大学 城建学院 仿真实习报告书 刘皓 28 安全工程系 化学化工实验教学中心 XX年10月 合成仿真实习报告 30万吨合成氨装置模型照片 一、实习的目的 合成仿真实习是理论联系实际,应用和所学专业知识的一项重要环节,是培养我们动手能力和学习能力的一个重要手段。仿真实习是以仿真的实习模式,在既保证学生安全又能完美提供实习机会的情况下,学校给予我们的一次专业实践的机会。是我们在学习专业知识后进行实际运用的重要环节,它对培养我们的动手能力有很大的意义,同时也能使我们了解化工工艺的重点要素,仿真实习是我们走向工作岗位的必要前提。

二、实习要求 1.实习装置为合成氨生产仿真装置。要求了解并熟悉生产过程及控制,包括: 1)生产方法和原理,原料、催化剂及产品特性; 2)生产工艺流程(流程中设备、主副管线,过程操作和控制); 3)各工序工艺条件及控制:主要设备操作温度、压力和组成; 4)主要设备型式、结构; 5)主要设备及管线上的控制仪表及调节方法。 2.搜集信息途径 1)听讲座(拟安排工艺及设备、仿真装置及操作等讲座); 2)现场实习:熟悉工艺流程、设备、及仿真软件操作,熟悉仿真模型; 3)阅读实习指导书、流程图、设备图及其它文献资料。 三、实习内容 仿真实习的主要内容是:以河南化肥厂为原型的大型合成氨全流程仿真模型和以宁夏化工厂为原型的合成氨大工段DCS控制系统仿真软件。两者均以天然气为原料的合成氨工艺,通过仿真实习了解合成氨工艺原理与流程,掌握合成

氨生产中的主要参数和DCS控制系统的操作。 以下为东方仿真软件的合成氨工艺流程。 (1) 合成氨装置转化工段 1 概述 转化工段包括下列主要部分: 原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。 2 原料气脱硫 天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物。 加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。 在采用钴钼催化剂的条件下,主要进行如下反应: R-SH+H2=RH+H2S R-S-R’+2H2=RH+R’H+H2S C4H4S+4H2=C4H10+H2S RC=CR’+H2=RCH2-CH2R’

氨合成催化剂的发展与应用

氨合成催化剂的发展与应用 华桂义 (中石化南化公司合成氨部,江苏南京 210035)[摘要] 氨合成催化剂关系到氨合成的产率、能耗,它的发展与应用为我们所关注。 [关键词] 合成氨;催化剂;发展;应用 The development and application of Catalyst of Ammonia Synthesis Hua guiyi [Abstract] The Catalyst of synthetic ammonia is the key to synthetize ammonia. It is developing and applying that attracts us all the time. [Key words] Synthetic ammonia;Catalyst;Development;Application 一.引言 氨的合成已经经过了漫长的100多年,在这一百多年的历史中,人们一直在探索,如何能够降低能耗,尽可能多地生产出氨产品。 我们知道,氨合成反应中的氨产量是由下式的平衡状态决定的。 N 2+3H 2 2NH 3 H=-91.4KJ/mol 1.压力升高有利于平衡向右移动,但这需要消耗外功为代价,而且受设备的制约。 2.降低反应温度有利于平衡向右移动,但温度较低则反应速度很慢。 而由实验知道,在没有催化剂的条件下,反应达到平衡需要很长的时间,根本无法进行氨的工业化生产。因此,寻找和开发新型的氨合成催化剂并应用到工业生产中去是提高氨产量的关键所在。 二.氨合成催化剂的发展 1907年至1911年,哈伯(F·Haber)和米塔希(A·Mittasch)在德国的巴登苯胺纯碱公司(BASF)的支持下,进行了2万多次试验,3千多个不同的组成,几乎周期表中的每个元素都被试验过了。他们发现第六副族金属Cr、Mo、W,第七副族金属Mn、Te,第八族过渡金属Fe、Co、Ni、Os、U等都对氨有催化作用。 但工业上对氨合成催化剂的要求除了低温高活性外,还要求使用寿命长、抗毒性能

合成氨工艺总结

合成氨发展的三个典型特点:1. 生产规模大型化 2. 能量的合理利用。用过程余热自产蒸汽推动蒸汽机供动力,基本不用电能3. 高度自动化 Chp2. 原料气的制取 2.1 固体燃料气化法 氢气的主要来源有:气态烃类转化、固体燃料气化和重质烃类转化。 煤气化技术装置的分类:(1)固定床气化(2)流化床气化(3)气流床气化 固定床气化:UGI炉,鲁奇(Lurgi)炉和液态排渣的鲁奇炉 流化床气化:Winkler气化炉;Lurgi循环流化床气化炉;U-Gas灰团聚流化床气化炉 气流床气化:常压气流床粉煤气化即Koppers-Totzek(柯柏斯-托切克,简称K-T)炉;水煤浆加压气化,即Texaco(德士古)炉和Destec(现E-Gas)炉;粉煤加压气化,即SCGP(Shell 煤气化工艺)。 固定床间歇制气:采用间歇法造气时,空气和蒸汽交替通入煤气发生炉。通入空气的过程称为吹风,制得的煤气叫空气煤气;通入水蒸气的过程称为制气,制得的煤气叫水煤气;空气煤气与水煤气的混合物称为半水煤气。 间歇式制半水煤气流程:a.空气吹风b.上吹制气c.下吹制气d.二次上吹e.空气吹净 德士古气化装置包括煤浆制备、气化、灰水处理。煤浆气化采用德士古水煤浆加压气化的激冷流程。 气化工段关键设备 气化炉(参见p56图1-2-39) 气化炉分上下两部分,上部为燃烧室,燃烧室内安装三层耐火砖用来防止炉壁烧坏;下部为激冷室。从燃烧室出来的工艺气通过下降管进入激冷室,激冷室上部有激冷环,下部下降管浸入水中,工艺气在水中冷激。气化炉是德士古装置核心设备。 碳洗塔的作用是洗涤从气化炉来的粗煤气,除去粗煤气中的含杂的灰分以及可容水的反应副产物,保证干净、含灰分少的粗煤气送到下一工段进行使用。 碳洗塔下部主要作用是洗涤,碳洗塔合成气入口管线伸入水下,粗煤气进入碳洗塔水下后,经过塔内灰水的洗涤再进入上部;碳洗塔上部有塔盘,采用筛板结构,用来对合成气进行可溶性气体以及灰分进行吸收。 碳洗塔是德士古气化装置中,一个非常重要的中间过程装置。

合成氨催化剂的研究进展

合成氨催化剂的研究进展 摘要:近20多年来,随着英国BP公司钌基催化剂的发明和我国亚铁基熔铁催化剂体系的创立,标志着合成氨催化剂进入了一个新的发展时期,本文主要介绍通过合成法合成的几种催化剂的研究进展。 关键字:合成氨;催化剂;合成法 Abstract:Over the past 20 years, with the invention of the British BP ruthenium catalysts and creation of ferrous base molten iron catalyst system in our country, marked the ammonia synthesis catalyst has entered a new period of development, this paper mainly introduces through the several means of catalyst research progress of synthesis method of synthesis. Key Words: Ammonia; The catalyst; synthesis 前言 合成氨指由氮和氢气在高温高压和催化剂存在下直接合成的氨。合成氨工业需要较低温度和压力下具有较高活性的催化剂。90多年来,世界各国从未停止过合成氢催化剂的研究与开发。目前,工业催化剂的催化效率在高温下已达90%以上,接近平衡氨浓度(因压力而异)。例如,在15 a MP及475℃下,A301催化剂的催化效率接近100%。要提高催化剂的活性,就只有降低反应温度.另一方面,工业合成氨的单程转化率只有15%~25%,大部分气体需要循环,从而增加了动力消耗。为了提高单程转化率,也只有降低反应温度才有可能。因此,合成氨催化剂研究总的发展趋势,就是开发低温高活性的新型催化剂,降低反应温度,提高氨的平衡转化率和单程转化率或实现低压合成氨。而传统的催化剂是以亚铁基传统催化剂为基础发展的,但是工业效率一般不高,而现代工业一般是以合成催化剂来实现的,相对于传统催化剂,合成催化剂的效率要高很多。 几种合成氨的合成催化剂及催化机理 热力学计算表明,低温、高压对合成氨反应是有利的,但无催化剂时,反应的活化能很高,反应几乎不发生。当采用铁催化剂时,由于改变了反应历程,降低了反应的活化能,使反应以显著的速率进行。目前认为,合成氨反应的一种可能机理,首先是氮分子在铁催化剂表面上进行化学吸附,使氮原子间的化学键减弱。接着是化学吸附的氢原子不断地跟表面上的氮分子作用,在催化剂表面上逐

氨合成催化剂(一)

氨合成催化剂(一) 2003年2月28日Nitrogen & Methanol 在上一世纪初期,巴斯夫的Haber、Bosch 等人开始研究利用催化剂把气态的H2和N2合成为氨,其中铂石棉研究是一显著的起点;尽管后来证明并没有多大的效果。其后,人们对数千种其它具有潜在催化活性的组分如第Ⅷ族金属钴、锇以及其它的过渡金属如钨、钼及锰、稀土金属如铈甚至铀等进行了研究。 正如早期专利中所揭示的那样,巴斯夫的研究者首次形成了“助剂”(他们的术语)的概念,他们也能鉴别得出毒性物质如硫、磷,较重的第Ⅴ、Ⅵ族元素以及易熔化可还原的金属如铅、锡、锌等对催化剂性能造成的影响,。 在1913年,Mittasch提出了第一个高活性钌系氨合成催化剂生产的专利申请,即采用以钌为助剂、用钾和钌的碱性溶液来浸渍载体。这种催化剂最终应用在两个商业化的工厂,它们分别于1913-1915年建立在Oppau和Leipzig两个地区。后来,这些工厂进行了装置扩大和改造,这种改良工艺使得巴斯夫在多年以后一直维持着世界第一氨生产商的地位。 尽管在早期年代,巴斯夫的竞争者一直致力于可替代的其它的催化剂的开发,目的在于寻求真正地改进或避开已有专利保护的范围。就其成本而言,没有一种催化剂能取代熔铁催化剂。例如,在1918年,美国的第一个利用以钠为助剂的钴催化剂工厂,开车时并没有取得成功。这样,Mittasch型熔铁催化剂很快维持了它的工业地位。与那些竞争对手相比,它的成分比较便宜,如果使用正确将维持较长的使用寿命。事实上,在合成氨厂,它是使用寿命最长的催化剂。很多年以来,尽管在催化剂的物理性能和生产技术方面也有一些改进,但是在合成气体部分,从改进催化剂、工艺技术及操作实践中得到的收获要比改变氨合成催化剂的化学特性的收获多得多。 改变化学特性的动机在于最近时期日益增长的技术-经济方面的因素,促使研究者们希望能设计规模更大、能量利用更充分的合成氨厂,而并不是由于铁系催化剂的可靠性存在缺陷。 氨合成内件技术早期由欧洲的Fauser开发而成,考虑到当时的合成内件一般设计压力为750-1000巴,Fauser开发出来的工艺可在100巴甚至更低压力下操作,所用的催化剂以氰化铁为基础,然而,在那时,这种开发走进了死胡同。

合成氨仿真实习报告

氨合成仿真实习报告 一、实习目的及意义 仿真实习是毕业实习计划的组成部分,通过实习使学生了解化工生产一般特点、规律和工艺参数的控制,获得化工生产实践知识,培养运用化工专业理论知识,分析和解决实际问题的能力,为今后毕业论文(设计)和所从事的化工实际工作打下良好的实践基础。 二、合成氨工艺原理与流程 (1) 合成氨装置转化工段 1 概述 转化工段包括下列主要部分: 原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。 2 原料气脱硫 天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物。 加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。 在采用钴钼催化剂的条件下,主要进行如下反应: R-SH+H2=RH+H2S R-S-R’+2H2=RH+R’H+H2S C 4H 4 S+4H 2 =C 4 H 10 +H 2 S RC=CR’+H 2=RCH 2 -CH 2 R’ 氧化锌是一种内表面积颇大,硫容较高的接触反应型脱硫剂。除噻吩及其衍生物外,脱除硫化氢及各种有机硫化物的能力极高,可将出口气中硫含量降至0.1PPm以下。 氧化锌脱硫反应:ZnO+H 2S=ZnS+H 2 O 原料天然气在原料气预热器(141-C)中被低压蒸汽预热后,进入活性碳脱硫槽(101-DA、102-DA一用一备),进行初脱硫后,经压缩机(102-J)加压。在一段炉对流段低温段加热到230℃左右与103-J段来的氢混合后进入Co-Mo加氢和氧化锌脱硫槽(108-D)终脱硫后,天然气中的总硫≤0.1ppm。

合成氨发展史及未来的发展方向

合成氨 发展史及未来的发展方向

合成氨发展史及未来的发展方向 各位同事工友们,下午好: 我今天演讲的题目就是“合成氨发展史及未来的发展方向”,就是一种科普性质的讲义,作为一个搞氨合成的专业技术人员来说,知道合成氨的发展历史与未来的发展方向,对把握我们公司的发展与了解我们的现状,很有必要与意义。 一、为什么叫合成氨 我们把氨叫做合成氨,为什么在氨的前面加了“合成”两个字,我们知道氨的分子式就是NH3,由于氨的不活泼性,使得人们直到19世纪晚期仍然普遍认为将氮与氨直接合成氨就是不可能的,20世纪初,虽然有人借助催化剂的作用合成了氨,但仍然认为无法工业化,因为确实遇到了诸如可供实际工业使用的催化剂难以找到、高温高压能够抵抗氢腐蚀的材料无法解决等问题,可以认为合成氨的技术开发历程阻力重重,举步维艰,经过千万次的不懈努力,才使得世界上第一座工业规模的氨系统于1913年在德国建成投产。从此开创了氮肥工业的新纪元。为了纪念氨开发的艰难,特在氨前面加“合成”两个字。 二、合成氨在国民经济中的地位与作用 1、用氨制造氮肥。我们知道土壤所缺的养份主要就是氮磷、钾。从解放前直至改革开放初期,中国的粮食产量一直不能自给自足,主要原因就是中国几乎所有的土壤都需补氮。

由于合成氨工业不能满足农业施肥的需要,土壤补氮不足,农作物只能在低产水平上徘徊(300斤过黄河,400斤跨长江),为了满足粮食生产的需要,我国一直把发展化肥工业作为整个化学工业的首要任务,中国要以全世界7%的耕地来养活全世界22%的人口。经过60多年的发展,我国合成氨制造与氮肥产量已居世界首位,合成氨作为制造氮肥的主要原料,为粮食增产、农民增收、社会稳定立下了汗马功劳。 2、氨的工业用途 氨就是氮的一种固定形式,除少数场合直接使用外,更主要的就是使用其中的氮与其她物质化合而成各种不同的含氮化合物,然后再用于各工业领域。 虽然氮分子只由两个氮原子组成,但就是氮原子可以形成三个键,如果这三个键都与氢原子相联,就形成了氨(NH3),将氨的氢原子以各种不同的化学物质取代,就会的到不同的衍生物。 氨中的氢原子被碳(C)取代后,由于碳的加入,氨由无机物而变为有机物---胺,按取代氢原子数目多少而依次排列为伯胺、仲胺与叔胺,这些都就是重要的化工原料。在特殊情况下,氮还可以产生第四个键,如也被碳(C)取代,即成为季胺,这就是构成人体的重要组成部分:胆胺及胆碱的基础。 氨基与苯环相联,就构成苯胺,这就是苯胺系如染料的基础原料,同时也就是重要的有机化工原料,例如聚氨脂塑料以

合成氨复习题答案

合成氨复习思考题 一、选择题 1、使用不同催化剂,甲烷蒸气转化反应速度是(B )。 A、相同 B、不相同 2、脱碳工序采用的苯菲尔法属于(B )。 A、物理吸收; B、化学吸收; C、水吸收 3、合成氨原料气的脱硫采用氧化锌法脱有机硫要求的温度是(A )。 A、较高, B、较低, C、无所谓。 4、一氧化碳随变换的进行其最适宜温度(B )。 A、不断升高, B、不断降低, C、没有变化 { 5、合成氨生产中甲烷蒸汽转化从化学平衡角度看,应尽可能在什么条件进行( B )。 A、低温. 低压. 低水碳比 B、高温. 低压. 高水碳比 C、低温. 低压. 高水碳比。 6、甲烷蒸汽转化防止析碳的主要措施是( C )。 A、升温, B、增压, C、适当提高蒸汽用量(水碳比)。 7、合成氨原料气净化中少量CO的脱除反应称为( B )。 A、氧化反应, B.甲烷化反应, C.裂解反应。 8、热钾碱法脱碳的过程分为吸收和再生过程,其吸收过程温度应该在( B )。 A、较低的温度下进行 B、较高的温度下进行 C、无所谓。 10、下列反应方程式不是二段转化反应的是( D )。 】 +1/2O2=H2O(g)+Q +H2O(g)=CO+3H2-Q + O2 =2CO2 +Q +4H2=CH4+2H2O(g)+Q 11、甲烷蒸汽转化是在加压下的( C )反应。 A. 强放热B.弱放热C.强吸热D.弱吸热 12、一段炉转化管外部传热方式为(B ),管内传热方式为( A )。 A.强制对流给热 B. 辐射传热 13、一段炉催化剂中毒后,会引起炉内温度( B )。 A.下降 B 上升 C 不变

14、热保护催化剂一般放在二段炉的( C ) A. 下部 B. 中部 C. 上部 《 15、一般情况下,更换催化剂的主要原因是( A、B ). A. 活性下降 B. 阻力上升 C. 年限 16、脱硫工序中,最难脱除的硫化物是( D ). A.硫化氢 B. 硫醇 C. 硫醚 D. 噻吩 17、钴钼加氢催化剂中真正起活性作用的是( C ). A. CoO B. MoO3 C. MoS2 D. Co9S8 18、贫液循环量越高,脱碳吸收塔出口残余CO2含量( A ). A. 越低 B. 越高 C. 不变 19、下列物质中不属于苯菲尔溶液的组成成分是(C ) A、K2CO3 B、二乙醇胺 C、KHCO3 D、V2O5 》 20、下列关于氨合成催化剂的描述,哪一项是正确的( A )。 A.温度越高,内表面利用率越小B.氨含量越大,内表面利用率越小C.催化剂粒度越大,内表面利用率越大D.催化剂粒度越小,流动阻力越小21、氨合成时,提高压力,对氨合成反应( A )。 A.平衡和速率都有利B.平衡有利,速率不利 C.平衡不利,速率有利D.平衡和速率都不利 22、下列不属于甲烷转化催化剂的组成是(D) A.氧化镍 B. 氧化铝 C. 氧化镁 D. 氧化铁 23、甲烷化催化剂还原反应为( B )。 A. 强放热B.弱放热C.强吸热D.弱吸热 · 24、在甲烷化反应中,每1%CO反应温升大约为( B )℃。 A. 59 B. 72 C. 159 25、在工业条件下进行的甲烷转化反应为( B )。 A. 外扩散控制 B. 内扩散控制

合成氨工厂实习报告

实习报告 1.实习单位介绍 山钟情,水毓秀,三明的山水和人文名闻海西。位于闽西北部的三明化工有限责任公司是福建省老字号国企,成立于1958年,2000年10月经省政府批准,从工厂制改为公司制。2007年1月18日,经省政府决定整体划入福建省三钢(集团)有限责任公司,跨越发展,风鹏正举。公司是福建省最大的化肥生产企业,是以生产基本化工原料和化肥为主的国家大型一档企业。企业具有强烈的使命感和厚重的文化底蕴,“斑竹”和“聚星”是公司的著名商标。公司主要装置能力:年产总氨32万吨、加工尿素45万吨、三聚氰胺1.5万吨、精甲醇15万吨、甲醛5万吨、年发电2.5亿千瓦时、供热310万吉焦耳、年机械加工能力2000吨。具有一、二类压力容器制造许可资质。 2.实习概况 实习时间安排在2011-2012学年第二学期的第一周到第四周(2月13日-3月9日),实习单位为福建三钢集团三明化工有限责任公司。首先要进行实习动员,学习实习大纲和实习计划,明确实习目的与要求、方法和步骤,做好准备。到达实习地点后,在指导老师的指导下,熟悉工作环境和相关工作,按学校以及实习单位的要求完成有关实习任务。然后学习公司安全、消防知识以及合成氨各流程的工艺知识。接着分别在第一造气、净化、合成和尿素4个车间轮流实习,实习期间做好实习记录,记载每天的实习内容、心得体会和存在的问题,完成实习作业,要求不仅对该车间及其相关车间的工作有“面”上的认识,同时在某一点上深入学习,积极与工人师傅交流,切实了解实习单位具体的生产实践与相关管理和销售环节,全面培养从事相关领域工作的能力。实习结束后,及时完成个人实习总结和实习报告,将本科学生实习手册上交学院,作为毕业实习考核的依据。、 3.实习具体内容 氨的合成是人类从自然界制取含氮化合物的最重要方法,氨则是进一步合成含氮化合物的最重要原料,而含氮化合物在人们生活和工农业生产中都是必不可少的。实习期间主要学习合成氨造气、净化、合成3段工艺和尿素生产工艺,简单参观三聚氰胺车间。 1)安全与消防知识教育 合成氨工厂生产存在高温、高压、易燃、易爆、有毒、有害,必须严格执行安全生产要求,确保实现期间的人身和生产安全。因此由工厂的安全工程师为我们做工厂劳动保护、安全技术、

合成氨催化剂

合成氨催化剂的研究 摘要:合成氨是重要的化工原料, 合成氨工业在国民经济中占有重要地位, 因此合成氨工艺和催化剂的改进对降低能耗、提高经济效益有巨大影响。文章对合成氨催化剂的研究进展进行了评述, 提出合成氨催化剂的发展建议。目前,铁是合成氨工业中广泛应用的催化剂,它具有高内在活性,长使用寿命和高密度特点,活性温度在500℃左右,尽管铁催化剂有许多优点,但人们一直在努力开发新型催化剂。 关键词: 合成氨; 催化剂; 传统熔铁催化剂;钌基催化剂研究进展 合成氨是重要的化工原料, 主要用来生产化肥、硝酸、铵盐、纯碱等。作为化学工业的支柱产业之一,合成氨工业在国民经济中占有重要地位, 与此同时合成氨也是一个大吨位、高能耗、低效益的产业。因而, 合成氨工艺和催化剂的改进将对降低能耗, 提高经济效益产生巨大的影响。开发低温高活性的新型催化剂, 降低反应温度, 提高氨的平衡转化率和单程转化率或实现低压合成氨, 一直是合成氨工业的追逐目标。钌基催化剂的发明、铁基催化剂体系的创立和三元氮化物催化剂的问世无不凝聚了几代科研工作者的心血。 钌基催化剂的发明、铁基催化剂体系的创立和三元氮化物催化剂的问世无不凝聚了几代科研工作者的心血。氨合成反应是一个可逆放热且气体体积缩小的过程,从热力学角度考虑,要达到或接近平衡转化率,催化反应应该在较低的温度和较高的压力下进行。然而温度的降低会使反应速率下降,压力的提高又会使能耗大大增加。从20世纪初Harber等开发出合成氨铁催化剂以来,铁催化剂在氨合成中的应用就越来越广泛。该催化剂具有价格低廉、稳定性好等特点,一般采用熔融法制备,以磁铁矿和铁为主要原料,添加各类助剂化合物,经电阻炉熔炼后,再冷却、破碎筛分成不同颗粒的铁催化剂。研究表明,最好的熔铁催化剂应该只有一种铁氧化物(单相性原理),任何两种铁氧化物的混杂都会降低催化活性,而铁氧化物氨合成的活性次序为:Fe1-xO>Fe3O4>Fe2O3>混合氧化物。实际应用中,由于铁催化剂起活温度比较高,大型氨厂通常是在400℃~500℃和20.0MPa~30.0MPa条件下使用,在氨合成生产过程中,对设备的要求也比较苛刻,能耗巨大。而压力的降低,不仅可降低压缩气体能耗,还可采用廉价易得的机械和设备,使投资和操作费用降低。因此,开发在低温和较低压力下仍具有较高活性的新型氨合成催化剂,就成为合成氨催化剂研究的关键。目前研究开发的氨合成钌(Ru)基催化剂,由于在低温低压等温和的条件下具有较高的活性,被誉为第二代氨合成催化剂。

氨合成催化剂(三)

氨合成催化剂(三) 2003年2月28日Nitrogen & Methanol 大厂中钌系与铁系催化剂的比较 表1(略)以一假设的2,000t/d的合成氨厂为例,针对传统的熔铁催化剂与第一段采用熔铁催化剂而其余段采用钌系催化剂的一些特征作了对比说明。 从表可看出:在转化塔进口的氢氮摩尔比不同,尽管铁系类氢氮的化学计量比例为3.0,而当内件上采用钌系催化剂时,氢氮计量比例稍低于2.1。当利用活性高的钌催化剂时,转化塔中所需的催化剂容量较少。但在节能方面并没有优越性。 当内件在90巴压力下运转时,合成压缩机可采用单套机器,这是有利的一面,但不利的是由于产品中氨分压较低,冷却困难加大,这使得冷却压缩机的负荷也加大。 从合成和冷却压缩机的轴功率上来看,钌系催化剂在节能方面并没有多少优点,同时,由于压力的差别,钌系催化剂内件的投资费用高于铁系内件。随着工业生产规模需求的不断提高,建立大厂是必要的。为了减小设备、管件的大小,在合成内件上的压力可能提高,例如需达到200巴。 新近开发的Ru-BN催化剂完全适应这些条件,且在加氢反应中完全稳定,而以石墨为载体的催化剂在较高的氢分压气氛下问题则比较严重。尽管存在这么多的优点,但居高不下的钌价格使得钌系催化剂内件所需偿还周期较长,以致于不能与铁系催化剂内件相竞争,特别是目前的趋势已显示所建的大厂一般都选择原料气来源方便的地区。尽管目前钌的价格降了一点,但仍然很高。图3(略)给出了钌在1992-2001年之间的价格变化趋势。 新的氨合成催化剂开发的可能性 在过去的两年内,研究者们利用oretical模型描述了过渡金属氨合成催化剂的催化活性,从研究来看,氮的约束能对于催化剂的性能有着决定性的影响。这种模型准确地描述了已知未促进的、促进的及双金属性催化剂的催化活性。进一步来说,通过这种模型,可很容易评价各种操作条件(温度、压力等)对催化剂活性的影响。在特定的反应条件下,可以估算出某个给定催化剂的氮约束能。举一例子来说明这个问题,图4(略)描述了在不同氨分压条件下,过渡金属催化剂的活性趋势。横坐标为氮对催化剂表面的约束能,纵坐标为催化剂的交叉频率。图中标出了一些金属催化剂,其它未标出的可根据其在元素周期表中的位置采用内插法和外插法得到它在图中的位置。从图

合成氨的工业催化简介

吉林化工学院 工业催化学科知识 文献综 述 课题题目:合成氨的催化工业简介 班级:化工0801学号:08110119姓名:张迪日期:2010.12.1

合成氨的催化工业简介 合成氨 合成氨指由氮和氢在高温高压和催化剂存在下直接合成的氨。别名:氨气。分子式NH3英文名:syntheticammonia。世界上的氨除少量从焦炉气中回收副产外,绝大部分是合成的氨。合成氨主要用作化肥、冷冻剂和化工原料。 一、合成氨-基本简介 生产合成氨的主要原料有天然气、石脑油、重质油和煤(或焦炭)等。 ①天然气制氨。天然气先经脱硫,然后通过二次转化,再分别经过一氧化碳变换、二氧化碳脱除等工序,得到的氮氢混合气,其中尚含有一氧化碳和二氧化碳约0.1%~0.3%(体积),经甲烷化作用除去后,制得氢氮摩尔比为3的纯净气,经压缩机压缩而进入氨合成回路,制得产品氨。以石脑油为原料的合成氨生产流程与此流程相似。 ②重质油制氨。重质油包括各种深度加工所得的渣油,可用部分氧化法制得合成氨原料气,生产过程比天然气蒸气转化法简单,但需要有空气分离装置。空气分离装置制得的氧用于重质油气化,氮作为氨合成原料外,液态氮还用作脱除一氧化碳、甲烷及氩的洗涤剂。 ③煤(焦炭)制氨。随着石油化工和天然气化工的发展,以煤(焦炭)为原料制取氨的方式在世界上已很少采用。 用途氨主要用于制造氮肥和复合肥料,氨作为工业原料和氨化饲料,用量约占世界产量的12%。硝酸、各种含氮的无机盐及有机中间体、磺胺药、聚氨酯、聚酰胺纤维和丁腈橡胶等都需直接以氨为原料。液

氨常用作制冷剂。 贮运商品氨中有一部分是以液态由制造厂运往外地。此外,为保证制造厂内合成氨和氨加工车间之间的供需平衡,防止因短期事故而停产,需设置液氨库。液氨库根据容量大小不同,有不冷冻、半冷冻和全冷冻三种类型。液氨的运输方式有海运、驳船运、管道运、槽车运、卡车运。 二、合成氨-构成发现 德国化学家哈伯(F.Haber,1868-1934)从1902年开始研究由氮气和氢气直接合成氨。于1908年申请专利,即“循环法”,在此基础上,他继续研究,于1909年改进了合成,氨的含量达到6%以上。这是目前工业普遍采用的直接合成法。反应过程中为解决氢气和氮气合成转化率低的问题,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。 合成氨反应式如下:N2+3H2≒2NH3(该反应为可逆反应,等号上反应条件为:“高温高压”,下为:“催化剂”) 合成氨的主要原料可分为固体原料、液体原料和气体原料。经过近百年的发展,合成氨技术趋于成熟,形成了一大批各有特色的工艺流程,但都是由三个基本部分组成,即原料气制备过程、净化过程以及氨合成过程。 氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、氯化铵以及各种含氮复合肥,都是以氨为原料的。合成氨是大宗化工

相关文档