文档库 最新最全的文档下载
当前位置:文档库 › 带孔平板的应力集中分析

带孔平板的应力集中分析

带孔平板的应力集中分析
带孔平板的应力集中分析

有限元方法

Finite Element Method

——基于ANSYS的有限元建模与分析

姓名吴威

学号20100142

班级10级土木茅以升班2班

西南交通大学

2014年4月

综合练习——带孔平板的应力分布及应力集中系数的计算一、问题重述

计算带孔平板的应力分布及应力集中系数。

二、模型的建立与计算

在ANSYS中建立模型,材料的设置属性如下

分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。

建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。

然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,四分之一模型分别用单元尺度为2.5cm左右的粗网格和单元尺度为1cm左右的细网格计算。

(1) 完整模型的计算

①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为5cm)

约束施加时在模型左侧边界所有节点上只施加x方向的约束,即令U X=0,在左下角节点上施加x、y两个方向的约束,即U X=0、U Y=0。荷载施加在右侧边界上,大小为100。

对模型进行分析求解得到:

节点应力云图(最大值222.112)

单元应力云图(最大值256.408)

可看出在孔周围有应力集中现象,其余地方应力分布较为均匀,孔上部出现最大应力。

②细网格

单元网格的划分及约束荷载的施加如图(单元尺度为2cm)

约束及荷载的施加方法如前,对模型进行分析求解得到:

节点应力云图(最大值272.484)

单元应力云图(最大值285.695)

(2) 取1/4模型的计算

①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为2.5cm)

约束施加时在模型左侧边界所有节点上只施加x方向的约束,即U X=0,在下侧边界所有节点上只施加y方向的约束,即U Y=0。荷载施加在右侧边界上,大小为100。

对模型进行分析求解得到:

节点应力云图(最大值251.333)

单元应力云图(最大值268.888)

②细网格

单元网格的划分及约束荷载的施加如图(单元尺度为1cm)

约束及荷载的施加方法如前,对模型进行分析求解得到:

节点应力云图(最大值290.478)

单元应力云图(最大值297.137)

(3) 计算结果比较

下面按照弹性力学理论求解带孔平板的应力集中系数。(参考 曾攀.有限元分析及应用.清华大学出版社)

设在无限大薄板中有一个半径为0R 的圆孔,该无限大薄板在x 方向受有0xx q σ=的均匀荷载如图

对于无限大板宽的孔边应力集中问题,基于以上平面极坐标下的三大类基本方程,可以得到以下弹性状态下的解析解:

222000002222400002422000221cos 2113221cos 21322sin 21132rr r r q R q R R r r r q R q R r r q R R r r θθθθσθσθττθ???????=-+--? ? ??????

??????????=+-+? ? ??????

??????==--+ ?????????

具体地,在圆孔边沿y 轴上的环向应力θθσ为

240002413(90,)122R R r q r

r θθσθ??=?=++ ??? 最大的环向应力为

00(90,)3r R q θθσθ=?==

从以上推导可知,对此类带孔平板应力集中系数的弹性力学精确解为3。 计算应力集中系数,对结果进行汇总,与弹性力学精确解进行比较如下:(应

? 此种以单元大小为基准划分网格的方式使得计算结果偏小。 ? 模型计算时,单元划分的越精细,结果越精确。

? 计算报告中由于完整模型划分的单元数与四分之一模型划分的单元数接近,使得四分之一模型的计算精度较高,但也可看出利用对称性取完整模型的四分之一计算也能得到较好的结果。

带孔平板拉伸作业

带孔平板有限元分析 本文采用有限元法,对带圆孔的矩形平板进行了弹塑性受力分析,分析了圆孔处的应力集中现象,为其设计和应用提供了参考依据。 1. 研究问题概述 本文研究带圆孔矩形平板在轴对称拉力作用下的平面应力问题。平板开孔的应力问题是弹塑性力学平面中的一个经典的问题,也是实际工程中常见的问题。平板长200mm ,宽50mm ,厚8mm ,具体几何参数及受力见图1。 图1 平板几何参数及受力 2.弹性力学方法解答 由弹性力学知识知,在距圆孔圆心()r ρρ>处的径向正应力、环向正应力、切应力分别为: 222222 1c o s 211322p r p r r ρσψρρρ?????? =-+-- ? ????????? 22221cos 21322p r p r ?σψρρ????=+-+ ? ???? ? 2222sin 21132p r r ρψψρ ττψρρ???? ==--+ ?????? ? 沿着y 轴,90ψ=。,环向正应力为: 242413122r r p ?σρρ?? =++ ???

max 3q ?σ=由上表可知: ()max = 3K q ψ σ=故应力集中因子: 可见孔边最大应力比无孔时提高了3倍,应力集中系数k=3,如图2所示。 图2 孔边应力集中 3.有限元分析 3.1模型建立 图3 有限元模型 3.2边界条件和载荷 为避免在计算时平板产生移动引发计算问题,必须对试件的外部边界条件进行限定。对平板左侧进行铰接约束,示意图如下

图4 平板约束示意图 由于我们只关注孔附近的应力分布情况,根据圣维南原理,载荷的具体分布只影响载荷作用区附近的应力分布。故我们用均布力代替集中力施加在平板右侧的作用面上,其大小为225P MPa ,为负值。 图5 平板载荷示意图 3.3材料 平板的弹性模量为200GPa ,泊松比为0.3。其塑性的应力应变参数见下图 图6 塑性应力应变参数 3.4有限元网格划分 网格划分是非常重要的过程,它会对计算速度、精度、可靠性产生重要影响。网格划分主要包括两方面:尺寸、单元类型。

分析设计中应力分类的一次结构法

1997年7月14日收到初稿,1997年10月6日收到修改稿。 分析设计中应力分类的一次结构法 陆明万陈勇李建国(清华大学工程力学系,北京,100084)(全国压力容器标准化技术委员会,北京,100088)摘要我国新的设计规范JB 24732295《钢制压力容器———分析设计标准》于1995年3月颁布 实施。如何将有限元分析或实验应力分析得到的总应力场分解成规范中定义的各种应力类别是应用JB 24732295或美国ASME 《锅炉及压力容器规范》第Ⅲ篇和第Ⅷ篇第2分册时必须解决的关键问题。本文提出应力分类的两步法和一次结构法,将它们和等效线性化方法相结合,给出了圆满解决该问题的有效方法。文中还阐述了应力分解的不唯一性、自限应力、约束分类和一次结构等重要概念。 关键词分析设计应力分类一次结构法等效线性化方法 1引言 “分析设计法”是一种以弹性应力分析和塑性失效准则为基础的设计方法,已被世界各国公开承认和广泛采用。我国也于1995年3月颁布了采用分析设计法的设计规范JB 24732295。在分析设计法中弹性计算应力被分成:一次总体薄膜应力(P m )、一次局部薄膜应力(P L )、一次弯曲应力(P b )、二次应力(Q )和峰值应力(F )等五大类。以塑性失效准则来判断,各类应力对结构破坏的危害程度是不同的,所以规范中根据等强度设计原则对不同的应力规定了不同的许用极限,其差别达3倍,甚至更多。这样,如何正确地进行应力分类,将有限元分析或实验应力分析所得到的总应力场分解成规范中定义的各类应力成为应用中最为关心、且必须解决的关键问题。国内外发表了大量文章来讨论这一问题,其中等效线性化方法是已被广泛采用的典型方法。一些著名的有限元分析程序如ANSY S 、M ARC 、NAST RAN 等都已实现了等效线性化的后处理功能。我们也曾在文献[1~3]中作了讨论。 等效线性化方法要求设计者在所考虑结构的几个可能的危险部位指定一些贯穿壁厚的(通常是垂直于中面的)应力分类线,然后根据合力等效和合力矩等效的原理将沿应力分类线分布的弹性计算应力分解出薄膜应力和线性弯曲应力,剩下的非线性分布应力就是一个与平衡外载无关的自平衡力系。等效线性化概念起源于ASME 规范,被K roenke 等首先应用于二维轴对称问题[4~6]。对于三维一般情况,H ollin g er 和H echm er 两人就基于应力线性化的三维应力准则问题发表了一系列的重要文章[7~13]。 本文将首先介绍文献[1]中提出的应力分类的两步法。然后,作为等效线性化方法的扩充,提出一种有效的应力分解方法“一次结构法”。 第4期年8月第19卷 1998核动力工程Nuclear Power En g ineerin g Vol.19.No.4Au g .1998

板中孔应力集合ANSYS有限元分析

一、自选题目 如图所示为承受双向拉伸的板件,其中心位置有一个小圆孔,其尺寸 (mm )如图所示。其中(弹性模量 E=2Gpa, 泊松比v=0.3, 右端拉伸载荷q=20N/mm, 平板的厚度t=20mm ) 。 图1-1 平面应力支架简化模型 二、题目分析 此题为平面应力问题,板件中间圆孔应力集中较大,为了保证求解精度,划分网格时,应该采用8节点四边形单元;使用ansys 分析问题时,输入的 实常数单位要进行统一,此题统一单位为毫米单位,E=200000N/mm 2。 三、操作步骤 3.1 定义工作文件和工作标题3.1.1 定义工作文件名 执行Utility Menu-File→Change Jobname→20128195,单击OK 按钮。 3.1.2 定义工作标题 执行Utility Menu-File→Change Tile→hebingbing20128195,单击OK 按钮。 3.1.3 更改当前工作目录 执行Utility Menu-File→Change the working directory→E/STUDY/ANSYS/dazuoye 。

3.2 定义单元类型、实常数和材料属性 3.2.1 设置计算类型 执行Main Menu→Preferences→select Structural→OK。 3.2.2 选择单元类型 执行Main Menu →Preprocessor→Element Type→Add/Edit/Delete →Add →select Solid→Quad 8node 82→OK 。 Options→select K3→Plane strs w/thk→OK→Close ,如图3-1 所示。 图3-1 3.2.3 定义实常数 执行Main Menu→Preprocessor→Real Constants →Add/Edit/Delete→ Add→OK→输入板厚20→OK→Close。 3.2.4 设置材料属性执行Main Menu→Preprocessor→Material Props→Material Models→Structural→Linear→Elastic→Isotropic→输入实常数(在EX 框中输入200000,在PRXY 框中输入0.3)→OK,如图3-2 所示。 图3-2

CaesarII应力分析模型设计解读

第一部分支架形式模拟 (2) 1.0 普通支架的模拟 (2) 1.1 U-band (2) 1.2 承重支架 (3) 1.3 导向支架 (3) 1.4 限位支架 (7) 1.5 固定支架 (7) 1.6 吊架 (8) 1.7 水平拉杆 (8) 1.8 弹簧支架模拟 (9) 2.0 附塔管道支架的模拟 (11) 3.0弯头上支架 (13) 4.0 液压阻尼器 (14) 5.0 CAESARII可模拟虾米弯,但变径虾米弯不能模拟 (15) 第二部分管件的模拟 (15) 1.0 法兰和阀门的模拟 (15) 2.0 大小头模拟 (17) 3.0 安全阀的模拟 (18) 4.0 弯头的模拟 (19) 5.0 支管连接形式 (20) 6.0 膨胀节的模拟 (21) 6.1 大拉杆横向型膨胀节 (22) 6.2 铰链型膨胀节 (34) 第三部分设备模拟 (42) 1.0 塔 (42) 1.1 板式塔的模拟 (42) 1.2 填料塔的模拟 (44) 1.3 除了模拟塔体的温度,还需模拟塔裙座的温度 (47) 2.0 换热器,再沸器 (48) 2.1 换热器模拟也分两种情况 (48)

3.0 板式换热器 (51) 4.0 空冷器 (52) 4.1 空冷器进口管道和出口管道不在同一侧 (52) 4.2 空冷器进口管道和出口管道在同一侧 (54) 5.0 泵 (56) 6.0 压缩机,透平 (58) 第四部分管口校核 (59) 1.0 WRC107 (59) 2.0 Nema 23 (62) 3.0 API617 (64) 4.0 API610 (65) 第五部分工况组合 (68) 1.0 地震 (69) 2.0 风载 (70) 3.0 安全阀起跳工况 (72) 4.0 沉降 (74) 第一部分支架形式模拟 1.0 普通支架的模拟 1.1 U-band

最新平板应力分析

平板应力分析

第四节平板应力分析 3.4平板应力分析 3.4.1概述 3.4.2圆平板对称弯曲微分方程 3.4.3圆平板中的应力 3.4.4承受对称载荷时环板中的应力 3.4.1概述 1、应用:平封头:常压容器、高压容器; 贮槽底板:可以是各种形状; 换热器管板:薄管板、厚管板; 板式塔塔盘:圆平板、带加强筋的圆平板; 反应器触媒床支承板等。 2、平板的几何特征及平板分类 几何特征:中面是一平面厚度小于其它方向的尺寸。 分类:厚板与薄板、大挠度板和小挠度板。

t/b≤1/5时(薄板) w/t≤1/5时(小挠度)按小挠度薄板计算 3、载荷与内力 载荷:①平面载荷:作用于板中面内的载荷 ②横向载荷垂直于板中面的载荷 ③复合载荷 内力:①薄膜力——中面内的拉、压力和面内剪力,并产生面内变形 ②弯曲内力——弯矩、扭矩和横向剪力,且产生弯扭变形 ◆当变形很大时,面内载荷也会产生弯曲内力,而弯曲载荷也会产生面内力,所 以,大挠度分析要比小挠度分析复杂的多。 ◆本书仅讨论弹性薄板的小挠度理论。 4、弹性薄板的小挠度理论基本假设---克希霍夫K i r c h h o f f ①板弯曲时其中面保持中性,即板中面内各点无伸缩和剪切变形,只有沿中面 法线w的挠度。只有横向力载荷

②变形前位于中面法线上的各点,变形后仍位于弹性曲面的同一法线上,且法线 上各点间的距离不变。 类同于梁的平面假设:变形前原为平面的梁的横截面变形后仍保持为平面,且 仍然垂直于变形后的梁轴线。 ③平行于中面的各层材料互不挤压,即板内垂直于板面的正应力较小,可忽略不计。 ◆研究:弹性,薄板/受横向载荷/小挠度理论/近似双向弯曲问题 3.4.2圆平板对称弯曲微分方程 分析模型 分析模型:半径R,厚度t的圆平板受轴对称载荷P z,在r、θ、z圆柱坐标系中,内力M r、Mθ、Q r三个内力分量 轴对称性:几何对称,载荷对称,约束对称,在r、θ、z圆柱坐标系中,挠度w只是r的函数,而与θ无关。

应力分析

实验4表面残余应力的测量 913000730018 鲁皓辰一、实验目的 了解金属材料残余应力的种类; 掌握X射线衍射法测量金属材料表面残余应力的原理和实验方法。 二、实验内容 测定金属材料表面残余应力。 三、实验仪器设备与材料 X射线衍射仪 四、实验原理 残余应力对材料和部件的尺寸稳定性、抗应力腐蚀、疲劳强度、静强度、硬度以及相变和电磁性能影响。一般认为压应力有益提高构件的疲劳强度;拉应力可促使裂纹开裂、对应力腐蚀和疲劳寿命产生不利影响。 对残余应力研究很有实际意义,对其测量受学术界和工业界的关注。测控残余应力以提高工件或材料的性能和使用寿命在工程上应用极为重要。如航空航天上用的镍高温合金涡轮发动机叶片和铝合金均经喷丸强化处理,提高疲劳寿命;又如低碳不锈钢经二精炼工艺,提高了抗晶间应力腐蚀性能;另还有小到钟表游丝,大到球灌、船舰、大桥桥梁、铁轨等等均需经相应的去应力工艺处理,充分发挥材料或构件自身潜力。 X射线穿透深度约10μm,材料表面应力通常处于平面应力状态,法线方向的应力(σz )为零,测定的是表面应力。 一定应力状态引起的晶格应变和宏观应变是一致的。应变通过X射线法测得的晶面间距变化 (作为应变规)求得。以应变规来度量宏观应变,根据弹性力学的广义虎克定律由宏观应变推知宏观应力(残余应力)。 应力-单位面积上作用力,正值表示拉应力,负表示压应力;用正交坐标系单位体积元表示,有九个应力组份,可用3X3矩阵表示称为应力张量;在力矩平衡条件下切应力组份必须相等。体积元完整应力描述只有六个独立变量(三个分正应力和三个切应力)如4.1图。

图4.1 六个独立变量示意图 由衍射角位移可测得应变,应力测量基于应变测量和己知材料的弹性常数。选高角衍射线测应变。 在试样坐标系中,由倾角ψ和方位角φ 表示多晶中有许多不同取向的晶粒中某晶粒晶靣的法线方向(衍射矢量方向),在此方向上测量晶格应变, 并用以度量宏观应变。 已知波长λ,测量宏观量衍射角2θ与微观量的晶面间距d相关。当材料中无应力σ存在时,同一( h k l )晶面产生的衍射峰衍射角2θ应该相等。 应力σ存在时,位于不同倾角ψ处同一( h k l ) 产生的衍射峰2θ角变化、面间距变化、宏观应力变化如图4.2。 图4.2不同倾角ψ处的宏观应力 在拉应力状态,晶面方位倾角ψ越大,晶面间距d越大,衍射角2θ就越小;在压应力状态,晶面方位倾角ψ越大,晶面间距d越小,衍射角2θ就越大;不同方位角为φ ,倾角为ψ方向应变不同如图4.3。 晶面间距d随着晶面方位角Ψ增大而递增或递减,表明材料表面存在拉应力或压应力,递增或递减的急缓程度就反映了应力值的大小变化如图4.4。

圆孔孔边应力集中

4.8 半无限平面边界上受法向集中力作用的问题一 弗拉芒一布辛涅斯克问题 没有边界的无限大物体称为无限体。将它用平面分成两半,每一半就称半无限体。本节分析的是半无限的弹性平面体在边界上受一法向集中力作用的问题(图4-8)。这一问题在实际工程问题中会经常遇到,如建筑物地基的应力和沉陷问题等。最近发展起来的边界元数值计算法也利用这问题的解答。 假定在边界面上沿半无限平面厚度上分布有均匀压力P。这样,半无限体就处于平面应变状态,单位厚度上分布的压力就可视为集中力P,其量纲为[力×长度-1] 解题:如图4-8所示,估计应力呈扇形分布,因此采用极坐标。为解题方便,取X轴方向向下,y轴方向向右,相应地极坐标r方向向外,θ方向由x轴逆时针旋转。 图4-8半无限平面边界受法间集中力 (1)初定应力函数:根据应力的函数形式决定应力函数的形式,而应力的函数形式是根据估计的应力分布情况面定。本题中估计σr的

分布与P ,r ,θ都有关系,与P 成正比,与r 成反比。 故σr 的函数形式估计为 )(θσF r P r = (a ) 式中σr 与P ,r 都是一次幂关系,这是因为只有这样,等式两边的量纲才能相等(皆为[力×长度-2])。 列出应力函数与应力分量的关系式,即(4.18)式的第一式 22211θ??σ??+??=r r r r 由此式可见,为使等式两边r 的幂次相等,应力函数中的r 的幂次应当比应力分量中r 的幂次高两次,所以初选应力函数的形式为 )(θ?rf = (b ) 式中f (θ)可通过双调和方程得到。将(b )式代入双调和方程(4.17)式得 )(1)(11122 22222=????????+??+??+??θθθθf r f r r r r r )( 即 0)]()(2)([122443=++θθθθθf d f d d f d r (c ) 删去因子3 1r ,(c )式为常系数线性微分方程,其通解为 ) sin cos (sin cos )(θθθθθθD C B A f +++= (d ) 代入(b )得 )] sin cos (sin cos [θθθθθ?D C B A r +++= (e )

带孔平板的应力集中分析

有限元方法 Finite Element Method ——基于ANSYS的有限元建模与分析 姓名吴威 学号20100142 班级10级土木茅以升班2班 西南交通大学 2014年4月

综合练习——带孔平板的应力分布及应力集中系数的计算一、问题重述 计算带孔平板的应力分布及应力集中系数。 二、模型的建立与计算 在ANSYS中建立模型,材料的设置属性如下 分析类型为结构(structural),材料为线弹性(Linear Elastic),各向同性(Isotropic)。弹性模量、泊松比的设定均按照题目要求设定,以N、cm为标准单位,实常数设置中设板厚为1。

采用solid 4 node 42板单元,Element Behavior设置为Plane strs w/thk。 建立模型时先建立完整模型,分别用单元尺度为5cm左右的粗网格和单元尺度为2cm左右的细网格计算。 然后取四分之一模型计算比较精度,为了使粗细网格单元数与完整模型接近,四分之一模型分别用单元尺度为2.5cm左右的粗网格和单元尺度为1cm左右的细网格计算。 (1) 完整模型的计算 ①粗网格

单元网格的划分及约束荷载的施加如图(单元尺度为5cm) 约束施加时在模型左侧边界所有节点上只施加x方向的约束,即令U X=0,在左下角节点上施加x、y两个方向的约束,即U X=0、U Y=0。荷载施加在右侧边界上,大小为100。 对模型进行分析求解得到: 节点应力云图(最大值222.112)

单元应力云图(最大值256.408) 可看出在孔周围有应力集中现象,其余地方应力分布较为均匀,孔上部出现最大应力。 ②细网格 单元网格的划分及约束荷载的施加如图(单元尺度为2cm)

多孔管板应力分析

压力容器分析设计课程作业 -多孔管板应力分析 大连理工大学 Dalian University of Technology

一.问题提出 由于本装置开孔的数量极多,有很大的不安全隐患,因而有必要对此管板进行相对细致的应力分析,校核其强度,刚度等力学性能,以判断其是否能保证良好运行。 二.模型简化 考虑到其结构的对称性,再者其没片管孔开的数量虽不尽相同,但是亦相差不多,故而将其简化为1/8扇形区域,并选择开孔多的N5D部分作为分析对象。 三.模型建立 单元类型:本模型选用了shell181单元,设置单元厚度为240mm 材料特性:选择了结构线性各向同性材料设置E=210GPa,μ=0.3 几何建模: 由于孔的数量比较多,采用了ANSYS自身APDL语言,建立了小孔的结构。具体过程如下:

可以看出,在建立模型时是通过圆心-圆-圆面-扇面-布尔操作-最终模型等步骤逐渐形成的。 网格划分:由于模型的尺寸比较大而空的直径相对又比较小,划分时若尺寸选得过大,网格过于粗糙,若过小又运行时间又太长,显得耗时不经济,故在划分时设置Area 尺寸为5。 边界条件:本结构的边界条件,让人难以驾驭,因为按理说对于每一个管孔都应该有约束,但是我对管孔应该加何种边界条件并没有一个清晰的认识,是加位移约束呢?还是力?再者若加力约束,孔如此之多,虽然可以通过APDL 方法加载于圆环线上,但是加载多少又是一个问题。故而施加边界条件时并没有考虑管孔,而是直接在边界上述施加了位移约束,在面上加了压强4.2MPa 。 四.结果分析 第一主应力云图如下

放大,可以看出考管板中心处的管孔,所受的应力相对较大

应力分析设计规定

目次 1 总则 (1) 1.1 范围 (1) 1.2 管道应力分析的任务 (1) 2 引用文件 (2) 3 设计 (2) 3.1 一般规定 (2) 3.2 管道冷紧 (3) 3.3 摩擦力 (3) 3.4 弹簧支吊架 (3) 3.5 设计条件 (4) 3.6 应力计算 (5) 3.7 力与力矩计算 (5) 3.8 管道应力分析评定标准 (5) 3.9 应力分析的方法 (8) 3.10 应力分析管道分类 (9) 4 应力分析报告 (12)

1 总则 1.1 范围 本标准规定了石油化工装置内管道应力分析的原则和相关要求。 本规定适用于石油化工装置设计压力不大于 42MPa,设计温度不超过材料允许使用温度的碳钢、合金钢及不锈钢管道的应力设计。 专利设备或成套设施,其设备的操作、维修、管道布置还应满足设备制造厂的特殊要求及标准。 执行本规定的同时,尚应符合国家现行有关标准。 1.2 管道应力分析的任务 管道应力分析的任务是保证管道系统布置的安全和经济性,避免发生以下情况: a) 因管道应力过大或金属疲劳而引起管道或支架损坏; b) 管道连接处发生泄漏; c) 因管道的推力和力矩过大而使管道或与管道连接的设备产生不允许的应力或变形; d) 管道从所在支架上脱落; e) 由于外部振动或管内流体引起的管道共振; f) 管道挠度过大,尤其是对于带有一定坡度自流排液的管道。 2 引用文件 GB50009 建筑结构荷载规范 GB/T20801 压力管道规范工业管道 SH/T3039 石油化工非埋地管道抗震设计通则 ASME B31.3 Process Piping API610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries API617 Centrifugal Compressors for Petroleum, Chemical, and Gas Service Industries API661 Air-Cooled Heat Exhangers for General Refinery Service NEMA SM23 Steam Turbines for Mechanical Drive Service 3 设计

带孔平孔的应力分析

带孔平孔的应力分析 一、创建部件 进入部件模块 1.创建部件点击创建部件,命名为plate1,其它选项如 右图所示,点击“continue”,进入绘图区。 2.绘制圆弧点击点击视图区正中间的坐标原点(0,0), 作为圆弧的中心,再分别点击坐标(0,5)和(5,0)的位 置,这就完成了1/4圆孔的绘制。 3.绘制直线点击,依次点击(0,5),(0,50), (50,50),(50,0),(5,0)的位置,完成如图1-1 所示的二维模型。点击下面的“done”,完成第一 步。如图1-2所示 图1-1二维几何模型图1-2二维几何模型

二、创建材料和截面属性 进入特性模块 1.创建材料点击,弹出Edit Material对话框,Name为steel,点击Mechanical→Elasticity→Elastic,其他选项如图1-3所示,点击OK。 图1-3 定义材料 2. 创建截面属性点击,如图1-4,图1-5所示,保持默认参数不变,点击continue。

图1-4创建材料图1-5创建截面属性 3.给部件赋予截面属性点击,点击视图区中的平板模型,红色高亮度显示被选中,在窗口底部点击done,弹出Edit Section Assignment对话框,保持默认参数不变,如图1-6所示,点击OK。 图1-6部件赋予截面 属性 三、定义装配件 进入装配功能模块,点击,弹出Create Instance对话框,

Instance Type为Dependent(mesh on part),如图1-7所示,点击OK。 图1-7把实体加入装配件 四、设置分析步 进入分析步功能模块,点击,在Name后输入Apply Load,其余参数保持默认(Procedure type:General ;选中Static General),点击continue。在弹出的Edit Step 对话框中,保持参数的默认值,如图1-8,图1-9所示,点击OK。

明钢管的管身应力分析及结构设计

明钢管的管身应力分析及结构设计 一、明钢管的荷载 明钢管的设计荷载应根据运行条件,通过具体分析确定,一般有以下几种: (1)内水压力。包括各种静水压力和动水压力,水重,水压试验和充、放水时的水压力。 (2)钢管自重。 (3)温度变化引起的力。 (4)镇墩和支墩不均匀沉陷引起的力。 (5)风荷载和雪荷载。 (6)施工荷载。 (7)地震荷载。 (8)管道放空时通气设备造成的负压。 钢管设计的计算工况和荷载组合应根据工程的具体情况参照钢管设计规范采用。 二、管身应力分析和结构设计 明钢管的设计包括镇墩、支墩和管身等部分。前二者在上节中已经讨论过,这里主要讨论管身设计问题。 明钢管一般由直管段和弯管、岔管等异形管段组成。直管段支承在一系列支墩上,支墩处管身设支承环。由于抗外压稳定的需要,在支承环之间有时还需设加劲环。直管段的设计包括管壁、支承环和加劲环、人孔等附件。 支承在一系列支墩上的直管段在法向力的作用下类似一根连续梁。根据受力特点,管身的应力分析可取如图13-14所示的三个基本断面:跨中断面1-1;支承环附近断面2-2和支承环断面3-3。以下介绍明钢管计算的结构力学方法。 图13-14 管身计算断面 (一)跨中断面(断面1-1) 管壁应力采用的坐标系如图13-15所示。以x表示管道轴向,r表示管道径向,θ表示管道切向,这三个方向的正应力以、、表之,并以拉应力为正。图中表明了管壁单元体的应力状态,剪应力r下标的第一个符号表此剪应力所在的面(垂直x轴者称x面,余同),第二个符号表示剪应力的方向,如表示在垂直x轴的面上沿e向作用的剪应力。 1.切向(环向)应力。 管壁的切向应力主要由内水压力引起。对于水平管段,管道横截面上的水压力如图13-16(a),它可看作由图13-16(b)的均匀水压力和图13-16(c)的满水压力组成。这两部分的水压力在管壁中引起的切向应力为 式中D、δ--管道内径和管壁计算厚度,cm; γ--水的容重,0.001;

压力容器应力分析设计方法的进展和评述

压力容器应力分析设计方法的进展和评述 压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。 分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用

理论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为: 2.4.1.从弹性应力分析扩充到弹塑性分析。和应力分类法(弹性应力分析方法)并行地提出了弹塑性分析方法和极限载荷分析方法(ASME)或直接法(欧盟)。 2.4.2.把能够给出显式表达式的解析解都调整到“规则设计”中,“分析设计”只规定通用性强的数值分析方法。另一方面,在“规则设计”公式的强度校核中又引入了应力分类的思想。 随着时间的推移和科学的发展,“分析设计”的方法和内容还会有新的扩充和调整。在现阶段可以说,“分析设计”是一种以塑性失效准则为基础、采用先进力学分析手段的压力容器设计方法。先进的材料、

圆孔应力有限元分析

圆孔应力有限元分析 陈春山 (安徽工业大学工商学院机械工程系) 摘要:ANSYS软件的应用领域非常广泛,可应用在以下领域:建筑、勘查、地质、水利、交通、电力、测绘、国土、环境、林业、冶金等方面,应用ANSYS软件,对平板中心圆孔的应力集中进行了有限元分析,对圆孔平板在单向和双向应力条件下的应力状况进行了计算和分析,并将有限元结果与解析解进行了比较。 关键词: 平板开小圆孔; 应力集中; 有限元分析 Round hole stress finite element analysis CHEN Chunshan (Industrial & commercial college , anhui university of technology department of mechanical engineering) Abst ract : ANSYS soft ware has a very wide range of applicat ions, can be used in t he following areas: construct ion, exp lorat ion, geology, survey ing an d mapp ing, land, wat er conservancy, t ransport at ion, elect ric p ower, environment, forestry, met allurgy, et c., t he app licat ion of ANSYS software, t he flat round hole at t he centre of the finit e element analysis of st ress concent rat ion of circle hole p lat e under t he condit ion of unidirect ional and bidirect ional st ress calculat ion and analysis, t he stress condit ion and t he finit e element result s are comp ared wit h those of t he analyt ical solut ion Key words: flat open small round hole; Stress concentration; The f inite element analysis l 前言

压力容器应力分析设计方法的进展和评述优选稿

压力容器应力分析设计方法的进展和评述 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力容器应力分析设计方法的进展和评述压力容器的使用范围非常的广泛,在此基础上,我们一定更加重视其使用的效果。其中,压力容器应力分析是重要的工作,所以,讨论压力容器应力分析设计工作很有必要。 压力容器概述 1.1.概念 所谓的压力容器是指盛装气体或者液体,承载一定压力的密闭设备。贮运容器、反应容器、换热器和分离器均属压力容器。 1.2.用途 压力容器的用途十分广泛。它是在石油化工学、能源工业、科研和军工等国民经济的各个部门都起着重要作用的设备。压力容器一般由筒体、封头、法兰、密封元件、开孔和接管、支座等六大部分构成容器本体。此外,还配有安全装置、表计及完全不同生产工艺作用的内件。压力容器由于密封、承压及介质等原因,容易发生爆炸、燃烧起火而危及人员、设备和财产的安全及污染环境的事故。世界各国均将其列为重要的监检产品,由国家指定的专门机构,按照国家规定的法规和标准实施监督检查和技术检验。

分析设计方法 在ASME老版中分析设计方法的全称是“以应力分析方法为基础的设计”,简称“应力分析设计”,再简称为“分析设计”。它的特点是: 2.1.要求对压力容器及其部件进行详细的弹性应力分析。可以采用理 论分析、数值计算或试验测定来进行弹性应力分析。 2.2.强度校核时采用塑性失效准则。包括用极限载荷控制一次应力,以防止整体塑性垮塌失效。用安定载荷控制一次加二次应力以及用疲劳寿 命控制最大总应力,以防止循环失效等。 2.3.根据塑性失效准则对弹性应力进行分类。 2.4.根据等安全裕度原则确定危险性不同的各类应力的许用极限值。 综合起来可以说,“应力分析设计”是一种以弹性应力分析和塑性失效准则为基础的应力分类设计方法。近年来被简称为“应力分类法”。早期(老版中)的“分析设计”只包含这一种方法。随着先进的力学分析方法 和手段的不断成熟(即其有效性和可靠性达到实际工程应用的水平),ASME 新版和欧盟标准都及时地扩充了“分析设计”采用的方法,同时对“分析设计”的含义也有所调整。最突出的表现为:

Solidworks应力分析实例

基于Solidworks 软件的应力分析 Solidworks 中有限元分析插件CosMos/Works 分析零件的静力学性能,得出载荷分布情况,定性的分析极限载荷(这里指的是最大扭矩)下的应力,应变分布及其安全性能。 其分析流程如下: 1、建立一个简化的分析模型; 2、指定材料、元素和截面; 3、加约束和载荷; 4、设定网格; 5、执行分析; 6、结果显示; 7、生成研究报告。 分析对象 电机轴及啮合处的变速器输入轴,离合器花键轴及啮合处的离合器从动盘,电机轴和离合器花键轴之间的联接螺栓(M12x40,10.9级)。 材料 目前公司所用的变速器输入轴材料为20CrMnTi ,考虑其受力情况,材料不一致,其强度就会不一样,容易导致强度差的失效,因此根据目前情况,电机轴和离合器花键轴均选用20CrMnTi 。 20CrMnTi 用于制作渗碳零件,渗碳淬火后有良好的耐磨性和抗弯强度,有较高的低温冲击韧性,切削加工性能良好,承受高速、中载或重载以及冲击和摩擦的主要零件。 对于截面为15的样件,经过第一次淬火880℃,第二次淬火870℃,油冷;在经过回火200℃,水冷和空冷。得到的力学性能:抗拉强度MPa b 1080=σ,屈服强度MPa s 835=σ,伸长率(式样的标距等于5倍直径时的伸长率)%105=δ,断面收缩率%45=ψ,冲击韧度2/55cm J A kU =,硬度217HB 。

对于截面尺寸小于等于100的样件,经过调质处理,力学性能:抗拉强度 MPa b 615=σ,屈服强度MPa s 395=σ,伸长率%175=δ,断面收缩率%45=ψ, 冲击韧度2/47cm J A kU =。本分析还要使用到的参数:泊松比25.0=μ,抗剪模量G=7.938GPa ,弹性模量E=207GPa ,密度23/108.7m N ?=ρ。 螺栓联接受力分析 螺纹联接根据载荷性质不同,其失效形式也不同。受静载荷螺栓的失效形式多为螺纹部分的塑性变形或螺栓被拉断;受变向载荷螺栓的失效形式多为螺栓的疲劳断裂;对于受横向载荷的绞制孔用螺栓联接,其失效形式主要为螺栓杆被剪断,螺栓杆或连接孔接触面被挤压破坏。 对于10.9级M12的普通螺栓,屈服强度MPa s 900=σ,拧紧力矩T=120N.m 。 为了增强螺纹连接的刚性、防松能力及防止受载螺栓的滑动,装配时需要预紧。 其拧紧扳手力矩T 用于克服螺纹副的阻力矩T1及螺母与被连接件支撑面间的摩擦力矩T2,装配时可用力矩扳手法控制力矩。 公式: d * F *K =T2+T1=T 0 拧紧扳手力矩T=120N.m ,其中K 为拧紧力矩系数,0 F 为预紧力N ,d 为螺 纹公称直径12mm 。 摩擦表面状态 K 值 有润滑 无润滑 精加工表面 0.1 0.12 一般工表面 0.13-0.15 0.18-0.21 表面氧化 0.2 0.24 镀锌 0.18 0.22 粗加工表面 - 0.26-0.3

带孔平孔的应力分析

带孔平孔的应力分析 作为圆弧的中心,再分别点击坐标( 0,5)和(5,0 )的位 置,这就完成了 1/4圆孔的绘制。 3.绘制直线 点击…,依次点击(0,5),( 0,50), (50,50),( 50,0),( 5,0 )的位置,完成如图 1-1 所示的二 维模型。点击下面的" done ”,完成第一 步。如图1-2 所示 图1-1二维几何模型 一、创建部件 进入部件模块 Module: PE 0 1. 创建部件 点击 r 创建部件,命名为 platel,其它选项如 右图所示,点击"continue ” ,进入绘图区。 2. 绘制圆弧 点击 点击视图区正中间的坐标原点 (0,0), 3D 」2D Phivjr Type J DefurniBblir Qi&creie riigid 召占哲芒Fedlure 亠 Shell Wire Poirr t ? Ajej^ymmrlric Optionf Nrime ; pidief Moddingi Appioxirnate 血l Contiruic... 图1-2二维几何模型

二、创建材料和截面属性 进入特性模块 Madule: P^pmty 0 Elasticity 宀Elastic,其他选项如图 1-3所示,点击 0K 。 DescripHort r —~~? r.loduTi time-写匚s e "fnr wi&c&elaretk ty): Lng 士mrrr * No ccxnprr^iHin No 0*14 Vgvng's UodbltiB Raba L 択」 _______ 1 图1-3定义材料 ,如图1-4,图1-5所示,保持默认参数不变,点击 continue 1.创建材料 点击匕,弹出 Edit Material 对话框,Name 为 steel ,点击 Mechanical 2.创建截面属性点击 Mati?riil Behar/iors Ebstk Typt:血佃供 寸 * ^uboptim U 址 tempererture depend d 航 d Numbei of fiddvaindb4e&: 0'

平面应力状态开孔应力场的研究

平综述 摘要:在机械制造、航空、造船、建筑等领域, 开孔问题是十分普遍的。然而, 开孔必 然引起应力集中现象, 这一直是工程技术人员十分关心的问题。对平面应力状态开孔周边应力场的研究, 掌握应力场的变化规律, 在实际工程中具有十分重要的意义. 关键词:应力场开孔平面应力状态 1 前言 对于开口结构来说,特别突出的一个问题就是临界区域的孔边应力集中问题。准确的求解孔周围的应力是很困难的,特别是对于一些复杂孔型。就像人们所知道的,孔口附近往往也就是构件最薄弱的区域。因此,对开孔及其周边应力场的研究,对于机械及相关领域来说至关重要,这将是我们必须长期坚持和努力的研究领域。 2开孔周边应力场的研究历史及现状 2.1 复合材料开孔周边应力场研究 吴德隆[1]在对二维平面的复合材料结构开孔分析中,得出相应的结论:开孔引起的应力扰动项是局部的,随距离的增加而迅速衰减。最大应力集中发生在孔角处45°,并与开孔尺寸成反比。李成[2]等为了探索出一种方法,使得在实际设计中,计算含孔的复合材料板的应力、强度时,既可以避免级数法的繁琐,又可以提高其计算精度。于是他们以复变函数理论为基础,借助积分方程,采用多复变量应力函数对含圆孔形的复合材料板进行研究,得到了精确边界条件下的应力解析, 并用所得到的应力表达式对不同载荷的影响进行了分析、评价,同含有圆孔的均质材料板边的应力场进行比较。得出了含复杂孔形孔边应力的解析解法。并且得出了对带有圆形孔的复合材料板和均质材料板,在不同方向的载荷作用情况下的计算方法,这种计算方法在工程中有很高的实用价值。 2.2 平板开孔应力场的研究 张涛[3]等对开椭圆孔有限板的应力集中问题进行研究。应用弹性力学的复变函数理论,在各内边界上引入保角变换,在外边界上采用分段函数,通过傅立叶级数展开,计算整个弹性板的应力场,给出了开椭圆孔有限板的计算实例。突破了开

根据MATLAB的有限元法分析平面应力应变问答刘刚

姓名:刘刚学号:15 平面应力应变分析有限元法 Abstruct:本文通过对平面应力/应变问题的简要理论阐述,使读者对要分析的问题有大致的印象,然后结合两个实例,通过MATLAB软件的计算,将有限元分析平面应力/应变问题的过程形象的展示给读者,让人一目了然,快速了解有限元解决这类问题的方法和步骤! 一.基本理论 有限元法的基本思路和基本原则以结构力学中的位移法为基础,把复杂的结构或连续体看成有限个单元的组合,各单元彼此在节点出连接而组成整体。把连续体分成有限个单元和节点,称为离散化。先对单元进行特性分析,然后根据节点处的平衡和协调条件建立方程,综合后做整体分析。这样一分一合,先离散再综合的过程,就是把复杂结构或连续体的计算问题转化简单单元分析与综合问题。因此,一般的有限揭发包括三个主要步骤:离散化单元分析整体分析。 二.用到的函数 1. LinearTriangleElementStiffness(E,NU,t,xi,yi,xj,yj,xm,ym,p) 2.LinearBarAssemble(K k I f) 3.LinearBarElementForces(k u)

4.LinearBarElementStresses(k u A) 5.LinearTriangleElementArea(E NU t) 三.实例 例1.考虑如图所示的受均布载荷作用的薄平板结构。将平板离散化成两个线性三角元,假定E=200GPa ,v=0.3,t=0.025m,w=3000kN/m. 1.离散化 2.写出单元刚度矩阵 通过matlab 的LinearTriangleElementStiffness 函数,得到两个单元刚度矩阵1k 和2k ,每个矩阵都是6 6的。 >> E=210e6 E = 210000000 >> k1=LinearTriangleElementStiffness(E,NU,t,0,0,0.5,0.25,0,0.25,1) k1 =

[2018年最新整理]弹性力学_第六章_平面问题的直角坐标解

第六章平面问题的直角坐标解知识点 平面应变问题 应力表示的变形协调方程应力函数 应力函数与双调和方程平面问题应力解法 逆解法 简支梁问题 矩形梁的级数解法平面应力问题 平面应力问题的近似性应力分量与应力函数 应力函数与面力边界条件应力函数性质 悬臂梁问题 楔形体问题 一、内容介绍 对于实际工程结构的某些特殊形式,经过适当的简化和力学模型的抽象处理,就可以归结为弹性力学的平面问题,例如水坝,受拉薄板等。这些问题的特点是某些基本未知量被限制在平面内发生的,使得数学上成为二维问题,从而简化了这些问题的求解困难。 本章的任务就是讨论弹性力学平面问题:平面应力和平面应变问题。弹性力学平面问题主要使用应力函数解法,因此本章的工作从推导平面问题的基本方程入手,引入应力函数并且通过例题求解,熟悉和掌握求解平面问题的基本方法和步骤。 本章学习的困难是应力函数的确定。虽然课程讨论了应力函数的相关性质,但是应力函数的确定仍然没有普遍的意义。这就是说,应力函数的确定过程往往是根据问题的边界条件和受力等特定条件得到的。 二、重点 1、平面应变问题; 2、平面应力问题; 3、应力函数表达的平面 问题基本方程;4、应力函数的性质;5、典型平面问题的求解。 §6.1 平面应变问题 学习思路: 对于弹性力学问题,如果能够通过简化力学模型,使三维问题转化为二维问题,则可以大幅度降低求解难度。 平面应变问题是指具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线

长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束的弹性体。这种弹性体的位移将发生在横截面内,可以简化为二维问题。 根据平面应变问题定义,可以确定问题的基本未知量和基本方程。 对于应力解法,基本方程简化为平衡微分方程和变形协调方程。 学习要点: 1、平面应变问题; 2、基本物理量; 3、基本方程; 4、应力表 示的变形协调方程 1、平面应变问题 部分工程构件,例如压力管道、水坝等,其结构及其承载形式力学模型可以简化为平面应变问题,典型实例就是水坝,如图所示 这类弹性体是具有很长的纵向轴的柱形物体,横截面大小和形状沿轴线长度不变;作用外力与纵向轴垂直,并且沿长度不变;柱体的两端受固定约束。 这类工程问题,我们可以认为柱体是无限长的。如果从中任取一个横截面,则柱形物体的形状和所受载荷将对此横截面是对称的。因此物体变形时,横截面上的各点只能在其自身平面内移动。 设纵向轴为z轴,则沿z方向的位移恒等于零,位移只能发生在Oxy面内。而且任一个横截面都是对称面,因此只要具有相同的x、y坐标,则有相同的位移。所以物体的位移为 2、基本物理量

相关文档
相关文档 最新文档