文档库 最新最全的文档下载
当前位置:文档库 › 丰田THS_系统牵引电机与升压转换器控制技术探讨

丰田THS_系统牵引电机与升压转换器控制技术探讨

丰田THS_系统牵引电机与升压转换器控制技术探讨
丰田THS_系统牵引电机与升压转换器控制技术探讨

交流电机调压调速系统(matlab)正文

1 设计任务 1、了解并熟悉双闭环三相异步电机调压调速原理及组成。 2、学习 SIMULINK,熟悉相关的模块功能。 3、进一步理解交流调压系统中电流环和转速环的作用。 2 设计要求 1、利用SIMULINK建立闭环调速系统仿真模型。 2、调试完成调压模块仿真、开环系统仿真、闭环系统仿真。 3 设计设备 1、计算机一台 2、MATLAB仿真软件 4 设计原理 调压调速即通过调节通入异步电动机的三相交流电压大小来调节转子转速的方法。理论依据来自异步电动机的机械特性方程式: 其中,p为电机的极对数; 为定子电源角速度; w 1 为定子电源相电压; U 1 R ’为折算到定子侧的每相转子电阻; 2 为每相定子电阻; R 1 L 为每相定子漏感; 11 L 为折算到定子侧的每相转子漏感; 12 S为转差率。 图1 异步电动机在不同电压的机械特性

由电机原理可知,当转差率s 基本保持不变时,电动机的电磁转矩与定子电压的平方成正比。因此,改变定子电压就可以得到不同的人为机械特性,从而达到调节电动机转速的目的。 4.1 调压电路 改变加在定子上的电压是通过交流调压器实现的。目前广泛采用的交流调压器由晶闸管等器件组成。它是将三个双向晶闸管分别接到三相交流电源与三相定子绕组之间通过调整晶闸管导通角的大小来调节加到定子绕组两端的端电压。这里采用三相全波星型联接的调压电路。 图2 调压电路原理图 4.2 开环调压调速 开环系统的主电路由触发电路、调压电路、电机组成。原理图如下: Ua Ub Uc T2 T3 T5 T4 T6 R R R N T1

图3 开环调压系统原理图 AT为触发装置,用于调节控制角的大小来控制晶闸管的导通角,控制晶闸管输出电压来调节加在定子绕组上的电压大小。

转速开环恒压频比控制的交流异步电动机调速系统典型例子

课题:转速开环恒压频比控制的交速 姓名:谢海波 学号:P091812925 专业班级:电气工程及其自动化(3)班 西北民族大学电气工程学院 转速开环恒压频比控制的交流异步电动机调速系统

摘要:转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都有这项功能,恒压频比的转速开环工作方式能满足大多数场合交流电动机调速控制的要求,并且使用方便,是通用变频器的基本模式。采用恒压频比控制,在基频以下的调速过程中的转差率基本不变,所以电动机的机械特性较硬,电动机有较好的调速性能。异步电动机的变压变频调速系统一般简称为变频调速系统。由于在调速时转差功率不随转速而变化,调速范围宽,无论高速还是低速时效率都较高,在采取一定的技术措施后能实现高动态性能,可与直流调速系统媲美。因此现在它的应用面很广,目前交流异步电动机的调速系统已经广泛应用于数控机床、风机、泵类、传送带、给料系统、空调器等设备的电力源和动力源,并起到了节省电能,提高设备自动化,提高产品质量的良好效果.下文在详细分析交流异步电动机变频调速的原理基础上,应用MATLAB/SIMULINK仿真软件,实现了转速开环恒压频比控制的交流异步电动机调速系统的仿真,并且详细分析了仿真结果。 关键词:异步电动机;变频调速;MATLAB 仿真 1.仿真系统说明 本文对交流系统进行建模仿真,可以更加熟悉交流调速系统的结构,掌握各种调速系统的优缺点,选择合理的方案,解决实际中的问题。在进行电动机调速时,常须考虑的一个重 要因素,就是希望保持电动机中每极磁通量为额定值不变。如果磁通太弱,没有充分利用 电机的铁芯,是一种浪费;如果过分增大磁通,又会使铁心饱和,从而导致过大的励磁电流,严重时会因绕组过热而损坏电机。对于直流电机,励磁系统是独立的,只要对电枢反应有恰 当的补偿,保持不变是很容易做到的。在交流异步电机中,磁通由定子和转子磁动势合成产生,要保持磁通恒定就要费一些周折。 2.变频调速控制方式和原理 转速开环恒压频比控制是交流电动机变频调速最基本的控制方式,一般变频调速装置都带有这项功能,在异步电动机调速时,总希望保持主磁通为额定值。由异步电机定子每相电动势有效值可知,如果略去定子阻抗下降,有 (1) 由(1)式知,若定子端电压不变,随着升高,将减小。又由转矩公式 知,在相同的情况下,减小会导致电动机输出转矩下降,严重时会使电动机堵转。因此, 在变频调速过程中应该同时改变定子电压和频率,以保持主磁通不变。而如何按比例改变电压和频率,要分基频以下和基频以上两种情况。 2.1基频以下调速 恒定压频比调速要求;当相对较高时,可忽略定子电阻那么最大实用转

论纯电动客车驱动电机冷却系统匹配及控制

论纯电动客车驱动电机冷却系统匹配及控制 摘要:本文主要对论纯电动客车驱动电机冷却系统匹配及控制进一步分析了解。新能源汽车产业作为我国汽车工业的发展战略,能够有效地解决日益严峻的能源 危机与环境污染问题。 关键词:纯电动客车;驱动电机;冷却系统;控制;现状 引言: 纯电动客车因具有零排放、低噪音等突出特点也成为各大客车生产商着重发 展的车型。纯电动客车驱动电机作为汽车唯一的动力源,其可靠性直接影响着电 动汽车的性能。为了防止由于温度过高的原因使得电机永磁体产生退磁现象,甚 至影响到电机及其控制器的寿命和整车安全性,驱动电机及其控制系统的温度控 制显得尤为重要。因此,对纯电动客车驱动电机冷却系统进行合理的匹配并制定 科学有效的控制策略具有重要工程实际意义。 一、纯电动客车发展现状 随着国家对新能源汽车产业的大力推广,补贴优惠政策相继出台,推动了我 国纯电动汽车行业的发展,各大汽车企业纷纷制定新能源汽车发展规划,电动汽 车产品产销量逐年稳步提升,纯电动客车现已成为我国城市公交、中短途客运、 观光旅游等众多领域备受关注的新兴产品。 纯电动汽车所使用的驱动电机主要可分为:直流电机、异步电机、永磁同步 电机、开关磁阻电机。早期电动汽车大多采用直流电机作为能量转换装置,直流 电机具有控制容易、调速方便、技术较为成熟等优点,但是机械结构较为复杂, 其瞬时过载能力较差,长时间工作损耗较大,维护成本高,运转时电刷易使转子 产热,并产生高频电磁干扰。异步电机主要由定子、转子、端盖、轴承基座风扇 等几部分组成。相对于永磁同步电机其突出优点是成本低、制造简单、转速范围广、可靠性强、维修方便。但由于异步电机的转速与其旋转磁场转速有一定的转 差关系,其调速性能较差。开关磁阻电机作为一种新型驱动电机,其结构简单、 转速范围广、整个转速范围内效率高、系统可靠性高、兼有直流、交流两种电机 的优点。其缺点是存在转矩脉动,转子上的转矩有一系列脉冲转矩的叠加,因双 凸极结构和磁路饱和非线性影响,合成转矩有一定的谐波分量,影响开关磁阻电 机的低速性能。永磁同步电机(PMSM)具有结构坚固、功率密度大、电机效率高、转矩密度高、控制精度高、良好的转矩平稳性及低振动噪声的特点。在新能 源汽车驱动方面具有很高的应用价值。其缺点是永磁体成本高、对温度敏感,在 温度较高时会产生不可逆的退磁现象影响其使用性能。 二、电动汽车驱动电机冷却系统简述 根据冷却系统所选用冷却介质不同,驱动电机的冷却形式可以分为风冷和液 冷两种方案。风冷可分为自然风冷和强迫风冷。液冷方案常用水、油等作为冷却液。由于纯电动客车驱动电机安装位置特殊,风冷不能满足其散热需求,目前普 遍采用液冷方式,包括油冷和水冷;冷却油的导热系数及热容量均小于水,且成 本较高。因此,纯电动客车驱动电机多采用冷却液冷却的形式。冷却液的主要成 分为:乙二醇、防腐蚀添加剂、抗泡沫添加剂、水。在电机机壳体中设计出水道 结构,通过冷却液在水道中的流动与机壳进行换热从而实现冷却功能。根据电机 水道布置方式的不同有以下四种结构方案:螺旋结构、半螺旋结构、圆周结构、 轴向结构。由于电动客车驱动电机散热环境的特殊性,电机的温度控制对冷却系 统有较高的要求。因此,结合电机布置方案和电动车行驶工况,设计有效的冷却

交流电动机调速系统的分类

交流电动机调速系统的分类 1.同步电动机调速系统 同步电动机只能依靠改变频率来进行调速,而根据频率控制方式的不同,可把同步电动机调速系统分为他控式和自控式两种类型。 如果用独立的变频装置作为同步电动机的变频电源进行调速,则称之为他控式同步电动机调速系统,大多用于类似永磁同步电动机的小容量场合。 采用频率闭环方式的同步电动机调速系统称为自控式同步电动机调速系统,它是用电动机轴上安装的位置检测器来控制变频装置触发脉冲,使同步电动机工作在自同步状态。自控式同步电动机调速系统又可细分为负载换向自控式同步电动机调速系统和交一交变频供电的自控式同步电动机调速系统。 负载换向自控式同步电动机调速系统叉称为x换向器电机,它的主电路采用交一直-交电流型变流器,利用同步电动机电流超前电压的特点,使逆变器的晶闸管工作在自然换向状态。这种系统又被称为LCI(Load Commutated Inve11er),它的容量已达到数万千伏安,电压达万伏以上。 交一交变频同步电动机调速系统的逆变器由晶闸管组成,采用交一交循环变流结构和矢量控制技术,具有优良的动态性能,广泛地用于轧钢机主传动系统中。交一交变频同步电动机调速系统的容量很大,但调频范围只能限制在工频的三分之一左右。 2.异步电动机调速系统 在异步电动机中,从定子传入转子的电磁功率可以分成两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比,它的去向是调速系统效率高低的标志。就转差功率的处理方式的不同,异步电动机调速系统可分成三大类。 (1)转差功率消耗型调速系统。这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,因而效率也随之降低。降电压调速、电磁转差离合器调速及绕线异步电动机转子串电阻调速这三种方法都属于这一类。 (2)转差功率回馈型调速系统。这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线异步电动机转子双馈调速即属于这一类。 (3)转差功率不变型调速系统。在这种调速系统中,转差功率仍旧消耗在转子里,但小论转速高低,转差功率基本不变。如变极对数调速、变频调速两种调速方法即属于这一类。 2.异步电动机转差回馈型调速系统 双馈调速足指将电能分别馈入异步电动机的定子绕组和转子绕组,通常将定子绕组接入工频电源,将转子绕组接到频率、幅值、相位和相序都可以调节的变频电源。如果改变转子绕组电源的频率、幅值、相位和相序,就可以调节异步电机的转矩、转速、转向及和定子侧的无功功率。这种双馈调速的异步电动机可以超同步或亚同步运行,不但可以工作在电动状态,而且可以工作在发电状态。 因为交一交变流器采用晶闸管自然换向方式,结构简单,可靠性高,而且交,交变流器能够直接进行能量转换,效率高,所以,在双馈调速方式中采用交.交变流器作为转子绕组的变频电源是比较合适的。 绕线式异步电动机串级调速系统是从定子侧馈入电能,从转子侧馈出电能的系统。从广义上说,它也是双馈调速系统的一种。 在双馈调速中,所用变频器的功率仅占电动机总功率的一小部分,可以大大降低变频器的容量,从而降低了调速系统的成本,此外,双馈电机还可以调节功率因数,由于具有这些优点,双馈电机特别适合应用于大功率的风机、水泵类负载的调速场合;双馈调速方式在风力、

交流异步电动机变频调速系统设计样本

中南大学 《工程训练》 ——设计报告 设计题目:异步电机变频调速 指引教师:黎群辉 设计人:冯露 学号: 专业班级:自动化0906班 设计日期:9月

交流异步电动机变频调速系统设计 摘要 近年来,交流电机变频调速及其有关技术研究己成为当代电气传动领域一种重要课题,并且随着新电力电子器件和微解决器推出以及交流电机控制理论发展,交流变频调速技术还将会获得巨大进步。 本文对变频调速理论,逆变技术,SPWM产生原理进行了研究,在此基本上设计了一种新型数字化三相SPWM变频调速系统,以8051控制专用集成芯片 SA4828为控制核心,采用IGBT作为主功率器件,同步采用EXB840构成IGBT驱动电路,整流电路采用二极管,可使功率因数接近1,并且只用一级可控功率环节,电路构造比较简朴。 V控制,同步,软件程序使得参数输入和变频器运营方式变本文在控制上采用恒 f 化极为以便,新型集成元件采用也使得它开发周期短。 此外,本文对SA4828三相SPWM波发生器使用和编程进行了详细简介,完毕了整个系统控制某些软硬件设计。 V控制,SA4828波形发生器 核心字:变频调速,正弦脉宽调制, f

目录 摘要................................................ 错误!未定义书签。 1.1 研究目与意义 (1) 1.2本次设计方案简介 (2) 1.2.1 变频器主电路方案选定 (2) 1.2.2 系统原理框图及各某些简介 (3) 1.2.3 选用电动机原始参数 (4) 2交流异步电动机变频调速原理及办法 (5) 2.1 异步电机变频调速原理 (5) 2.2 变频调速控制方式及选定 (6) V比恒定控制 (6) 2.2.1 f 2.2.2 其他控制方式................................ 错误!未定义书签。3变频器主电路设计. (13) 3.1 主电路工作原理 (13) 3.2 主电路各某些设计 (13) 3.3. 采用EXB840IGBT驱动电路 (15) 4控制回路设计 (16) 4.1 驱动电路设计 (16) 4.2 保护电路......................................... 错误!未定义书签。 4.2.1 过、欠压保护电路设计........................ 错误!未定义书签。 4.2.2 过流保护设计................................ 错误!未定义书签。 4.3 控制系统实现 (19) 5变频器软件设计....................................... 错误!未定义书签。 5.1 流程图 (22)

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

(交流电机变频调速系统设计)

机电传动与控制课程综合训练三 一、综合训练项目任务书 综合训练项目:交流电机变频调速系统 目的和要求:加强对交流变频调速系统及变频器的理解;应用交流变频调速系统及变频器解决交流电机变频调速问题。提高分析和解决实际工程问题的能力。促成“富于探索精神,具有较强的自学能力、开拓创新意识和敏锐的观察事物以及分析处理事物的能力”的目标实现。 成果形式:交流电机变频调速系统设计说明书。 相关参数:参看《机电传动控制》(第五版),冯清秀等编著,华中科技大学出版社,P291~316。 一、综合训练项目设计内容 1.变频调速系统 1.1 三相交流异步电动机的结构和工作原理 三相交流异步电动机是把电能转换成机械能的设备。一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。电动势的方向由右手定则来确定。因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。在电动势的作用下,闭合的导条中就产生电流。该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。由电磁力进而产生电磁转矩,转子就转动起来。 1.2 变频调速原理 变频器可以分为四个部分,如图1.1所示。 通用变频器由主电路和控制回路组成。给异步电动机提供调压调频电源的电力变换部分,称为主电路。主电路包括整流器、中间直流环节(又称平波回路)、逆变器。

图1.1 变频器简化结构图 ⑴整流器。它的作用是把工频电源变换成直流电源。 ⑵平波回路(中间直流环节)。由于逆变器的负载为异步电动机,属于感性负载。无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。 ⑶逆变器。与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。 ⑷控制回路。控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。控制方式有模拟控制或数字控制。 2.系统的控制模型 本系统的结构如图1.2所示。

基于MATLAB-SIMULINK的交流电动机调速系统仿真毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

电动机水冷却结构设计说明

煤矿井下用隔爆型三相异步电动机水冷却结构设计 瑞杰 2008级机电一体化专业 摘要对煤矿井下用隔爆型三相异步电动机水冷却系统及结构的设计进行探讨。围绕电动机温度场分析、热平衡计算、冷却系统水流参数计算、冷却水箱结构设计几个方面,并结合实践阐述了相关设计理论和设计方法。 关键词煤矿井下用隔爆型三相异步电动机:水冷却系统;水冷式结构 0 引言 煤矿井下设备采用的隔爆型三相异步电动机其冷却系统常采用水冷式结构(通常为ICW37)。这是基于煤矿井下特殊的环境条件和煤矿设备特殊的运行状况决定的。煤矿井下水冷式电动机具有以下特点: (1)煤矿井下作业场狭窄,设备留给时机的安装空间较小,环境空气流动性差。电动机采用风(空气)冷却结构,效果受到很大影响。尤其是在采掘面,当煤块、粉尘等堆积物阻塞电动机外部的通风散热通道时,电动机通风散热状况将更加恶劣。而采用水冷静却结构,则避免了这个缺点。煤矿井下一般不缺压力源,水的导热系数远远大于空气。只要时机的水冷静系统流道结构设计合理,其冷却效果和可靠性优于风冷静式电动机。

(2)煤矿井用电动机因受设备安装要求限制,往往要求有较小的外形体积和简单的外形结构。水冷式电动机结构上没有风扇、风罩、散热片等零件,并且水道布置在封闭的壳体之,因此其外形简约,体积小于相同功率的风冷式电动机。 (3)煤矿井下采掘、运输等设备,因其特殊的工作条件,往往负荷波动很大,所用电动机超负荷运行状况进有发生,造成电动机温升增高。另外在设计这些设备使用的电动机时,考虑到其外形体积和功率大小两方面要求,往往采用减小电动机定、转子铁心外径,加长定、转子铁心长度的设计方案。由典型的时机温升设计理论可知,铁心较长的时机其热负荷往往偏高,温升计算误差也较大,这两方面的原因致使电动机的温升处于不可靠状态。尽管采用提高电动机绝缘等级的方法进行弥补,但电动机使用寿命也将大打折扣。而水冷式结构的电动机具有较好的冷却效果,可弥补电动机温升设计误差及超负荷运行带来的缺点。 (4)水冷式电动机无风扇、风罩等零件,因此不会产生风摩损耗和噪声,并且冷却水箱还具有吸振减振效果,这些又形成了电动机效率较高、噪声低、振动小的优点。 从以上分析可以看出水冷却系统在煤矿井下用电动机上的重要作用,因此对其系统和结构的设计研究必要。目前国许多电机厂家都积累了各自在此方面的宝贵经验,亟待进行理论性的整理和提高。本文试对此问题展开初步探讨。

《交流调速系统》课后习题答案

《交流调速系统》课后习题答案 第 5 章 闭环控制的异步电动机变压调速系统 5-1 异步电动机从定子传入转子的电磁功率m P 中,有一部分是与转差成正比的转差功率s P ,根据对s P 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。 答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统 效率高低的标志。从这点出发,可以把异步电机的调速系统分成三类 。 1)转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中,降电压调速、转差离合器调速、转子串电阻调速都属于这一类。在三类异步电机调速系统中,这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的降低的(恒转矩负载时)。可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。 2)转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速属于这一类。无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。 3)转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。其中变极对数 调速是有级的,应用场合有限。只有变压变频调速应用最广,可以构成高动态性能的交流调速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下,设备成本最高。 5-2 有一台三相四极异步电动机,其额定容量为5.5kW ,频率为50Hz ,在某一情况下运行,自定子方面输入的功率为6.32kW ,定子铜损耗为341W ,转子铜损耗为237.5W ,铁心损耗为167.5W ,机械损耗为45W ,附加损耗为29W ,试绘出该电动机的功率流程图,注明各项功率或损耗的值,并计算在这一运行情况下该电动机的效率、转差率和转速。 解:87.032 .65.5==η,因为rpm 1500250606010=?==p f n , 由已知条件得电磁功率为kw 8115.5=m P ,所以有041.08115 .52375.0== s 所以rp m 1439)041.01(150000=-=-=sn n n

用单片机控制的电机交流调速系统设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 用单片机控制的电机交流调速系统设计 摘要 单片机控制的变频调速系统设计思想是用转差频率进行控制。通过改变程序来达到控制转速的目的。由于设计中电动机功率不大,所以整流器采用不可控电路,电容器滤波;逆变器采用电力晶体管三相逆变器。系统的总体结构主要由主回路,驱动电路,光电隔离电路,HEF4752大规模集成电路,保护电路,Intel系列单片机,Intel8253定时记数器,Intel8255可编程接口芯片,Intel8279通用键盘显示器,IO接口芯片,CD4527比例分频器和测速发电机等组成。回路中有了检测保护电路就可以使整个系统运行的可靠性有了保障。非传统的CMOS变革了存储器技术。直到现在,我们仍然依靠DRAM 作为主要的存储体。不幸的是,随着芯片的缩小,只有芯片外围速度上的增长——处理器芯片和它相关的缓存速度每两年增加一倍。这就是存储器代沟并且是人们焦虑的根源。存储技术的一个可能突破是,使用一种非传统的CMOS管,在计算机整体性能上将导致一个很大的进步,将解决大存储器的需求,即缓存不能解决的问题。 关键词:MCS-51单片机;HEF4752;8253定时器;晶闸管;整流器

Exchange the speed of adjusting to design systematically with the electrical machinery that the one-chip computer controls ABSTRACT Frequency conversion that one-chip computer control transfer speed systematic design philosophy with transfer to difference frequency control. Achieve the goal of controlling rotational speed through changing the procedure . Because the motor is not big in power in the design, the rectifier can not adopt controlledly the circuit, the condenser strains waves; Going against the becoming device adopts three phases of the electric transistor to go against the becoming device. The systematic ensemble architecture is by the main return circuit mainly, drive the circuit, the photo electricity isolates the circuit, HEF4752 large scale integrated circuit, protects the circuit, the Intel series one-chip computer, Intel8253 timing count device of,Intel8255 programmable interface chip,Intel8279 keyboard not in common use display, IO interface chip, CD4527 proportion frequency division device and tests the speed such composition as the generator ,etc.. Have the dependability that can make the whole system operate of measuring and protecting the circuit to the return circuit.Unconventional CMOS could revolutionalize memory technology. Up to now, we DRAMs for main memory. Unfortunately, these are only increasing in speed marginally as shrinkage continues, whereas processor chips and their associated cache memory continue to double in speed every two years. The result is a growing gap in speed between the processor and the main memory. This is the memory gap and is a current source of anxiety. A breakthrough in memory technology, possibly using some form of unconventional CMOS, could lead to a major advance in overall performance on problems with large memory requirements, that is, problems which fail to fit into the cache.

高压电机冷却分类及冷却系统分析

高压电机冷却分类及冷却系统分析 内容简介:根据空—空型热管式冷却器的研制开发成功经验,我们确信完全可以进一步开发电动机水—空型热管式冷却器和汽轮发电机用的水—空型热管式气体(氢气或空气)冷却器,扩大热管式冷却器在电厂电机设备的应用范围。 电机冷却器是电机的主要换热部件,是维持电机运行的重要产品,直接影响电机的温升、出力和寿命,所有的汽轮发电机、水轮发电机、交直流电机都要使用电机冷却器,应用范围极其广泛,在国计民生中起到重要的作用。 一台放电机的冷却器排风量为20M^3/MIN截面积为0.085M^3那么风速可以达到多少?每秒通过的风量等于20/60=0.33立方米。通过的截面积等于0.085平方米。所以一秒内的平均风速等于通风量除以截面积等于0.33/0.085=4米/秒。 高压电机的冷却方式分很多种: 1.自冷却IC411,既TEFC; 2.强制冷却IC416,既TEBC或者TEBV; 3.空空冷,IC611; 4.空水冷,IC81W; 以下几种为独立冷却设计: 1.空水冷,IC86W;

2.空空冷,IC666; 以下是通过管道的冷却设计: 1.通过管道进行自冷却,IC31; 2.通过管道的独立冷却设计,IC37; 除此之外就是开放式自冷却! 高压电机的冷却方式很多,常见的就是以上几种,要根据高压电机的环境进行选择,包括电机的机长,机高,装的地方能否满足,并且要确定哪种冷却方式能够满足。 电机冷却系统故障的检修方法: (1)合理安装电机外部冷却管路,定期进行防腐,加强外部冷却管路的巡视工作,减少冷却介质的流失。 (2)提高冷却水水质的质量,减少冷却水杂质腐蚀管道,冷却通道堵塞的机率。 (3)如果是钢质循环冷却散热管漏水采用电(气)焊补焊即可,如果是铝质循环冷却散热管漏水,需采用冲压、填塞、密封的现场检修方法,解决水冷式电机铝质循环冷却散热管漏水。此现场检修方法是通过在钢件水箱体与铝制循环冷却散热管结合处的缝隙内 注入胶水,有效地避免了钢和铝的直接接触,防止了钢铝结合处的氧化作用,同时该检修方法将整个铆压结合处全部密封起来,有效的避免了循环水对接头处的腐蚀,降低了设备的检修费用,提高了工作效率,减小了维修量。

第六章 交流异步电动机变压变频调速系统精讲

第六章 交流异步电动机变压变频调速系统 本章主要问题: 1. 在变频调速中变频时为什么要保持压频比恒定? 2. 交-直-交电压源型变频器调压、调频的有哪几种电路结构,并说明各种电压结构的优缺点。 3. SPWM 控制的思想是什么? 4. 什么是1800导通型变频器?什么是1200导通型变频器? 5. 电压、频率协调控制有几种控制方式,各有哪些特点? 6. 在转速开环恒压频比控制系统中,绝对值单元GAB 的作用?函数发生器GFC 的作用?如 何控制转速正反转。 7. 总结恒11 ωU 、恒1ωg E 、恒1ωr E 三种控制方式的特点。 ———————————————————————————————————————— §6-1 交流调速的基本类型 要求:掌握交流调速哪几种基本类型有以及各种调速方法的特点。 目的:能根据不同应用场合选择出相应的调速方式。 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(交流调速的基本类型、变频调速的基本要求) 思考: 1. 交流异步电动机调速的方式有哪几种?并写出各方式的优缺点? 2. 在变频调速中变频时为什么要保持压频比恒定? 教学设计:交流调速的基本类型采用多媒体课件讲授,用大量的实例,说明几种类型的应用场合。 复习感应电动机转速表达式: )1(60)1(1 0s n f s n n p -= -= 异步电动机调速方法:?? ?? ??? ?????? ? ??型变频调速:绕线式、笼:绕线式串级调速(转差电压)电磁转差离合器调转子电阻:绕线式、调压(定子电压)变转差率调速变极调速:笼型异步机异步电动机 §6-2 变频调速的构成及基本要求 目的、教学要求:掌握变频调速时基频以下和基频以上调速的特点 重点、难点:变频调速时基频以下和基频以上调速的特点 主要内容(变频调速的基本要求)

交流异步电动机变频调速系统设计

湖南工程学院应用技术学院毕业设计说明书 目:题 专业班级:号:学学生姓名: 完成日期: 指导教师: 评阅教师:

2011 年 6 月

院术学学院应用技湖南工程务任书(论文)毕业设计 设计(论文)题目:交流异步电机的调速控制系统设计 姓名专业班级学号 指导老师职称教研室主任 一、基本任务及要求: 主要设计完成可控硅交流调压调速系统的设计,主要完成: (1)交流调压调速的原理和调压调速的静、动态性能分析; (2)系统组成与工作原理; (3)主电路与控制电路设计; (4)元器件选型及参数计算; (5)软件设计; (6)系统应用与调试说明。 二、进度安排及完成时间: (1)第一至第三周:查阅资料,撰写文献综述和开题报告。 (2)第四周至第五周:毕业实习。 (3)第六周至第七周:交流调压调速的原理和调压调速的静、动态性能分析。 (4)第八周至第九周:系统组成与工作原理;主电路与控制电路设计。

(5)第十周至第十二周:元器件选型及参数计算;软件设计;系统应用与调试说明。 (6)第十三周至第十五周:撰写毕业设计论文。 (7)第十六周:毕业设计答辩 目录 摘 要 .................................................................. .... I ABSTRACT ............................................................ ..... II 第1章绪 论 (1) 1.1 变频调速技术简介 ................................................. 1 1.2 变频器的发展现状和趋 势 (2) 1.2.1 变频器的发展现状 ............................................. 2 1.2.2 变频器技术的发展趋势 ......................................... 2 1.2 研究的目的与意义 ................................................. 3 1.3 本次设计方案简 介 (4) 1.3.1 变频器主电路方案的选定 ....................................... 4 1.3.2 系统原理框图及各部分简介 ..................................... 5 1.3.3 选用电动机原始参数 ........................................... 6 第2章交流异步电动机变频调速原理及方 法 (7)

第五篇交流电机调速系统实验

第五章交流电机调速系统实验 实验一双闭环三相异步电机调压调速系统实验 一、实验目的 (1)了解并熟悉双闭环三相异步电机调压调速系统的原理及组成。 (2)了解转子串电阻的绕线式异步电机在调节定子电压调速时的机械特性。 (3)通过测定系统的静态特性和动态特性,进一步理解交流调压系统中电流环和转速环的作用。 二、实验所需挂件及附件

三、实验线路及原理 异步电动机采用调压调速时,由于同步转速不变和机械特性较硬,因此对普通异步电动机来说其调速范围很有限,无实用价值,而对力矩电机或线绕式异步电动机在转子中串入适当电阻后使机械特性变软其调速范围有所扩大,但在负载或电网电压波动情况下,其转速波动严重,为此常采用双闭环调速系统。 双闭环三相异步电机调压调速系统的主电路由三相晶闸管交流调压器及三相绕线式异步电动机组成。控制部分由“电流调节器”、“速度变换”、“触发电路”、“正桥功放”等组成。其系统原理框图如图7-1所示:整个调速系统采用了速度、电流两个反馈控制环。这里的速度环作用基本上与直流调速系统相同,而电流环的作用则有所不同。在稳定运行情况下,电流环对电网扰动仍有较大的抗扰作用,但在启动过程中电流环仅起限制最大电流的作用,不会出现最佳启动的恒流特性,也不可能是恒转矩启动。 异步电动机调压调速系统结构简单,采用双闭环系统时静差率较小,且比较容易实现正、反转,反接和能耗制动。但在恒转矩负载下不能长时间低速运行,因低速运行时转差功率 P s=SP M全部消耗在转子电阻中,使转子过热。

图1-1 双闭环三相异步电机调压调速系统原理图 四、实验内容 (1)测定三相绕线式异步电动机转子串电阻时的机械特性。 (2)测定双闭环交流调压调速系统的静态特性。 (3)测定双闭环交流调压调速系统的动态特性。 五、预习要求 (1)复习电力电子技术、交流调速系统教材中有关三相晶闸管调压电路和异步电机晶闸管调压调速系统的内容,掌握调压调速系统的工作原理。 (2)学习有关三相晶闸管触发电路的内容,了解三相交流调压电路对触发电路的要求。 六、思考题

三相异步电动机变频调速系统设计及仿真

天津职业技术师范大学 课程设计说明书题目:三相异步电动机变频调速系统设计及仿真 指导老师: 班级:机检1112班 组员

天津工程师范学院 课程设计任务书 机械工程学院机检1112 班学生 课程设计课题: 三相异步电动机变频调速系统设计及仿真 一、课程设计工作日自 2015 年 1 月 12 日至 2015 年 1 月 23 日 二、同组学生: 三、课程设计任务要求(包括课题来源、类型、目的和意义、基本要求、完成时 间、主要参考资料等): 1、目的和意义 交流调速是一门重要的专业必修课,它具有很强的实践性。为了加深对所学课程(模拟电子技术、数字电子技术、电机与拖动、电力电子变流技术等)的理解以及灵活应用所学知识去解决实际问题,培养学生设计实际系统的能力,特开设为期一周的课程设计。 2、具体内容 写出设计说明书,内容包括: (1)各主要环节的工作原理; (2)整个系统的工作原理(包括启动、制动以及逻辑切换过程); (3)调节器参数的计算过程。 2.画出一张详细的电气原理图; 3.采用Matlab中的Simulink软件对整个调速系统进行仿真研究,对计算得到的调节 器参数进行校正,验证设计结果的正确性。将Simulink仿真模型,以及启动过程中的电流、转速波形图附在设计说明书中。 4、考核方式 1.周五采用口试方式进行考核(以小组为单位),成绩按百分制评定。其中小组分数占60%,个人成绩占40%(包括口试情况和上交材料内容); 2.每天上午8:30--11:30在综合楼226房间答疑。 五、参考文献 1、陈伯时.电力拖动自动控制系统----运动控制系统(第3版).机械工业出版社,2003 指导教师签字:教研室主任签字:

电动汽车电机及控制器性能测试系统

电动汽车电机及控制器性能测试系统 1 电机驱动系统的作用 电机驱动系统是电动汽车的核心,它与整车动力性能的好坏密切相关,是电动汽车关键技术之一。电机驱动系统由电动机和驱动控制器两部分组成。电动机是一种将电能转变为机械能的装置,为满足整车动力性能的需求,要求其具有瞬时功率大、过载能力强、加速性能好、使用寿命长、调速范围广、减速时实现再生制动能量回馈、效率高、可靠性高等特点。驱动控制器是将电池的电量转变为适于电动机运行的另一种电能变换控制装置。通过这种变换和控制使电动机处于最佳工作状态,以满足电动汽车实际行驶工况的需要,驱动控制器要求结构简单、控制精度高、动态响应好、系统高可靠、成本低。驱动电机及其控制器的性能好坏直接决定车辆的品质好坏,所以在试验室中正确地进行试验是必要的。 2 电机控制器性能测试设备 2.1 实验设备目前常用的测功机主要有直流电力测功机、交流电力测功机、电涡流测功机和水力测功机。直流电力测功机:由直流电机、测力计和测速发电机组合而成。直流电机的定子由独立的轴承座支承。它可以在某一角度范围内自由摆动。机壳上带有测力臂,它与测力计配合,可以检测定子所受到的转矩。转轴上的转矩可以由定子上量测。与直流电机类似,直流测功机调速性能好,控制简单,但由于换向器的原因,不适合高速运行,而且大功率的测功机相对于其他类型,体积较大。不适用于动力电机测试。交流电力测功机:由 1 台三相交流电动机和测

力计、测速发电机组成。它的测功原理与直流测功机相同,但不存在换向问题,结构简单,可靠性高。目前交流测功机在动、静态性能上已经得到了很大提高。电力测功机既可以进行电动性能测试,也可以进行馈电性能的测试。 2.2 测试方法 通过安装夹具及联轴器将被测电机与测功机连接,适当调整使轴与轴的对中度符合试验要求,对个别超高速电机,为防止试验过程中因为轴振动或对中不够精确引起轴承发热失效或者损坏电机的情况,可以考虑在适当位置安装振动传感器及温度传感器,对试验过程中局部情况实时监测,一旦有异常立即停止。针对标准的要求,试验时测试额定及峰值负载下的转速,转矩和效率特性,以及额定负载下的馈馈电特性。温升试验也是在台架上进行,分别测量电机绕组的温升和控制器的温升。电机和控制器都配备有散热系统,或水冷或风冷。电机及控制器从冷机状态下启动开始工作,温度会随之慢慢增加,在固定负载的情况下,温度最终会趋于稳定,这段时间内温度的变化量就是温升值。标准中有3种方法:电阻法、埋置检温计(ETD法和温度计法。试验电机不宜拆开。因此选用电阻法比较适合,通过比较试验前后环境温度、冷却水温度以及绕组直流电阻的变化来计算电机不同工况下的温升值。控制器的温升通过温度计即可测量。温升值根据不同产品的工作制要求进行测试。用在不同类型系统上的电机应选用不同的工作制,比如纯电动汽车,串联式、并联式以及混联式混合动力汽车,PLUG-IN混合动力汽车等不同类型的应用。在该项目中,标准里除了对温升值的要求外,对试验过程中电

相关文档
相关文档 最新文档