文档库 最新最全的文档下载
当前位置:文档库 › 1929年诺贝尔化学奖:糖发酵与酶催化

1929年诺贝尔化学奖:糖发酵与酶催化

1929年诺贝尔化学奖:糖发酵与酶催化

【1929年诺贝尔化学奖】

糖发酵与酶催化

湖北省石首市文峰中学刘涛434400

1929年诺贝尔化学奖授予英国生物化学家亚瑟·哈登和瑞典生物化学家汉斯·冯·奥伊勒-凯尔平,以表彰他们在酶化学方面所做出重大的贡献。

(亚瑟·哈登)(汉斯·冯·奥伊勒-凯尔平)

哈登在发酵机理的研究上做出了重大贡献,从事糖发酵研究有20多年,当他对可以在没有活细胞的条件下进行酒精发酵产生浓厚的兴趣,从文学编辑转向化学研究,1897年他加入了詹纳预防医学并开始研究酒精发酵,研究糖的发酵作用及其与酶的关系。1905年,哈登的研究使人们对一切生物体内的中间代谢过程有了深一步的了解。促使化学家逐步认识到下述事实:磷酸盐基团在生物化学的每一方面都起着基本的作用。他还开创性地研究了细菌的酶及代谢。1911年与罗斯科合作出版了《醇类发酵》一书。现今,中间代谢是生物化学中最活跃和最重要的分支之一。

奥伊勒-凯尔平的主要贡献是阐明了糖发酵的过程和酶在其中的作用,特别是提示了辅酶的存在和作用机理。并指出酶分子中除蛋白质外,还有非蛋白质即辅酶,并用实验方法提纯出酒化酶的辅酶,证明它是糖与磷酸生成的特殊脂。他系统地把发酵过程、酶化学及其他化学的规律综合在一起,1910年出版他的著作《酶化学》,对辅酶的研究促进了酶化学得到进一步发展。

奥伊勒-凯尔平还从酶出发,研究了医学和遗传学问题,发现酶抑制剂和酶的结合能生成十分稳定的络合物,这种络合物不仅可以减低或破坏酶的活力,还可以降低酶促反应的速度。这一发现对医学、工农业生产与科学实验都有十分重要的科研意义。

近5年诺贝尔生理学或医学奖、化学奖总结

大村智是日本的微生物学家,他专注于一个细菌群落——生活在土壤中的霉菌,这种菌类会产生大量抗菌活性剂(包括1952年的诺贝尔奖获得者塞尔曼·沃克斯曼发现的链霉素)。大村智教授用独特的技巧发展起大规模培养和表征这些细菌的方法,并从土壤样本中分离出新的链霉菌菌株,还成功地在实验室中将它们培养出来。从数千个不同的培养皿中,他选出大约50个最有希望的菌株,并进一步分析它们对付有害微生物的活性。 威廉·坎贝尔在美国从事寄生虫生物学研究,他获得了大村智的链霉菌培养菌株并继续研究它们的功效。坎贝尔的工作表明,一个培养菌株中的成分可显著地防止家养农场动物受到寄生虫的感染。生物活性剂的纯化名称为阿维菌素,随后经化学改性将之发展成一种叫做伊维菌素的更有效的化合物。此后对伊维菌素在感染寄生虫患者中的人体测试结果显示,它可有效杀死寄生虫幼虫(微丝)。大村智和坎贝尔共同发现了这样一类新的具有超强疗效的抗寄生虫药物。 疟疾的传统治法是使用奎宁,但是其治愈成功率在逐渐下降。上世纪60年代末,根除疟疾的大量努力都失败了,这种疾病的发病率有上升的趋势。在那个时候,中国的屠呦呦转向开发传统中药对抗疟疾的新疗法。她从大量中草药中选取对抗疟疾感染,青蒿成为备选对象,但是结果却与预期的并不一致,屠呦呦重新开始查找古典医书,并发现了引导她成功从青蒿中提取活性成分的线索。屠呦呦首先证明了这种后来被称为“青蒿素”的成分能够高效治愈感染疟疾寄生虫的动物和人类。青蒿素代表了一类新型抗疟疾制剂,能够在发病初期快速杀死疟疾寄生虫,并展现了在治疗严重疟疾上前所未有的功效。 阿维菌素、青蒿素保障全人类健康 阿维菌素和青蒿素的发现,从根本上改变了寄生虫疾病的治疗方法。阿维菌素的衍生物伊维菌素在世界各地获得很好的使用,它能有效对抗各种寄生虫,不仅副作用有限,还免费在全球发放。伊维菌素改善了数以百万计的河盲症和淋巴丝虫病患者的健康状况,为世界最贫困地区带来福祉。它的治疗效果如此巨大,以至于这类疾病已经濒临绝迹,这将是人类医学史上的一大壮举。 此外,每年有近2亿人感染疟疾,青蒿素已经用于世界各个疟疾肆虐之地。当它被用于组合疗法时,估计降低疟疾总体死亡率20%以上,在儿童中的治愈率更是高达30%。仅在非洲,青蒿素就能每年挽救10多万个生命。 阿维菌素和青蒿素革命性地治愈受到寄生虫疾病危害的大量患者,坎贝尔、大村智和屠呦呦彻底转变了治疗寄生虫疾病的方法,他们的科学成就对全人类的健康具有不可估量的影响力。

2009诺贝尔化学奖

美国和以色列科学家获得2009诺贝尔化学奖 人民网斯德哥尔摩10月7日电(记者陈雪霏)美籍印度科学家拉马克利什南(Venkatraman Ramakrishnan),美国科学家斯太茨(Thomas A. Steitz)和以色列科学家雍纳斯(Ada E. Yonath)因其对核糖体的结构和作用的研究而获得2009年度诺贝尔化学奖。 瑞典皇家科学院7日在斯德哥尔摩宣布,他们获奖的主要原因是他们对生命核心过程的一项研究:核糖体将DNA信息转变为生命。核糖体生产蛋白质,来控制所有生物的化学成分。核糖体对生命至关重要,他们是新抗生素的主要目标。 虽然他们三位科学家独立工作,有时甚至是竞争状态,但他们都用X光晶体学展示了核糖体的结构以及他们是怎样在原子水平上发挥作用的。 诺奖评委解释说,这项研究可以很快在实际中得到应用。今天的抗生素药品治疗很多疾病,主要是通过阻止核糖体细菌发挥作用。没有发挥作用的核糖体,细菌就不能生存。 拉马克利什南今年56岁,出生在印度,但是美国人,目前是英国剑桥大学分子生物实验室结构研究课题的领头人。 68岁的斯太茨在哈佛大学获得博士学位,目前是休斯医学院的教授和耶鲁大学的研究人员。70岁的雍纳斯是1968年在魏则曼科学研究所获得博士学位,后在这里任教授。她是第三位获得诺贝尔化学奖的女科学家,是45年来的第一位女科学家。 她在新闻发布会上的电话采访中表达了她听到这一消息时的心情,“非常高兴,也充满感谢”。诺奖奖金共一千万瑞朗,合141万美元。 2009年诺贝尔化学奖得主小传 瑞典皇家科学院7日宣布,文卡特拉曼·拉马克里希南、托马斯·施泰茨和阿达·约纳特3位科学家共同获得今年的诺贝尔化学奖。 拉马克里希南1952年出生于印度金奈,目前持有美国国籍。拉马克里希南1971年在印度巴罗达大学获物理学学士学位,1976年在美国俄亥俄大学获物理学博士学位,1976年至1978年在加州大学圣迭哥分校获生物学研究生学位,1978年至1982年在耶鲁大学化学系做博士后,1982年至1999年曾先后在美国橡树岭国家实验室和布鲁克黑文国家实验室等工作,1999年至今在英国剑桥大学MRC分子生物学实验室工作。 施泰茨1940年出生于美国威斯康星州,1966年在哈佛大学获分子生物学和生物化学博士学位,1967年至1970年在英国剑桥大学MRC分子生物学实验室做博士后,1970年至今在耶鲁大学工作。 约纳特1939年出生于耶路撒冷,1962年在希伯来大学获学士学位,1964年

第二章 诺贝尔化学奖简介

诺贝尔化学奖总表 从化学诺贝尔奖看化学学科的发展 2004年诺贝尔化学奖 诺贝尔化学奖总表1901-1910 1901年 ?荷兰雅克布斯·范特霍夫 o发现了化学动力学法则和溶液渗透压 ?德国赫尔曼·费歇尔 o合成了糖类和嘌呤衍生物 ?瑞典阿累尼乌斯 o提出了电离理论,促进了化学的发展。

?英国威廉·拉姆齐爵士 o发现了空气中的稀有气体元素并确定他们在周期表里的位置。 ?德国阿道夫·拜耳 o对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展。 ?法国穆瓦桑 o研究并分离了氟元素,并且使用了后来以他名字命名的电炉。 ?德国爱德华·毕希纳 o对酶及无细胞发酵等生化反应的研究。 ?新西兰欧内斯特·卢瑟福爵士 o对元素的蜕变以及放射化学的研究。

?德国威廉·奥斯特瓦尔德 o对催化作用、化学平衡以及化学反应速率的研究。 ?德国奥托·瓦拉赫: o在脂环类化合物领域的开创性工作促进了有机化学和化学工业的发展的研究。 1911-1920 1911年 ?法国玛丽亚·居里 o发现了镭和钋,提纯镭并研究镭的性质。 ?法国格利雅 o发明了格氏试剂,促进了有机化学的发展。 ?法国保罗·萨巴蒂埃 o发明了有机化合物的催化加氢的方法,促进了有机化学的发展。 ?瑞士阿尔弗雷德·沃纳

o对分子内原子成键的研究,开创了无机化学研究的新领域。 ?美国西奥多·理查兹 o精确测量了大量元素的原子量。 ?德国理查德·威尔施泰特 o对植物色素的研究,特别是对叶绿素的研究。 ?德国弗里茨·哈伯 o对单质合成氨的研究。 ?德国沃尔特·能斯特 o对热力学的研究。 1921-1930 1921年 ?英国弗雷德里克·索迪

历届诺贝尔化学奖获得者名单及贡献

历届诺贝尔化学奖获得者名单及贡献 1901-荷兰科学家范托霍夫因化学动力学和渗透压定律获诺贝尔化学奖。 1902-德国科学家费雪因合成嘌呤及其衍生物多肽获诺贝尔化学奖。 1903-瑞典科学家阿伦纽斯因电解质溶液电离解理论获诺贝尔化学奖。 1904-英国科学家拉姆赛因发现六种惰性所体,并确定它们在元素周期表中的位置获得诺贝尔化学奖。 1905-德国科学家拜耳因研究有机染料及芳香剂等有机化合物获得诺贝尔化学奖。 1906-法国科学家穆瓦桑因分离元素氟、发明穆瓦桑熔炉获得诺贝尔化学奖。 1907-德国科学家毕希纳因发现无细胞发酵获诺贝尔化学奖。 1908-英国科学家卢瑟福因研究元素的蜕变和放射化学获诺贝尔化学奖。 1909-德国科学家奥斯特瓦尔德因催化、化学平衡和反应速度方面的开创性工作获诺贝尔化学奖。 1910-德国科学家瓦拉赫因脂环族化合作用方面的开创性工作获诺贝尔化学奖。 1911-法国科学家玛丽·居里(居里夫人)因发现镭和钋,并分离出镭获诺贝尔化学奖。 1912-德国科学家格利雅因发现有机氢化物的格利雅试剂法、法国科学家萨巴蒂埃因研究金属催化加氢在有机化合成中的应用而共同获得诺贝尔化学奖。 1913-瑞士科学家韦尔纳因分子中原子键合方面的作用获诺贝尔化学奖。 1914-美国科学家理查兹因精确测定若干种元素的原子量获诺贝尔化学奖。 1915-德国科学家威尔泰特因对叶绿素化学结构的研究获诺贝尔化学奖。

1916-1917-1918-德国科学家哈伯因氨的合成获诺贝尔化学奖。 1919-1920-德国科学家能斯脱因发现热力学第三定律获诺贝尔化学奖。 (1921年补发)1921-英国科学家索迪因研究放射化学、同位素的存在和性质获诺贝尔化学奖。 1922-英国科学家阿斯顿因用质谱仪发现多种同位素并发现原子获诺贝尔化学奖。 1923-奥地利科学家普雷格尔因有机物的微量分析法获诺贝尔化学奖。 1924-1925-奥地利科学家席格蒙迪因阐明胶体溶液的复相性质获诺贝尔化学奖。 1926-瑞典科学家斯韦德堡因发明高速离心机并用于高分散胶体物质的研究获诺贝尔化学奖。 1927-德国科学家维兰德因发现胆酸及其化学结构获诺贝尔化学奖。 1928-德国科学家温道斯因研究丙醇及其维生素的关系获诺贝尔化学奖。 1929-英国科学家哈登因有关糖的发酵和酶在发酵中作用研究、瑞典科学家奥伊勒歇尔平因有关糖的发酵和酶在发酵中作用而共同获得诺贝尔化学奖。 1930-德国科学家费歇尔因研究血红素和叶绿素,合成血红素获诺贝尔化学奖。 1931-德国科学家博施、伯吉龙斯因发明高压上应用的高压方法而共同获得诺贝尔化学奖。 1932-美国科学家朗缪尔因提出并研究表面化学获诺贝尔化学奖。 1933-1934-美国科学家尤里因发现重氢获诺贝尔化学奖。 1935-法国科学家约里奥·居里因合成人工放射性元素获诺贝尔化学奖。 1936-荷兰科学家德拜因 X射线的偶极矩和衍射及气体中的电子方面的研究获诺贝尔化学奖。

近十年诺贝尔化学奖得主及其贡献

2010年,美国科学家理查德赫克、日本科学家根岸荣一和铃木章因在有机合成领域中钯催化交叉偶联反应方面的卓越研究而获奖。这一成果广泛应用于制药、电子工业和先进材料等领域,可以使人类造出复杂的有机分子。 2009年,英国科学家文卡特拉曼拉马克里希南、美国科学家托马斯施泰茨和以色列科学家阿达约纳特因对“核糖体的结构和功能”研究的贡献而获奖。

2008年,日本科学家下村修、美国科学家马丁沙尔菲和美籍华裔科学家钱永健因在发现和研究绿色荧光蛋白方面作出贡献而获奖。 2007年,德国科学家格哈德埃特尔因在表面化学研究领域作出开拓性贡献而获奖。

2006年,美国科学家罗杰科恩伯格因在“真核转录的分子基础”研究领域作出贡献而获奖。 2005年,法国科学家伊夫肖万、美国科学家罗伯特格拉布和理查德施罗克因在烯烃复分解反应研究领域作出贡献而获奖。 2004年,以色列科学家阿龙切哈诺沃、阿夫拉姆赫什科和美国科学家欧文罗斯因发现泛素调节的蛋白质降解而获奖。

10月8日,瑞典皇家科学院在瑞典首都斯德哥尔摩宣布,将2003年诺贝尔化学奖授予美国科学家彼得阿格雷和罗德里克麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。这是47岁的化学奖得主罗德里克麦金农。

10月8日,瑞典皇家科学院在瑞典首都斯德哥尔摩宣布,将2003年诺贝尔化学奖授予美国科学家彼得阿格雷和罗德里克麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。这是54岁的化学奖得主彼得阿格雷。 2003年,美国科学家彼得阿格雷和罗德里克麦金农因在细胞膜通道领域作出了“开创性贡献”而获奖。 2002年,美国科学家约翰芬恩、日本科学家田中耕一和瑞士科学家库尔特维特里希发明了对生物大分子进行识别和结构分析的方法。 2001年,诺贝尔化学奖奖金一半授予美国科学家威廉诺尔斯与日本科学家野依良治,以表彰他们在“手性催化氢化反应”领域所作出的贡献;另一半授予美国科学家巴里夏普莱斯,以表彰他在“手性催化氧化反应”领域所取得的成就。

2009年诺贝尔化学奖成果简介

2009年诺贝尔化学奖成果简介 摘要:主要介绍了2009年诺贝尔化学奖得主文卡特拉曼•拉马克里希南、托马斯•施泰茨和阿达•约纳特在有关核糖体结构和功能领域的研究成果,并阐述其现实意义和发展前景。 关键词核糖体晶体结构抗生素生理功能蛋白质 瑞典皇家科学院2009年10月7日宣布,将本年度诺贝尔化学奖授予美国科学家文卡特拉曼•拉马克里希南(Venkatraman Ramakrishnan)、美国科学家托马斯•施泰茨(Thomas A. Steitz)和以色列女科学家阿达•约纳特(Ada E. Yonath),以表彰他们在核糖体结构和功能研究领域作出的突出贡献。他们以较高的分辨率确定了核糖体的结构以及它在原子水平上的功能机理,并通过建立3D模型展示不同抗生素与核糖体的结合。本文主要介绍该项研究成果,并阐述其现实意义和发展前景。 1 核糖体简介 蛋白质生物合成是把储存在DNA分子上的遗传信息“翻译”成有各种生物功能蛋白质的复杂过程。所有有机体中,DNA的转录都是在RNA聚合酶的作用下传递给mRNA,而mRNA的翻译过程则需要在核糖体这个平台的作用下进行【1】。 1.1 核糖体的组成 细菌(70S)核糖体包含了一大一小2个亚基(30S,50S),S表示超离心沉降系数。30S亚基由大约20个不同的蛋白质与16S rRNA(含有1600个核苷酸)组成;50S 大亚基由大约33个不同的蛋白质、23S rRNA(含有2900个核苷酸)和5S rRNA(含有120个核苷酸)组成。尽管真核生物的核糖体比原核生物的更大更复杂,但核糖体的总体结构却相似【2】。对于tRNA,核糖体有3个结合位点:A位点、P位点和E位点(见图1)。而mRNA定位于30S亚基颈部的通道上,在新生肽链的延伸过程中它以梯状排列的方式穿过通道。 1.2 核糖体的功能 核糖体可以看成为一个多肽合成酶体系,而底物便是氨基酰tRNA。核糖体对底物的识别就是氨基酰tRNA与核糖体的结合及解码过程,肽键的形成与肽基移位(peptidyltransfer)就是核糖体的催化过程【3】。 核糖体能够催化与共价键有关的2个化学反应:终止时候肽键的形成和酯键的水解。而在蛋白质延伸和终止的过程中存在一个准确度的问题,就是指在蛋白质的延伸阶段,核糖体必须有效选择与一个氨基酸编码中A位点密码子(有义密码

2001-2011年诺贝尔化学奖的得主

2001年诺贝尔化学奖获得者 像人的左右手一样,这被称作手性。而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。这些药是消旋体,它的左旋与右旋共生在同一分子结构中。在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。2001年的化学奖得主就是在这方面做出了重要贡献。他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。 1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的对映体。他的研究被迅速应用于一种治疗帕金森症药物的生产。后来,野依良至进一步发展了对映性氢 2002年 瑞典皇家科学院于2002年10月9日宣布,将2002年诺贝尔化学奖授予美国科学家约翰·芬恩、日本科学家田中耕一和瑞士科学家库尔特·维特里希,以表彰他们在生物大分子研究领域的贡献。 2002年诺贝尔化学奖分别表彰了两项成果,一项是约翰·芬恩与田中耕一“发明了对生物大分子进行确认和结构分析的方法”和“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖另一半的奖金。 2003年 2003年诺贝尔化学奖授予美国科学家彼得·阿格雷和罗德里克·麦金农,分别表彰他们发现细胞膜水通道,以及对离子通道结构和机理研究作出的开创性贡献。他们研究的细胞膜通道就是人们以前猜测的“城门”。 2004年 2004年诺贝尔化学奖授予以色列科学家阿龙·切哈诺沃、阿夫拉姆·赫什科和美国科学家欧文·罗斯,以表彰他们发现了泛素调节的蛋白质降解。其实他们的成果就是发现了一种蛋白质“死亡”的重要机理。 2005年 三位获奖者分别是法国石油研究所的伊夫·肖万、美国加州理工学院的罗伯特·格拉布和麻省理工学院的理查德·施罗克。他们获奖的原因是在有机化学的烯烃复分解反应研究方面作出了贡献。烯烃复分解反应广泛用于生产药品和先进塑料等材料,使得生产效率更高,产品更稳定,而且产生的有害废物较少。瑞典皇家科学院说,这是重要基础科学造福于人类、社会和环境的例证。 2006年诺贝尔化学奖获得者-罗杰·科恩伯格 美国科学家罗杰·科恩伯格因在“真核转录的分子基础”研究领域所作出的贡献而独自获得2006年诺贝尔化学奖。瑞典皇家科学院在一份声明中说,科恩伯格揭示了真核生物体内的细胞如何利用基因内存储的信息生产蛋白质,而理解这一点具有医学上的“基础性”作用,因为人类的多种疾病如癌症、心脏病等都与这一过程发生紊乱有关。 2007年诺贝尔化学奖格哈德·埃特尔

【2019年整理】历年诺贝尔化学奖获得者及其获奖原因

历年诺贝尔化学奖获得者及其获奖原因 1901年范霍夫(Jacobus Henricus van't Hoff,1852—1911) 荷兰人,第一个诺贝尔化学奖获得主-范霍夫 研究化学动力学和溶液渗透压的有关定律。 1902年E.费歇尔(Emil Fischer,1852—1919) 德国人,研究糖和嘌呤衍生物的合成。 1903年阿累尼乌斯(Svante August Arrhenius,1859—1927) 瑞典人,提出电离学说。 1904年威廉·拉姆赛(William Ramsay,1852—1916) 英国化学家,发现了稀有气体。 1905年拜耳(Adolf von Baeyer,1835—1917) 德国人,研究有机染料和芳香族化合物 1906年莫瓦桑(Henri Moissan,1852—1907) 法国人,制备单质氟 1907年爱德华·布赫纳(Edward Buchner,1860--1917) 德国人,发现无细胞发酵现象 1908年欧内斯特·卢瑟福(Ernest Rutherford,1871—1937) 英国物理学家,研究元素蜕变和放射性物质化学 1909年弗里德里希·奥斯瓦尔德(Friedrich Wilhein Ostwald,1853—1932) 德国物理学家、化学家,研究催化、化学平衡、反应速率。 1910年奥托·瓦拉赫(Otto Wallach,1847—1931) 德国人,研究脂环族化合物 1911年玛丽·居里(Marie Curie,1867—1934)(女) 法国人,发现镭和钋,并分离镭。第一位诺贝尔化学奖女科学家-玛丽·居里 1912年维克多·梅林尼亚(Victor Grignard,1871—1935) 法国人,发现用镁做有机反应的试剂。萨巴蒂埃(Paul Sabatier,1854—1941) 法国人,研究有机脱氧催化反应。 1913年维尔纳(Alfred Werner,1866—1919) 瑞士人,研究分子中原子的配位,提出配位理论。

1996年诺贝尔化学奖

1996年的诺贝尔化学奖 (新闻稿) 1996年10月9日 瑞士皇家科学院决定将1996年诺贝尔化学奖颁发给美国休斯敦莱斯大学的Robert F. Curl, Jr教授、英国布莱顿苏塞克斯大学的Sir Harold W. Kroto教授以及美国休斯敦莱斯大学的Richard E. Smalley教授,因为他们发现了富勒烯。 碳原子接壤成球状的发现是值得被表彰的 碳元素的新构造——富勒烯——1985年被Robert F. Curl, Harold W. Kroto 和Richard E. Smalley发现,富勒烯中的原子被排列得类似壳状物。这个“壳”中的碳原子数目是多变的,也正是因为这个原因,大量的新型碳结构逐渐被人们知晓。从前,碳元素的六种同素异形体被人所熟识,即两种石墨,两种钻石,蜡石以及碳(VI)。后面的两种分别在1968年和1972年被人们发现。 富勒烯的形成是在气化碳冷凝于惰性气体的时候。这种气态碳可以通过诸如在碳表面引发强脉冲的激光获得。释放出的碳原子会与氦气流混合,并且结合形成一些少数原子可上百的簇群。这些气体随后会被引入到真空室中,在那里它会伸展并且被冷却到绝对零度以上的不同的温度。然后,这些碳簇可以被质谱分析法所解析。 Curl, Kroto和Smalley带着研究生J.R. Heath和S.C. Obrien在1985年的11天内共同完成了这个实验。通过微调,他们可以合成含有60个和70个碳原子的簇。60个碳原子的簇,C60,是最高产的。他们发现C60很稳定,这便意味着它的分子结构极对称。这表明C60可能是一个多面体剖分格网的球面实体,一个有20个6边形表面和12个5边形表面的多面体。这恰好是足球的形状,也和美国建筑师R. Buckminster Fuller为1967年蒙特利尔世界展览设计的网格状建筑一样。研究人员把这个最新发现的结构命名为巴克敏斯特富勒烯。 Nature杂志上发表了C60独特结构的发现并获得了热情的接受和褒贬不一的评论。没有物理学家和化学家预料到过碳有比所知的化学结构更对称的结构了。随着1985-1990研究的深入,Curl, Kroto和Smalley获得了更多证明这个结构存在的正确性的证据。除此之外,他们还成功通过附上一个或更多的金属原子来识别碳簇。1990年,物理W. Kr?tschmer 和 D.R. Huffman 在氦气中往两根碳棒通入电弧燃烧,用有机溶剂冷凝提取,第一次获得了一定数量的C60。它们包含了C60和C70,这些结构是可以确定的。这证实了C60假说的正确性。因此打开了对C60和其它碳簇如C70、C76、C78、C80化学性质的研究。由于新的和未预料到的特性,这些化合物用来开发了新的物质。在超导和材料化学,天体化学、物理等不同的领域,一个全新的化学分支发展起来了。 背景 许多广泛多样化的研究领域都发现了富勒烯。Harold W. Kroto那时候活跃在微波光谱领域-一门由于射电天文学发展而用于分析气体在恒星大气和星际气体云空间的科学。Kroto对富含碳的巨星特别有兴趣。他调查了大气中的谱线,发现了一种只有碳和氢的长链分子,并把它称为cyanopolyynes。同样的分子也见于星际气体云。Kroto认为这些碳化合物在恒星大气中已经形成,而不是在星际云中形成。他现在想要研究这些长链分子如何形成的更紧密。 他和一位在物理化学重要领域,原子簇化学,有研究的科学家Richard E. Smalley取得了联系。簇是一个介于微观粒子和宏观粒子之间的原子或分子聚合。Smalley已经设计并建造了一种能够气化几乎任何已知材料并使之变成等离子体原子的激光—超声速束光仪。他最感兴趣的是

历届诺贝尔化学奖得主及其成就

历届诺贝尔化学奖得主及其成就 历届诺贝尔化学奖得主及其成就(1960——2008)(2009-04-03 11:30:05) 1960年W.F.利比(美国人)发明了“放射性碳素年代测定法” 1961年M.卡尔文(美国人)揭示了植物光合作用机理 1962年M.F.佩鲁茨,J.C.肯德鲁(英国人)测定出蛋白质的精细结构 1963年K.齐格勒(德国人),G.纳塔(意大利人)发现了利用新型催化剂进行聚合的方法,并从事这方面的基础研究 1964年D.M.C.霍金奇(英国人)使用X射线衍射技术测定复杂晶体和大分子的空间结构1965年R.B.伍德沃德(美国人)对有机合成法的贡献 1966年R.S.马利肯(美国人)用量子力学创立了化学结构分子轨道理论,阐明了分子的共价键本质和电子结构 1967年R.G.W.诺里什,G.波特(英国人),M.艾根(德国人)发明测定快速化学反应技术 1968年L.翁萨格(美国人)从事不可逆过程热力学的基础研究 1969年O.哈塞尔(挪威人),D.H.R.巴顿(英国人)为发展立体化学理论作出贡献 1970年L.F.莱洛伊尔(阿根廷人)发现糖核苷酸及其在糖合成过程中的作用 1971年G.赫兹伯格(加拿大人)从事自由基的电子结构和几何学结构的研究 1972年C.B.安芬森(美国人)确定了核糖核苷酸酶的分子氨基酸排列 S.莫尔,W.H.斯坦(美国人)从事核糖核苷酸酶的活性区位研究 1973年E.O.菲舍尔(德国人),G.威尔金森(英国人)从事具有多层结构的有机金属化合物的研究 1974年P.J.弗洛里(美国人)从事高分子化学的理论、实验两方面的基础研究 1975年J.W.康福思(澳大利亚人)研究酶催化反应的立体化学 V.普雷洛格(瑞士人)从事有机分子以及有机反应的立体化学研究 1976年W.N.利普斯科姆(美国人)从事甲硼烷的结构研究 1977年I.普里戈金(比利时人)主要研究非平衡热力学,提出了“耗散结构”理论 1978年P.D.米切尔(英国人)从事生物膜上的能量转换研究 1979年H.C.布郎(美国人),G.维蒂希(德国人)研制了新的有机合成法 1980年P.伯格(美国人)从事核酸的生物化学研究 W.吉尔伯特(美国人),F.桑格(英国人)确定了核酸的碱基排列顺序 1981年福井谦一(日本人),R.霍夫曼(美国人)从事化学反应过程的研究 1982年A.克卢格(英国人)开发了结晶学的电子衍射法,并从事核酸蛋白质复合体的立体结构的研究 1983年H.陶布(美国人)阐明了金属配位化合物电子反应机理 1984年R.B.梅里菲尔德(美国人)开发了极简便的肽合成法 1985年J.卡尔,H.A.豪普特曼(美国人)开发了应用X射线衍射确定物质晶体结构的直接计算法 1986年D.R.赫希巴奇,李远哲(美籍华人),J.C 波利亚尼(加拿大人)研究化学反应体系在位能面运动过程的动力学 1987年C.J.佩德森,D.J.克拉姆(美国人),J.M.莱恩(法国人)合成冠醚化合物 1988年J.戴森霍弗,R.胡伯尔,H.米歇尔(德国人)分析了光合作用反应中心的三维结构1989年S.奥尔特曼,T.R.切赫(美国人)发现RNA自身具有酶的催化功能 1990年E.J.科里(美国人)创建了一种独特的有机合成理论——逆合成分析理论

诺贝尔化学奖得主赫伯特 查尔斯 布朗

赫伯特·布朗——不断追求的化学家 赫伯特·查尔斯·布朗,美国化学家,1979年因将硼和磷及其化合物用于有机合成之中而与格奥尔格·维蒂希分享诺贝尔化学奖。 黑色童年努力向上 1912年5月22日,赫伯特·查尔斯·布朗出生在英国伦敦。他的爸爸是犹太人,原本生活在乌克兰,但当时为了避免受到德国沙皇的迫害,带着全家人来到了英国。两年后,父亲又带着全家人来到了美国,因为长年四处逃难,家里的积蓄早就用光了,他们只能生活在芝加哥的贫民窟里。 为了生计,布朗的爸爸勉强用剩下的不多的钱开了一家五金店。因为父亲思想比较传统,觉得孩子还是要学习知识,所以尽管在那样艰难的条件下依然把家里的孩子们送去学校学习。 布朗是在贫民窟里和黑人小孩子一起长大的,他们感情非常的好。上了学以后,布朗很用功的学习。因为家里太穷了没有钱,晚上没有灯可以让他看书,于是他就坐在路边的路灯下阅读自己喜欢的书籍。老师们非常喜欢这个又聪明有刻苦学习的孩子,尤其是布朗的女数学老师。 这个时代,美国存在着很严重的种族歧视。美国白人们看不起黑人,也看不起犹太人。布朗学习的学校里面有很多白人的富家小孩子,他们非常看不起穷人,虽然布朗的成绩非常的好,但依然得不到他们的尊重。 在一次数学课上,老师布置了一道非常难的数学题。她点了好几个学习好的富家子弟来答题,但是都没人回答的上来。后来老师叫了布朗,布朗站了起来,走到讲台上,把正确答案写在了黑板上。老师在课堂上当众表扬了布朗并且借此机会教育了一下那些富家子弟们。 那些富人家的小孩子对此感到非常的不满,在当天放学后,他们一堆人围住了布朗,一边骂布朗一边打他,并且威胁他让他不要再到这个学校里来上课。经过这件事后,布朗没有办法再在这里上学了。父亲把布朗转到了一个贫民学校,虽然这个学校教学水平有些差,但都是贫民小孩,大家彼此之间相处的很融洽。布朗在这里开心多了,当然他依然保持着很好的学习劲头,成绩还是非常的好。 失去亲人肩负重任

1901-2015年诺贝尔化学奖获得者

1901-2015历届诺贝尔化学奖得主诺贝尔化学奖是以瑞典著名化学家、硝化甘油炸药发明人阿尔弗雷德·贝恩哈德·诺贝尔(1833-1896)的部分遗产作为基金创立的5项奖金之一。诺贝尔化学奖由瑞典皇家科学院从1901年开始负责颁发,总共被颁发了106次。期间只有1916、1917、1919、1924、1933、1940、1941和1942八年没有颁发。诺贝尔奖奖项空缺,除了受到两次世界大战影响之外,还受到了诺贝尔奖组委会“宁缺毋滥”的评奖理念的影响。 到目前为止,诺贝尔化学奖共有169位获奖者。其中英国生物化学家弗雷德里克·桑格(Frederick Sanger)在1958年和1980年两次获得诺贝尔奖,因此历史上获得诺贝尔奖的总共只有168人。 诺贝尔化学奖获奖者的平均年龄是58岁。其中有32人获奖年龄介于50岁和54岁之间,几乎占到了总获奖人数的20%。 1901年--1910年 1901年:雅克布斯?范特霍夫(荷)发现了化学动力学法则和溶液渗透压。 1902年:赫尔曼?费歇尔(德)合成了糖类和嘌呤衍生物。 1903年:阿累尼乌斯(瑞典)提出了电离理论,促进了化学的发展。 1904年:威廉?拉姆齐爵士(英)发现了空气中的稀有气体元素,并确定他们 在周期表里的位置。 1905年:阿道夫?拜耳(德)对有机染料以及氢化芳香族化合物的研究促进了 有机化学与化学工业的发展。 1906年:穆瓦桑(法)研究并分离了氟元素,并且使用了后来以他名字命名 的电炉。 1907年:爱德华?毕希纳(德)对酶及无细胞发酵等生化反应的研究。 1908年:欧内斯特?卢瑟福爵士(新西兰)对元素的蜕变以及放射化学的研 究。 1909年:威廉?奥斯特瓦尔德(德)对催化作用,化学平衡以及化学反应速率 的研究。 1910年—1919年 1910年:奥托?瓦拉赫(德)在脂环类化合物领域的开创性工作促进了有机化 学和化学工业的发展的研究。 1911年:玛丽亚?居里(法)发现了镭和钋,提纯镭并研究镭的性质。 1912年格利雅(法)发明了格氏试剂,促进了有机化学的发展;保罗?萨巴蒂 埃(法)发明了有机化合物的催化加氢的方法,促进了有机化学的发展。

2001年至2005年诺贝尔化学奖获得者

2001年至2005年诺贝尔化学奖获得者 2001年 将2001年诺贝尔化学奖奖金的一半授予美国科学家威廉·诺尔斯与日本科学家野依良治,以表彰他们在“手性催化氢化反应”领域所作出的贡献;奖金另一半授予美国科学家巴里·夏普莱斯,以表彰他在“手性催化氧化反应”领域所取得的成就。威廉·诺尔斯的贡献是,他发现可以使用过渡金属来对手性分子进行氢化反应,以获得具有所需镜像形态的最终产品。他的研究成果很快便转化成工业产品,如治疗帕金森氏症的药L-DOPA就是根据诺尔斯的研究成果制造出来的。而野依良治的贡献是进一步完善了用于氢化反应的手性催化剂的工艺。巴里·夏普莱斯的成就是开发出了用于氧化反应的手性催化剂。 2002年: 将2002年诺贝尔化学奖授予美国科学家约翰·芬恩、日本科学家田中耕一和瑞士科学家库尔特·维特里希,以表彰他们在生物大分子研究领域的贡献。 2002年诺贝尔化学奖分别表彰了两项成果,一项是约翰·芬恩与田中耕一“发明了对生物大分子进行确认和结构分析的方法”和“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖另一半的奖金。 他们三人的这些研究成果对于研究包括蛋白质在内的大分子具有“革命性”的意义。在这3位科学家所开创的新的研究方法的基础上,今天的研究人员已能迅速并且简单地揭示一个物种包含多少种不同的蛋白质,能用三维照片显示蛋白质分子溶解状态的样子,从而使人类可以通过对蛋白质进行详细的分析而加深对生命进程的了解,使新药的开发发生了革命性的变化,并在食品控制、乳腺癌和前列腺癌的早期诊断等领域也得到了广泛的应用。 2003年 美国两名科学家皮特-埃格瑞(Peter Agre)与罗德里克-麦克金南(R. MacKinnon)因研究关键物质进入和离开身体细胞而获得了2003年度诺贝尔化学奖,他们因发现了细胞表面被称为“通道”的细孔而获奖,他们的研究对于了解影响肾脏、心脏、肌肉和神经系统的许多疾病具有重要意义。54岁的埃格瑞来自巴尔的摩约翰-霍普金斯大学医学院,埃格瑞的研究成果在于1988年分离出了长期以来所搜寻的通过细胞壁运送水的通道。这一发现为后续针对细菌、植物和哺乳动物水通道的系列生化、生理和遗传研究开启了大门。研究人员可以仔细跟踪水分子通过细胞膜的过程,并了解为何只有水分子而不是其它小分子能够通过细胞膜。阿格雷的工作于1988年完成。 2004年: 将2004年诺贝尔化学奖授予以色列科学家阿龙-西查诺瓦、阿弗拉姆-赫尔什科和美国科学家伊尔温-罗斯。 三人因在蛋白质控制系统方面的重大发现而共同获得该奖项。他们突破性地发现了人类细胞如何控制某种蛋白质的过程,具体地说,就是人类细胞对无用蛋白质的“废物处理”过程。 现年57岁的以色列科学家阿龙-西查诺瓦1947年出生于以色列的海法市,1981年被以色列理工学院授予医学博士学位,现供职于以色列理工学院,是该学院生物化学部的教授,同时兼任拉帕波特医学研究学院的负责人。 现年67岁的以色列科学家阿弗拉姆-赫尔什科1937年出生于匈牙利的考尔曹格,1969年获耶路撒冷希伯莱大学哈达萨赫医学院授予的医学博士学位。赫尔什科是以色列理工学院拉帕波特医学研究学院的著名教授。

2002年诺贝尔化学奖

库尔特·维特里希(1938-) 所有生物都含有包括DNA和蛋白质在内的生物大分子,“看清”它们的真面目曾经是科学家的梦想。如今这一梦想已成为现实。2002年诺贝尔化学奖表彰的就是这一领域的两项成果。 这两项成果一项是美国科学家约翰·芬恩与日本科学家田中耕一“发明了对生物大分子的质谱分析法”,他们两人将共享2002年诺贝尔化学奖一半的奖金;另一项是瑞士科学家库尔特·维特里希“发明了利用核磁共振技术测定溶液中生物大分子三维结构的方法”,他将获得2002年诺贝尔化学奖一半的奖金。 质谱分析法是化学领域中非常重要的一种分析方法。它通过测定分子质量和相应的离子电荷实现对样品中分子的分析。19世纪末科学家已经奠定了这种方法的基础,1912年科学家第一次利用它获得对分子的分析结果。在质谱分析领域,已经出现了几项诺贝尔奖成果,其中包括氢同位素氘的发现(1934年诺贝尔化学奖成果)和碳60的发现(1996年诺贝尔化学奖成果)。不过,最初科学家只能将它用于分析小分子和中型分子,由于生物大分子比水这样的小分子大成千上万倍,因而将这种方法应用于生物大分子难度很大。 尽管相对而言生物大分子很大,但它们在我们看来是非常小的,比如人体内运送氧气的血红蛋白仅有千亿亿分之一克,怎么测定单个生物大分子的质量呢?科学家在传统的质谱分析法基础上发明了一种新方法:首先将成团的生物大分子拆成单个的生物大分子,并将其电离,使之悬浮在真空中,然后让它们在电场的作用下运动。不同质量的分子通过指定距离的时间不同,质量小的分子速度快些,质量大的分子速度慢些,通过测量不同分子通过指定距离的时间,就可计算出分子的质量。 这种方法的难点在于生物大分子比较脆弱,在拆分和电离成团的生物大分子过程中它们的结构和成分很容易被破坏。为了打掉这只“拦路虎”,美国科学家约翰·芬恩与日本科学家田中耕一发明了殊途同归的两种方法。约翰·芬恩对成团的生物大分子施加强电场,田中耕一则用激光轰击成团的生物大分子。这两种方法都成功地使生物大分子相互完整地分离,同时也被电离。它们的发明奠定了科学家对生物大分子进行进一步分析的基础。 如果说第一项成果解决了“看清”生物大分子“是谁”的问题,那么第二项成果则解决了“看清”生物大分子“是什么样子”的问题。 第二项成果涉及核磁共振技术。科学家在1945年发现磁场中的原子核会吸收一定频率的电磁波,这就是核磁共振现象。由于不同的原子核吸收不同的电磁波,因而通过测定和分析受测物质对电磁波的吸收情况就可以判定它含有哪种原子,原子之间的距离多大,并据此分析出它的三维结构。这种技术已经广泛地应用到医学诊断领域。 不过,最初科学家只能将这种方法用于分析小分子的结构,因为生物大分子非常复杂,分析起来难度很大。瑞士科学家库尔特·维特里希发明了一种新方法,这种方法的原理可以用测绘房屋的结构来比喻:我们首先选定一座房屋的所有拐角作为测量对象,然后测量所有相邻拐角间的距离和方位,据此就可以推知房屋的结构。维特里希选择生物大分子中的质子(氢原子核)作为测量对象,连续测定所有相邻的两个质子之间的距离和方位,这些数据经计算机处理后就可形成生物大分子的三维结构图。 这种方法的优点是可对溶液中的蛋白质进行分析,进而可对活细胞中的蛋白质进行分析,能获得“活”蛋白质的结构,其意义非常重大。1985年,科学家利用这种方法第一次绘制出蛋白质的结构。目前,科学家已经利用这一方法绘制出15-20%的已知蛋白质的结构。 最近两年来,人类基因组图谱、水稻基因组草图以及其他一些生物基因组图谱破译成功后,生命科学和生物技术进入后基因组时代。这一时代的重点课题是破译基因的功能,破译蛋白质的结构和功能,破译基因怎样控制合成蛋白质,蛋白质又是怎样发挥生理作用等。在这些课题中,判定生物大分子的身份,“看清”

历届诺贝尔化学奖得主(1901-2014)

历届诺贝尔化学奖得主 (1901-2014) 年份 获奖者 国籍 获奖原因 1901年 雅各布斯·亨里克斯·范托夫 荷兰 “发现了化学动力学法则和溶液渗透压” 1902年 赫尔曼·费歇尔 德国 “在糖类和嘌呤合成中的工作” 1903年 斯凡特·奥古斯特·阿伦尼乌斯 瑞典 “提出了电离理论” 1904年 威廉·拉姆齐爵士 英国 “发现了空气中的惰性气体元素并确定了它们在元素周期表里的位置” 1905年 阿道夫·冯·拜尔 德国 “对有机染料以及氢化芳香族化合物的研究促进了有机化学与化学工业的发展” 1906年 亨利·莫瓦桑 法国 “研究并分离了氟元素,并且使用了后来以他名字命名的电炉” 1907年 爱德华·比希纳 德国 “生物化学研究中的工作和发现无细胞发酵” 1908年 欧内斯特·卢瑟福 英国 “对元素的蜕变以及放射化学的研究” 1909年 威廉·奥斯特瓦尔德 德国 “对催化作用的研究工作和对化学平衡以及化学反应速率的基本原理的研究” 1910年 奥托·瓦拉赫 德国 “在脂环族化合物领域的开创性工作促进了有机化学和化学工业的发展的研究” 1911年 玛丽·居里 波兰 “发现了镭和钋元素,提纯镭并研究了这种引人注目的元素的性质及其化合物” 1912年 维克多·格林尼亚 法国 “发明了格氏试剂” 保罗·萨巴捷 法国 “发明了在细金属粉存在下的有机化合物的加氢法” 1913年 阿尔弗雷德·维尔纳 瑞士 “对分子内原子连接的研究,特别是在无机化学研究领域” 1914年 西奥多·威廉·理查兹 美国 “精确测定了大量化学元素的原子量” 1915年 里夏德·维尔施泰特 德国 “对植物色素的研究,特别是对叶绿素的研究” 1916年 未颁奖 1917年 未颁奖 1918年 弗里茨·哈伯 德国 “对从单质合成氨的研究” 1919年 未颁奖 1920年 瓦尔特·能斯特 德国 “对热化学的研究” 1921年 弗雷德里克·索迪 英国 “对人们了解放射性物质的化学性质上的贡献,以及对同位素的起源和性质的研究” 1922年 弗朗西斯·阿斯顿 英国 “使用质谱仪发现了大量非放射性元素的同位素,并且阐明了整数法则” 1923年 弗里茨·普雷格尔 奥地利 “创立了有机化合物的微量分析法” 1924年 未颁奖 1925年 里夏德·阿道夫·席格蒙迪 德国 “阐明了胶体溶液的异相性质,并创立了相关的分析法” 1926年 特奥多尔·斯韦德贝里 瑞典 “对分散系统的研究”

2000-2010年诺贝尔化学奖详解

2000年 艾伦-J-黑格 (1936-) 艾伦-J-黑格,美国公民,64岁,1936年生于依阿华州苏城。现为加利福尼亚大学的固体聚合物和有机物研究所所长,是一名物理学教授。 获奖理由:他是半导体聚合物和金属聚合物研究领域的先锋,目前主攻能够用作发光材料的半导体聚合物,包括光致发光、发光二极管、发光电气化学电池以及激光等等。这些产品一旦研制成功,将可以广泛应用在高亮度彩色液晶显示器等许多领域。 艾伦-G-马克迪尔米德 (1929-) 艾伦-G-马克迪尔米德,来自美国宾夕法尼亚大学,今年71岁,他出生于新西兰,曾就读于新西兰大学和美国威斯康星大学以及英国的剑桥大学。1955年,他开始在宾夕法尼亚大学任教。他是最早从事研究和开发导体塑料的科学家之一。 获奖理由:他从1973年就开始研究能够使聚合材料能够象金属一样导电的技术,并最终研究出了有机聚合导体技术。这种技术的发明对于使物理学研究和化学研究具有重大意义,其应用前景非常广泛。 他曾发表过六百多篇学术论文,并拥有二十项专利技术。 白川英树 (1936-) 白川英树今年64岁,已经退休,现在是日本筑波大学名誉教授。白川1961年毕业于东京工业大学理工学部化学专业,曾在该校资源化学研究所任助教,1976年到美国宾夕法尼亚大学留学,1979年回国后到筑波大学任副教授,1982年升为教授。1983年他的研究论文《关于聚乙炔的研究》获得日本高分子学会奖,他还著有《功能性材料入门》、《物质工学的前沿领域》等书。 获奖理由:白川英树在发现并开发导电聚合物方面作出了引人注目的贡献。这种聚合物目前已被广泛应用到工业生产上去。他因此与其他两位美国同行分享了2000年诺贝尔化学奖。 2001年 威廉·诺尔斯(W.S.Knowles) (1917-) 2001年诺贝尔化学奖授予美国科学家威廉·诺尔斯、日本科学家野依良治和美国科学家巴里·夏普雷斯,以表彰他们在不对称合成方面所取得的成绩,三位化学奖获得者的发现则为合成具有新特性的分子和物质开创了一个全新的研究领域。现在,像抗生素、消炎药和心脏病药物等,都是根据他们的研究成果制造出来的。 瑞典皇家科学院的新闻公报说,许多化合物的结构都是对映性的,好像人的左右手一样,这被称作手性。而药物中也存在这种特性,在有些药物成份里只有一部分有治疗作用,而另一部分没有药效甚至有毒副作用。这些药是消旋体,它的左旋与右旋共生在同一分子结构中。在欧洲发生过妊娠妇女服用没有经过拆分的消旋体药物作为镇痛药或止咳药,而导致大量胚胎畸形的"反应停"惨剧,使人们认识到将消旋体药物拆分的重要性。2001年的化学奖得主就是在这方面做出了重要贡献。他们使用一种对映体试剂或催化剂,把分子中没有作用的一部分剔除,只利用有效用的一部分,就像分开人的左右手一样,分开左旋和右旋体,再把有效的对映体作为新的药物,这称作不对称合成。 诺尔斯的贡献是在1968年发现可以使用过渡金属来对手性分子进行氢化反应,以获得具有所需特定镜像形态的手性分子。他的研究成果很快便转化成工业产品,如治疗帕金森氏症的药L-DOPA就是根据诺尔斯的研究成果制造出来的。 1968年,诺尔斯发现了用过渡金属进行对映性催化氢化的新方法,并最终获得了有效的

相关文档
相关文档 最新文档