文档库 最新最全的文档下载
当前位置:文档库 › 螺杆式空气压缩机排气量计算方法

螺杆式空气压缩机排气量计算方法

螺杆式空气压缩机排气量计算方法
螺杆式空气压缩机排气量计算方法

等排气量计算法(假设在此过程中绝热效率和容积效率不变)

所谓等排气量计算法是指在排气量不变的情况下, 随着排气压力的增加或减小, 电机功率随之增大或减小(即所需总扭矩随之增大或减小) 。此种计算方法在我们的销售过程中常常会遇到。

等功率计算法(假设在此过程中绝热效率和容积效率不变)

所谓等功率计算是指在电机功率不变(即所需总扭矩不变) 的情况下, 随着排气压力的增加或减小, 阳转子的转速减小或增加, 即排气量减少或增加(阳转子转速与排气量成正比) 。此种计算方法在我们的工程技术开发过程中常常会遇到。对于那些只降低排气压力, 而阳转子的转速不做相应的增加, 虽然排气量会比原机型大一点点, 那只是由于排气压力的下降导致容积效率升高所致; 如果排气压力比原机型减小很多, 而阳转子的转速不做相应的增加, 那就会产生我们常说的“大马拉小车”现象, 无形中给用户

带来一些不必要的电能损失。

举例说明如何使用速算表进行计算

例1.客户需订3 台32 m3/ min、110 MPa螺杆式空压机, 而我们现有产品LS25S - 250L , 34 m3/min、017 MPa 。依据等排气量计算法进行计算, 由于用户所需排气压力大于现有空压机额定排气压力, 故

p1 为017 MPa 、p2 为110 MPa 。按速算表查得P1/ P2 =0182398 , 当P1 = 250 HP3时, 则P2 = 303 HP。也就是说使用LS25S - 250L 的主机速比, 用300HP 的电机从理论上讲勉强满足用户的需求。如果经过我们进一步了解, 发现用户最高工作压力只要不低于0195 MPa 即可接受, 那么从理论上用

300HP 的电机就可以满足用户的需求。

例2.客户需订3 台14~15 m3/ min、016 MPa空压机, 而我们现有产品LS20 - 125HH , 1412m3/ min、110 MPa 。

依据等排气量计算法进行计算, 由于用户所需排气压力小于现有空压机额定排气压力, 故p1 为016 MPa 、p2 为110 MPa 。按速算表查得P1/ P2 =0175481 , 当P2 = 125 HP 时, 则P1 为9414 HP。也就是说使用LS20 - 125HH 的主机速比, 用100HP 的电机从理论上讲完全可以满足用户的需求。

例3 .依据市场需求需要我们开发LS25S -300HH 机型, 而我们现有产品LS25S - 300H ,3812 m3/ min、018 MPa 。

依据等功率计算法进行计算, 由于所需排气压力大于现有空压机额定排气压力, 故p1 为018MPa , p2 为110 MPa。按速算表查得Q2/ Q1 =0188723 , 当Q1为3812 m3/ min 时, 则Q2 为34 m3/ min。通过排气量的计算我们可以进一步计算出所需主机的速比(此计算过程从略) 。

通过上述3 个例子我们可以很快算出所需参数。

只降低排气压力, 而不改变其它参数,其排气量计算方法

(1) 在等功率计算法中我们已经谈到, 如果排气压力比原机型减小很多, 而不改变其它参数,对于螺杆空压机来说是很不经济的。而对于用户所需最高排气压力比原机型略小一点的空压机, 其排气量计算可以

按下式计算

Qs = Q0 (1 + 111 % ×Δp) ,m3/ min

式中Qs ———降低排气压力后的排气量, m3/ min

Q0 ———原机型额定排气压力下的排气量,m3/ min

Δp = p0 - p1 , bar

p0 ———原机型额定排气压力, bar

p1 ———所需排气压力, bar

例如LS20 - 125HH , 1412 m3/ min、110 MPa(10 bar) 机型, 客户需要019 MPa (9 bar) , 那么排气量会增加多少呢?

Q0 = 1412 m3/ min、p0 = 10 bar 、p1 = 9 bar 计算得: Qs = 1414 m3/ min。

(2) 在等功率计算法中我们还谈到, 随着排气压力的增加或减少, 阳转子的转速减小或增加, 即排气量减少或增加。如考虑容积效率的变化, 则例3 中计算出的排气量可以按下式进行修正Qs1 = Qs (1 + 111 % ×Δp1) , m3/ min 式中Δp1 = p0 - p1 , bar Qs ———计算出的排气量, m3/ min。

英格索兰UP系列微油螺杆式空压机型号、参数.

英格索兰UP系列微油螺杆式空压机型号、参数 英格索兰UP系列微油螺杆式空压机型号一共有20种不同型号不同功率的机型,该系列空压机有15、18、22、30、37千瓦四种功率,压力分为7.5bar、8.5bar、10bar、14bar四个档次,同时英格索兰UP系列微油螺杆式空压机排气量从最小的 1.61m3/min到最大的 6.02m3/min 可供您选择适应不同的工况条件。英格索兰UP系列微油螺杆式空压机采用著名 Intellisys控制选项,Intellisys控制选项可以提供精确的压力控制,节能功能和告诫设备保护功能。同时英格索兰UP系列微油螺杆式空压机具有低噪,维护方便,系统可靠性更稳定,智能、高效,使用寿命长,占用空间小,节能省电、安装方便等特点。本文就从英格索兰UP系列微油螺杆式空压机型号、参数、优点来对UP系列空压机进行了详细的介绍,欢迎您了解。 英格索兰UP系列微油螺杆式空压机型号和参数介绍

型号功率压力排气量UP5-15-7TAS15KW7.5bar 2.41m3/min UP5-15-8TAS15KW8.5bar 2.36m3/min UP5-15-10TAS15KW10bar 2.07m3/min UP5-15-14TAS15KW14bar 1.61m3/min UP5-18-7TAS18KW7.5bar3m3/min UP5-18-8TAS18KW8.5bar 2.87m3/min UP5-18-10TAS18KW10bar 2.61m3/min UP5-18-14TAS18KW14bar 2.01m3/min UP5-22-7TAS22KW7.5bar 3.54m3/min UP5-22-8TAS22KW8.5bar 3.34m3/min UP5-22-10TAS22KW10bar 3.31m3/min

管径计算公式

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。A.管内径:管道内径可按预先选取的气体流速由下式求得: i d 8 .182 1 u q v 式中, i d 为管道内径(mm );v q 为气体容积流量( h m 3 );u 为管内气体平均流速( s m ),下 表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 气体介质 压力范围 p (Mpa) 平均流速u (m/s ) 空气 0.3~0.6 10~20 0.6~1.0 10~15 1.0~2.0 8~12 2.0~3.0 3~6 注:上表内推荐值,为输气主管路(或主干管)内压缩空气流速推荐值;对于长度在 1m 内的管 路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为 1.5 m 3 /min 排气压力为 3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3 /min 排气压力为 3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3 /h 如上表所示u=6 m/s 带入上述公式 i d 8 .182 1 u q v i d 8 .182 1 6 252=121.8 mm 得出管路内径为121mm 。 B.管壁厚度:管壁厚度取决于管道内气体压力。

医用空气压缩机的全面详解

医用空气压缩机 医用空气压缩机(英文名:Medical air compressor)是为需要气源的医疗保健设备提供充足、洁净的气源,上海岭泉实业发展有限公司专业生产医用空压机,质量过硬,品质优良。适用于牙科治疗设备、制氧机设备、呼吸机设备、医药气动设备等。 概述 《2013-2017年中国医用空气压缩机行业产销需求与转型升级分析报告》数据显示,我国的医用空气压缩机行业的市场规模均为8%以上的增速增长,2010-2011年增长率甚至超过了28%,市场规模扩张迅速。随着空气压缩机的行业的不断发转,越来越多的企业进入气压缩机行业,越来越多的人对气压缩机行业青睐,同时很多企业脱颖而出,例如上海岭泉实业发展有限公司为一家专业空压机及后处理设备的知名企业,主要经营产品:医用空压机、一体式空压机、吸附式干燥机(吸干机)、模块式吸干机及过滤器等等,并可提供压缩空气系统解决方案。然而,在规模如此巨大的市场上,过去很长一段时间由外资企业掌握绝大部分市场。2009年度,我国医用空气压缩机行业共有生产企业近400家,其中内资企业数量接近90%,实现销售收入总额约为60亿元,占全行业的40%;外资企业数量接近10%,实现销售收入总额约为90亿元,占全行业的60%。 简介 医用空气压缩机主要是为需要气源的医疗保健设备提供充足、洁净的气源,适用于牙科治疗设备、制氧机设备、呼吸机设备、医药气动设备等。 工作原理 医用空压机是属于微型无油往复活塞式压缩机,电机单轴驱动曲轴错角为180°分布的两组曲柄摇杆机构,主运动副为活塞环,付运动副为铝合金圆柱面,运动副之间由活塞环自润滑而不需添加任何润滑剂。压缩机通过曲柄摇杆的往复运动使圆柱面气缸的行程容积发生周期性变化,电机运转一周,每组气缸的行程容积将各有两次方向相反的变化。当活塞向轴

空压机型号大全-空压机有哪些规格型号

空压机型号大全_空压机有哪些规格型号 空压机型号参数大全有哪些,之前首先要知道空压机有哪些类型,市场上空压机可以分为活塞空压机和螺杆式空压机两种,每种空压机型号参数又是不一样。 空压机型号参数的含义 一般空压机厂家会以自己公司的英文字母做空压机开头的型号,然后再后面缀上容积流量以及工作压力。而W一般跟在机子型号的最后表示此机为水冷型空压机,而F则表示该空压机为风冷型。1/8后面应该还有单位的,比如1m3/min或1m3/h表示每分钟或每小时而8后面的单位就是Kg或MPa,前者是公斤后者是兆帕。表示公斤时写成8Kg,表示兆帕时写成0.8MPa。1m3/min表示每分钟的容积流量为1m 3。而1m3/h则表示每小时容积流量为1m3.如果你空压机的型号就是WF1/8显然这个表示的型号不是很规范,或者是一些小品牌的出厂编号。几个大品牌的型号给你看看,比如阿特拉斯Atlas、GA55表示是Atlas55千瓦的机子。比如英格索兰SSR-55-MM就代表是他们英格索兰55KW的机子。比如日本神钢KOBELCO,AG1070A-55就表示日本神钢55千瓦的机子。所以英文字母都是每个公司名称的象征。数字很简单,1/8肯定是1个立方8公斤的机子。至于WF就看是不是他们公司的代号,没有什么意义的。W或F单独跟在型号的后面时要注意了,可能就是风冷跟水冷的区别了

1、活塞式空压机——FG系列微油风冷往复空压机的部分技术参数 2、螺杆式空压机——SA55-200系列微油螺杆式空压机的部分技术参数 3、变频式空压机——SAV系列变频微油螺杆式空压机部分技术参数

4、无油式空压机ZW系列无油螺杆空压机部分技术参数 5、移动式空压机——SGP系列电移动螺杆空压机部分技术参数 6、空压机后处理——高(常)温水冷型冷干机部分技术参数

寿力螺杆式空压机参数规格表

WS1808 2.98.6 WS1810 2.610.5 WS1812 2.212.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)1350*1350*800*610 WS2208 3.558.6 WS2210 3.110.5 WS2212 2.812.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)1350*1350*800*680 WS3008 4.758.6 WS3010 4.110.5 WS3012 3.412.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)1574*1562*875*820 WS3707 6.87.6 WS3708 6.38.6 WS3710 5.810.5 WS3712 5.112.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)1574*1562*875*1020 LS16-60L8.57.6 LS16-60H7.88.6 LS16-60HH 6.910.5 LS16-60XH 5.6512.5 LS16-75L10.57.6 LS16-75H9.58.6 LS16-75HH8.610.5 LS16-75XH7.612.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)2000*1200*1680*1560 LS16-100L13.57.6 LS16-100H12.58.6 LS16-100HH10.510.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)2000*1200*1680*1580 LS20-125L16.97.6 LS20-125H15.28.6 LS20-125HH14.210.5 LS20-125XH12.912.5 LS20-150L21.17.6 LS20-150H19.08.6 LS20-150HH16.310.5 LS20-150XH14.612.5 尺寸及重量DIMENSION-L*W*H(mm)&WEIGHT(KG)2540*1524*1730*2540

管道直径设计计算步骤

管道直径设计计算步骤 以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2- 1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。 表6-2-1一般通风系统中常用空气流速(m/s) 支室内xx空干管 管进风口回风口气入口6~2~1.5~2.5~ 5.5~薄钢1483.53.5 工业建筑机6.5板、混凝土 械通讯 4~2~1.5~2.0~ 砖等

5~61263.03.0 工业辅助及 民用建筑 0.5 0.50.2~~0.7 自然通风~1.01.0类别 机械通风5~8 52~ 2~4风管 材料 表6-2-2空调系统低速风管内的空气流速部位 新风xx 总管和总干管 无送、回风口的支管 有送、回风口的支管频率为1000Hz时室内允许声压级(dB)<40~60>60 3.5~ 4.04.0~4.5 5.0~ 6.0 6.0~8.06.0~8.0 7.0~12.0 3.0~ 4.0 5.0~7.0 6.0~8.0 2.0~ 3.03.0~5.03.0~6.0表6-2-3除尘风管的最小风速(m/s)粉尘类

空压机型号参数

部分空压机型号参数 对于空压机的型号参数,每个品牌的机器都会有所不同。因为我们公司是代理的复盛牌空压机,所以这里给出的就是复盛空压机的部分型号参数。因为产品较多,这里不方便一一列举,就在每一种类型中选择一种来和大家分享一下。希望客户在选择复盛空压机时,此文章能对你有所帮助。 1、活塞式空压机——FG系列微油风冷往复空压机的部分技术参数 型号排气量(m3/min)排气压力(mpa) 额定功率(kw)长×宽×高(mm)重量(kg) FG07单相0.06 0.8 0.6 595*320*700 35 FG07三相0.06 0.8 0.6 595*320*700 35 FG10单相0.1 0.8 0.8 692*325*680 56 FG10三相0.1 0.8 0.8 910*360*680 76 FG20 0.2 0.8 1.5 1030*390*720 94 FG30 0.3 0.8 2.2 1030*410*780 110 FG40 0.4 0.8 3 1166*450*810 150 FG55 0.5 0.8 4 1375*500*970 200 2、螺杆式空压机——SA55-200系列微油螺杆式空压机的部分技术参数 型号排气量(m3 /min) 排气压力 (Mpa) 额定功率 (kw) 长×宽×高 (mm) 重量(KG) SA55A/W 10.4 0.75 55 220*1230*16 40 1845 9.6 0.85 8.5 1.05 7.6 1.25 SA75A/W 14.1 0.75 75 2200*1230*1 640 1985 12.8 0.85 11.6 1.05 10.3 1.25 SA110A/W 21 0.75 110 3000*1650*15480

管径寸径计算方法

中 海 石 油 炼 化 有 限 责 任 公 司 惠 州 炼 油 项 目 管道寸D 统计方法规定 内部文件 注意保密

中海石油炼化有限责任公司惠州炼油项目 管道寸D统计方法规定 第一章总则 第一条为统一惠州炼油项目管道寸径统计方法,尽可能准确地反映焊工的实际工作量,特制定了本规定,同时作为《进度检测及控制管理办法》附件C 焊接工作量计算的补充规定。 第二条编制依据:《广东省安装工程综合定额》——第六册《工业管道工程》。 第三条本方法仅适用于中海石油炼化有限责任公司惠州炼油项目管道寸D的统计计算。 第二章寸径统计方法规定 第四条标准寸D的规定 以低压碳钢管道DN25的1道焊口为标准寸D,即1寸D,其它规格低压管道的寸D数见下表。 表1:低压管道公称直径—寸D对照表

第五条其它压力等级、材质及规格的管道寸D计算 其它压力等级和材质的管道以低压碳钢管相应公称直径的寸D数乘以下表中的系数,计算1道焊口的寸D数。 表2:管道寸D计算系数表 举例说明: 1)1道中压碳钢DN25的焊口寸D数=1标准寸D*1.3=1.3 D” 2)1道中压合金钢DN50的焊口寸D数=2标准寸D*1.9=3.8D” 3)1道低压不锈钢DN80的焊口寸D数=3标准寸D*1.7=5.1D” 注:D”为“寸D”的一种简单表示方法 第六条管道焊口数统计规定 管道焊口数以单线图中的焊口数为准,区分材质、压力等级分别统计(不区分对接焊口和承插焊口统一计算)。 第七条寸D数的合计

寸D数的合计首先区分材质小计,然后汇总为总寸D数量,如:碳钢管道寸D数合计2300 D” 合金钢管道寸D数合计800 D” 不锈钢管道寸D数合计1200 D” 以上各项总寸D数=2300+800+1200=4300 D” 第三章附则 第八条本规定解释权归属控制部。 第九条本规定自发布之日起执行。 附:管道寸D工作量统计表

常用空气压缩机选型参考汇总

常用空气压缩机选型参考 面对市场上各式各样不同功效的压缩机,很多用户对压缩机的选型上无法有一个确切的认 识,有时候是因为对不同压缩机的功效和性能不能完全了解, 而导致无法合理选型, 无法选 择可靠、高效、节能的压缩机型。 根据用户的具体情况和实际工艺要求, 选用适合生产需要的空气压缩机。 既不宜贪大求洋盲 目选择优质高价的机型而多花费不必要的支出, 也不能为了节省开支而一味选取故障频发的 劣质机型充数,毕竟空气压缩机是工业生产中的重要动力设备。 现将常用的几种压缩机型的优缺点和其适用范围做一个简单的介绍, 希望能为用户在选择压 缩机的时候做一个参考。 若按照压缩机气体方式的不同, 通常将压缩机分为两大类, 即容积式和动力式 (又名速度式) 压缩机。容积式和动力式压缩机由于其结构形式的不同,又做了以下分类: 螺杆压缩机 螺杆空压机是回转容积式压缩机的一种, 在其中两个带有螺旋型齿轮的转子相互啮合, 从而 将气体压缩并排出。 螺杆空气压缩机按照数目分, 分为单螺杆和双螺杆; 按压缩过程中是否有润滑油参与分为喷 油和无油螺杆空压机,无油压缩机又分为干式和喷水两种。 螺杆空压机总的来说结构简单,易损件少,排气温度低,压比大,尤其不怕气体中带液、带 尘压缩, 喷油螺杆式压缩机的出现, 使动力工艺和制冷用的螺杆式压缩机 (包括螺杆式空压 机、螺杆式制冷机等)在国内外得到了飞速的发展。 工作原理 螺杆式空气压缩机是利用阴阳螺杆转子的相互啮合使齿间容积不断减小、 高,从而连 续地产生压缩空气。 螺杆式空气压缩机也属于容积式压缩机, 工作原理, 决定了相 对于活塞式空气压缩机而言, 螺杆式空气压缩机供气稳定, 一般不需要 配备储气 罐。工作过程如下图所示。 主要优点 1、可靠性高:螺杆空压机零部件少,易损件少,因而它运转可靠,寿命长。 2、操作维护方便:操作人员不必经过长时间的专业培训,可实现无人值守运转,操作相对 简单,可按需要排气量供气。 气体的压力不断提 但由于螺杆机型的

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

排气量计算方法

空压机流量计算公式: 压力(kg)/排气量(m3/min)X气罐容积(m3)=充气时间(min) 状态及容积流量 标准状态 标准状态的定义是:压力为0.1MPa,温度为20℃,相对湿度为65%的空气状态。在标准状态下,空气的密度ρ=1.185Κg/m3.按国际标准ISO8778,标准状态下的单位后面可标注"(ANR)"。如标准状态下的空气流量是6M3/min,可写成6M3/min(ANR)。 基准状态 温度为0℃,压力为101.3KPa的干空气的状态,基准状态下密度ρ=1.293Κg/m3。基准状态空气与标准状态空气不同在于温度和含有水分。当空气中有水气,一旦把水气分离掉,气量将有所降低。

吸入状态 压缩机进口状态下的空气。 海拔高度 按海平面垂直向上衡量,海拔只不过是指海平面以上的高度。海拔在压缩机工程方面占有重要因素,因为在海拔高度越高,空气变得越稀薄,绝对压力变得越低。既然在海拔上的空气比较稀薄,那么电机的冷却效果就比较差,这使得标准电动机只能局限在一定的海拔高度内运行。 容积流量 容积流量是指在单位时间内压缩机吸入基准状态下空气的流量。 用单位:m3/min(立方米/分钟)表示。为了区别于标准状态下的流量用NM3/min表示。 1CFM=0.02832m3/min, 1m3/min =35.311CFM, 负载系数 负载系数是指某一段时间内压缩机的平均输出与压缩机的最大额定输出之比。不明智的做法就是卖给用户的压缩机,正好满足用户的最大的需求,增加一个或几个工具或有泄漏会导致工厂的压力下降。为了避免这种情况,建议采用负载系数:取用户系统所需气量的

极大值,并除以0.9或0.8的负载系数。(或任何用户认为是个安全系数) 这种综合气量选择能顾及未预计到的空气需量的增加。无需额外的资本的投入就可做一些小型的扩建。 螺杆压缩机的排气量及影响因素 (1)螺杆压缩机的排气量 V理=ф×D3×λ×n V实=V理×η (2)影响因素: pj、Tj、海拔高度、n、V余、泄漏等。

给水管道各种管材管径与计算内径一览表

表1 给水塑料管及钢塑复合管公称管径与计算内径一览表(一) 氯化聚氯乙烯 PVC-U 管 聚丙烯管 PP-R 聚丙烯 PP-RR 热水管0.00000047 S6.3 1.6MPa S5 2.0MPa 铝塑复合管 1.0MPa 1.6MPa 1.0MPa 1.25MPa 2.0MPa 2.5MPa 2.0MPa 2.5MPa 公称直径 计算内径d j 计算内径d j 计算内径 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j 计算内径d j mm mm mm mm mm mm mm mm mm mm mm mm 15 12.2 20 16 16 15.7 16 15.4 14.4 13.2 14.4 13.2 25 21 20.4 19.8 21 20.4 18 16.6 18 16.6 32 27.2 26.2 25.3 27.2 27.2 26 23.2 21.2 23.2 21.2 40 34 32.6 31.2 36 34 34 32.6 29 26.6 29 26.6 50 42.6 40.8 40.1 45.2 42 42.6 40.8 36.2 33.2 36.2 33.2 65 53.6 51.4 50.0 57 53.6 53.6 51.4 45.6 42 45.6 42 75 63.8 61.4 58.7 67.8 64 63.6 61.2 49.9 50 49.9 50 90 76.6 73.6 81.4 76.6 76.6 73.6 76.6 60 76.6 60 110 93.8 90 100.4 95.6 93.8 90 93.8 73.5 93.8 73.5 125 106.6 102.2 114.2 110 140 119.4 114.6 127.8 123.4 160 136.4 130.8 146 140 180 164.4 158.6 200 182.6 176.2 225 205.4 198.2 250 228.2 220.4 280 255.6 246.8 315 287.6 277.6 355 325.4

流量与管径、压力、流速的关系

流量与管径、压力、流速的一般关系 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。 水头损失计算Chezy 公式 Chezy 这里: Q——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l——管道长度(m) d——管道内径(mm)

v ——管道流速(m/s) g ——重力加速度(m/s2) 水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。水泵输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 沿程水头损失水力计算公式和摩阻系数表1 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。

螺杆空压机规格型号大全

螺杆空压机规格型号大全 螺杆空压机规格型号有很多,可以分为皮带传动系列,永磁变频系列,直联变频系列,皮带变频系列,直联传动系列,低压螺杆机系列和螺杆一体机系列等,参数齐全。 螺杆空压机分为双螺杆机与单螺杆机,现在双螺杆机已经占据主导地位,至于螺杆空压机的型号,因为生产的厂家不同,型号一般都是厂家英文缩写,如空威空压机,就是用KW命名,此外,螺杆空压机也会做进一步细分,比如皮带,KEB,直联KWG。 螺杆空气压缩机,从润滑方式来分,可分为喷油螺杆空气压缩机和无油润滑螺杆空气压缩机,其中无油润滑螺杆空气压缩机又可分为两种,分别为水润滑无油螺杆空气压缩机、干式螺杆空气压缩机。 喷油螺杆空压机 喷油螺杆空气压缩机,也被称为油润滑螺杆空气压缩机,是指转子室内在吸入空气的同时,也吸入润滑油(起润滑转子和密封的作用),将润滑油和空气混合在一起压缩。喷油螺杆压缩机的单级压比可高达15:1。 水润滑无油螺杆空压机 水润滑无油螺杆空气压缩机,也被称为喷水螺杆空气压缩机,既有单螺杆空气压缩机,也有双螺杆空气压缩机,是指转子室内在吸入空气的同时,也吸入水(起润滑转子和密封的作用),将水和空气混合在一起压缩。在喷水螺杆空气压缩机中,由于向压缩腔内注水,虽然起到了冷却、密封和保持气体的纯净度的作用,提高了压缩机的效率,同时也很好的控制了排气温度,但是水必将对转子等部件产生腐蚀作用,因此需要慎重选择转子材料。 喷水单螺杆空压机 喷水单螺杆空气压缩机方面有复盛和三井,开发的是小排量水润滑单螺杆空气压缩机。复盛采用三井的单螺杆机头,排气量可达12m3/min,最大功率可到120kW,转子材料为不锈钢和铜材,陶瓷轴承。由于材料和技术的限制,目前大型喷水单螺杆空气压缩机的制造相对困难,但小型喷水单螺杆空气压缩机的效率较高,维护费用相对较低。 干式螺杆空压机 干式螺杆压缩机,也被称为全无油螺杆空气压缩机,多为双螺杆空气压缩机,是指转子内仅吸入空气,转子的润滑和密封是靠涂刷在转子齿表面的涂层来进行。在中国销售的干式螺杆空气压缩机功率范围一般为15~900kW。 由于没有润滑油的润滑及带走微小颗粒,气体会对转子、壳体内壁、气道产生腐蚀,因此在传统喷油螺杆转子材料的基础上,通常会喷涂防腐层,如喷涂聚四氟乙烯、二硫化钼、特氟龙等,达到保证转子不变形,不被腐蚀的作用。干式螺杆压缩机的单级压比可达3.5:1。 小型干式螺杆空压机:是指功率在100~2000kW的干式螺杆空气压缩机。

管径计算公式

流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位为 m/s。 流量与管道断面及流速成正比,三者之间关系: `Q = (∏ D^2)/ 4 · v · 3600 `(`m^3` / h ) 式中 Q —流量(`m ^3` / h 或 t / h ); D —管道内径(m); V —流体平均速度(m / s)。 根据上式,当流速一定时,其流量与管径的平方成正比,在施工中遇到管径替代时,应进行计算后方 可代用。例如用二根DN50的管代替一根DN100的管是不允许的,从公式得知DN100的管道流量是DN50管 道流量的4倍,因此必须用4根DN50的管才能代用DN100的管。 给水管道经济流速 影响给水管道经济流速的因素很多,精确计算非常复杂。 对于单独的压力输水管道,经济管径公式: D=(fQ^3)^[1/(a+m)] 式中:f——经济因素,与电费、管道造价、投资偿还期、管道水头损失计算公式等多项因素有关的系数;Q——管道输水流量;a——管道造价公式中的指数;m——管道水头损失计算公式中的指数。 为简化计算,取f=1,a=1.8,m=5.3,则经济管径公式可简化为: D=Q^0.42 例:管道流量22 L/S,求经济管径为多少? 解:Q=22 L/S=0.022m^3/s 经济管径 D=Q^0.42=0.022^0.42=0.201m,所以经济管径可取200mm。 水头损失 没有“压力与流速的计算公式 管道的水力计算包括长管水力计算和短管水力计算。区别是后者在计算时忽略了局部水头损失,只考虑沿程水头损失。(水头损失可以 理解为固体相对运动的摩擦力) 以常用的长管自由出流为例,则计算公式为 H=(v^2*L)/(C^2*R), 其中H为水头,可以由压力换算, L是管的长度, v是管道出流的流速, R是水力半径R=管道断面面积/内壁周长=r/2, C是谢才系数C=R^(1/6)/n,

空气压缩机基础知识分解

空气压缩机基础知识分解 一、空气压缩机的分类 1、按结构型式分有回转式、活塞式、膜片式。 其中,活塞式和回转式中的螺杆式、滑片式三种形式为多见。国内活塞式占了产量的75%,而国外螺杆式则占90%以上,这三种空压机各有其优缺点。 螺杆压缩机由于转子型线复杂,制造成本较高,但体积小、重量轻,零件小是其优点。相同排气量的情况下,螺杆式压缩机要比活塞式价格高,其维修必须要专门的知识和经验。 一般来讲,由于活塞式压缩机为往复式机器,都有一定的震动, 2、根据原动机的不同分类: 有电动机驱动方式,柴油机驱动方式。大型电动式配有配电柜,柴油驱动式由电瓶起动,两种压缩机均有直联、皮带传动。 3、按润滑方式分: 无油式和有油润滑式。 4、按地基基础分: 固定式、有基础式、无基础式、移动式。 空压机是指压缩介质为空气的压缩机,它广泛地应用于各行各业,量大面宽,就专业压缩机制造厂家来言,空压机种类繁多,型式多样,小到汽车拖拉机用的气泵,大到开山挖矿用的大型空压机,价值由几千元到几十万元不等。对广大用户而言,如何对空压机进行选型和购置,不仅仅是一个合理使用资金问题,对日后空压机正常运转的经济性、可靠性也有直接联系。 二、螺杆式空气压缩机选购指南 一、压力的决定 1、压力越高,耗电越大。须考虑配管尺寸的大小及长度所造成的压力降,加上使用压力即为最下限压力。 2、列出各种机种的使用压力,如使用压力相差太多时,则须购置不同压力的空压机或使用增压机,不可降低压力使用,增加电费支出。 二、场地 1、须宽阔采光良好的场所,以利操作保养。 2、温度低、灰尘少、空气清净且通风良好的场所。 三、机型选择 1、计算出总实际使用风量再加上裕量为宜。 2、注意耗能比值,以求省电。即实际排气量(m3/min)除以实耗马力(HP),值越大越省电。 四、压缩空气品质与需求 压缩空气中含有大量水份,它对精密仪器、气动工具、气动设备、阀、仪表、管路等造成莫大的伤害,因为水份会造成锈蚀、堵塞仪器、降低成品品质、损坏设备而且损失大量的金钱用于修理维护工作,所以加装压缩空气清净系统确有其必要。如下图: 选择空压机的基本准则是经济性、可靠性与安全性。 一是应考虑排气压力的高低和排气量大小。 一般用途空气动力用压缩机排气压力为0.7MPa,老标准为0 .8MPa。目前社会上有一种排气压力为0.5MPa的空压机,从使用角度看是不合理的,因为对风动工具而言其压力余量太小,输气距离稍远一些就不能使用。另外,从设计角度看,这种压缩机设计为一级压缩,压比太大,易引起排气温度过高,造成气缸积炭,导致事故发生。如果用户所用的压缩机大于0.8MPa,一般要特别制造,不能采取强行增压的办法,以免造成事故。

空气压缩机排气量小压力不足的原因

空气压缩机排气量小/压力不足的原因 空气压缩机因电机功率和主机轴的长短,排气量会有大小,下面就用户提出的空气压缩机排气量不足的现象做一些简单的分析。 选型过小 很多用户刚刚开始不知道自己生产的具体用气情况,就根据自己的预估去盲目选型,造成排气压力上不来,低于额定的排气压力,不能满足工厂的正常用气。 可以先检查管路是否有漏气点,关闭储气罐后面的阀门,如果机组能够很快的升上压力,打开阀门,压力很快下降,并最终在一个压力点上,这时就可以确认,空气压缩机机组选型过小,机组排气量小于生产的实际用气量。 解决办法是增加新的机组,使空气压缩机的排气量大于用气量10-20%最科学。 工作压力(排气压力)的选型: 当用户准备选购空气压缩机时,首先要确定用气端所需要的工作压力,加上1-2 bar的余量,再选择空气压缩机的压力(该余量是考虑从空气压缩机安装地点到实际用气端管路距离的压力损失,根据距离的长短在1-2 bar之间适当考虑压力余量)。当然,管路通径的大小和转弯点的多少也是影响压力损失的因素,管路通径越大且转弯点越少,则压力损失越小;反之,则压力损失就越大。 因此,当空气压缩机与各用气端管路之间距离太远时,应适当放大主管路的通径。如果环境条件符合空气压缩机的安装要求且工况允许的话,可在用气端就近安装。 容积流量的选型: ① 在选择空气压缩机容积流量时,应先了解所有的用气设备的容积流量,把流量的总数乘以1.2(即放大20%余量);② 新项目上马可根据设计院提供的流量值进行选型;③ 向用气设备供应商了解用气设备的容积流量参数进行选型;④ 空气压缩机站改造可参考原来参数值结合实际用气情况进行选型。 合适的选型,对用户本身和空气压缩机设备都有益处。选型过大浪费,选型过小可能造成空气压缩机长期处于加载状态或用气不够或压力打不上去等弊端。 功率与工作压力、容积流量三者之间的关系: 在功率不变的情况下,当转速发生变化时,容积流量和工作压力也相应发生变化。例如:一台22kW的空气压缩机,在制造时确定工作压力为7bar,根据压缩机主机技术曲线计算转速,排气量为3.8m3/min;当确定工作压力为8bar时,转速必须降低(否则驱动电机会超负荷),这时,排气量为3.6m3/min。因为,转速降低了,排气也相应减少了,依此类推。 功率的选型是在满足工作压力和容积流量的条件下,供电容量能满足所匹配驱动电机的使用功率即可。 因此,选配空气压缩机的步骤是:先确定工作压力,再定相应容积流量,最后是供电容量。

水管管径计算公式

镀锌管是按内径计算的,内径15mm=4分管,20mm=6分,25mm=1寸;PPR管/铝塑管则是按外径计算的,16mm也就相当于3分管,20mm差不多相当于4分的镀锌管径一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。 流量=管截面积X流速=0.002827X管径^2X流速(立方米/小时)^2:平方。管径单位:mm 管径=sqrt(353.68X流量/流速) sqrt:开平方 饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。如果需要精确计算就要先假定流速,再根据水的粘度、密度及管径先计算出雷诺准数,再由雷诺准数计算出沿程阻力系数,并将管路中的管件(如三通、弯头、阀门、变径等)都查表查出等效管长度,最后由沿程阻力系数与管路总长(包括等效管长度)计算出总管路压力损失,并根据伯努利计算出实际流速,再次用实际流速按以上过程计算,直至两者接近(叠代试算法)。因此实际中很少友人这么算,基本上都是根据压差的大小选不同的流速,按最前面的方法计算电动调节水阀的流量特性是指空调水流过阀门的相对流量与阀门的相对开度之间的函数关系,目前工程上常用的主要有直线流量特性、等百分比流量特性的电动水阀。

单位行程变化所引起的相对流量变化与点的相对流量成正比关系的是等百分比流量特性水阀。该类型水阀可调范围相对较宽,比较适合具有自平衡能力的空调水系统,因此ba系统中大量应用的是等百分比流量特性的电动水阀。 *电动水阀的口径决定了阀门的调节精度。水阀口径选择过大,不仅增大业主投资成本,而且使阀门基本行程单位变大导致阀门调节精度降低,达不到节能目的;水阀口径选择过小,往往会出现即使水阀全部打开系统也难以达到设定温度值,无法实现控制目标。 那么如何计算选择电动水阀口径? 工程上我们常用的是通过计算电动阀门的流量系数(kv/cv)值来推导电动水阀口径,因为流量系数和水阀口径是成对应关系的,换句话说,流量系数定了,水阀口径大小也就确定了。 水阀流量系数(kv/cv)采用以下公式计算: cv=q/δp1/2 其中q-设备(空调/新风机组)的冷量/热量或风量δp-为调节阀前后压差比 理论上讲,在不同的空调回路中,δp值是不同的,是一个动态变化的值,取值范围一般在1-7之间。但由于在流量系数的计算过程中δp 是开根号取值,所以对cv计算影响并不是很大。因此,在工程设计中一般选δp值为4。

空气压缩机

第+六章概述 第一节空气压缩机的用途及类型 一、压缩空气的应用 自然界的空气是可以被压缩的,经压缩后压力升高的空气称为压缩空气。空气经压缩机压缩后,体积缩小,压力增高,消耗外界的功。一经膨胀,体积增大,压力降低,并对外做功。可以利用压缩空气膨胀对外做功的性质驱动各种风动工具和机械,从事生产活动,因此压缩空气被作为动力源得到广泛的应用。 在工业生产和建设中,压缩空气是一种重要的动力源,用于驱动各种风动机械和风动工具,如风钻、风动砂轮机、空气锤、喷砂、喷漆、溶液搅拌、粉状物料输送等;压缩空气也可用于控制仪表及自动化装置、科研试验、产品及零部件的气密性试验;压缩空气还可分离生产氧、氮、氢及其他稀有气体等。上述应用,都是以不同压力的压缩空气作为动力或作为原料。 二、空气压缩机 压缩机是一种使气体体积压缩、提高气体的压力并输送气体的机器。压缩机之所以能提高气体的压力,是借助机械作用增加单位容积内的气体分子数,使分子互相接近的方法来实现的。 工业上用得最广泛的压缩机按作用原理不同,可分为容积型和速度型两大类。 (一)容积型压缩机 容积型压缩机的原理是用可以移动的容器壁来减小气体所占据的封闭工作空间的容积,以达到使气体分子接近的目的,使气体压力升高。容积型压缩机在结构上又分往复式和回转式。 往复式压缩机主要有活塞式,它是靠活塞在气缸中作往复运动,通过吸、排气阀的控制,实现吸气、压缩、排气的周期变化。实现活塞往复运动的是曲柄连杆机构。 回转式压缩机主要有滑片式压缩机和螺杆式压缩机等。 (二)速度式空压机 速度式压缩机的原理是使气体分子在机械高速转动中得到一个很高的速度,然后又让它减速运动,使动能转化为压力能。速度式压缩机又分为离心式和轴流式两种。它们都是靠高速旋转的叶片对气体的动力作用,使气体获得较高的速度和压力,然后在蜗壳或导叶中扩压,得到高压气体。 用来压缩空气的压缩机,习惯上称为空气压缩机(简称空压机)。国产空压机有活塞式、滑片式、螺杆式、轴流式和离心式(或透平式)。目前,在一般空气压缩机站中,最广泛采用的是活塞式。螺杆式和滑片式空压机最近几年也在大力发展中。在大型空气压缩机站中,较多采用了离心式和轴流式空压机。 矿山生产中常用的空压机是活塞式和螺杆式。 三、空压机在矿山生产中的作用 在矿山生产中,除电能外,压缩空气是比较重要的动力源之一。目前矿山使用着各种风动机具,如凿岩机、风镐、锚喷机及气锤等,都是利用空压机产生的压缩空气来驱动机器做功。利用压缩空气作动力源比用电能有如下优点。 ( l )在有沼气的矿井中,使用压缩空气作动力源可避免产生电火花引起爆炸,比电力源安全; ( 2 )矿山使用的风动机具,如凿岩机、风镐等大部分是冲击式机械,往复速度高、冲击强,适宜切削尖硬的岩石; ( 3 )压缩空气本身具有良好的弹性和冲击性能,适应于变负载条件下作动力源,比电力有更大的过负荷能力;

流量与管径、压力、流速的一般关系

流量与管径、压力、流速的一般关系 2007年03月16日星期五13:21 一般工程上计算时,水管路,压力常见为0.1--0.6MPa,水在水管中流速在1--3米/秒,常取1.5米/秒。流量=管截面积X流速=0.002827X管内径的平方X流速 (立方米/小时)。 其中,管内径单位:mm ,流速单位:米/秒,饱和蒸汽的公式与水相同,只是流速一般取20--40米/秒。水头损失计算Chezy 公式 Chezy 这里: Q ——断面水流量(m3/s) C ——Chezy糙率系数(m1/2/s) A ——断面面积(m2) R ——水力半径(m) S ——水力坡度(m/m) 根据需要也可以变换为其它表示方法: Darcy-Weisbach公式 由于 这里: h f——沿程水头损失(mm3/s) f ——Darcy-Weisbach水头损失系数(无量纲) l ——管道长度(m) d ——管道内径(mm) v ——管道流速(m/s) g ——重力加速度(m/s2)

水力计算是输配水管道设计的核心,其实质就是在保证用户水量、水压安全的条件下,通过水力计算优化设计方案,选择合适的管材和确经济管径。输配水管道水力计算包含沿程水头损失和局部水头损失,而局部水头损失一般仅为沿程水头损失的5~10%,因此本文主要研究、探讨管道沿程水头损失的计算方法。 1.1 管道常用沿程水头损失计算公式及适用条件 管道沿程水头损失是水流摩阻做功消耗的能量,不同的水流流态,遵循不同的规律,计算方法也不一样。输配水管道水流流态都处在紊流区,紊流区水流的阻力是水的粘滞力及水流速度与压强脉动的结果。紊流又根据阻力特征划分为水力光滑区、过渡区、粗糙区。管道沿程水头损失计算公式都有适用范围和条件,一般都以水流阻力特征区划分。 水流阻力特征区的判别方法,工程设计宜采用数值做为判别式,目前国内管道经常采用的沿程水头损失水力计算公式及相应的摩阻力系数,按照水流阻力特征区划分如表1。 达西公式是管道沿程水力计算基本公式,是一个半理论半经验的计算通式,它适用于流态的不同区间,其中摩阻系数λ可采用柯列布鲁克公式计算,克列布鲁克公式考虑的因素多,适用范围广泛,被认为紊流区λ的综合计算公式。利用达西公式和柯列布鲁克公式组合进行管道沿程水头损失计算精度高,但计算方法麻烦,习惯上多用在紊流的阻力过渡区。 海曾—威廉公式适用紊流过渡区,其中水头损失与流速的 1.852次方成比例(过渡区水头损失h∝V1.75~2.0)。该式计算方法简捷,在美国做为给水系统配水管道水力计算的标准式,在欧洲与日本广泛应用,近几年我国也普遍用做配水管网的水力计算。 谢才公式也应是管道沿程水头损失通式,且在我国应用时间久、范围广,积累了较多的工程资料。但由于谢才系数C采用巴甫洛夫公式或曼宁公式计算确定,而这两个公式只适用于紊流的阻力粗糙区,因此谢才公式也仅用在阻力粗糙区。 另外舍维列夫公式,前一段时期也广泛的用做给水管道水力计算,但该公式是由旧钢管和旧铸铁管

相关文档
相关文档 最新文档