文档库 最新最全的文档下载
当前位置:文档库 › 2019最新高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业2 北师大版必备1-1

2019最新高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业2 北师大版必备1-1

2019最新高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业2 北师大版必备1-1
2019最新高中数学 第二章 圆锥曲线与方程 2.1.1 椭圆及其标准方程作业2 北师大版必备1-1

2.1.1 椭圆及其标准方程

[A.基础达标]

1.设α∈?

????0,π2,方程x 2sin α+y 2

cos α=1是表示焦点在y 轴上的椭圆,则α的取

值范围是( )

A.?

????0,π4

B.? ????π4,π2

C.?

????0,π4

D.????

??π4,π2 解析:选C.由题意可得:0<sin α<cos α,又因为α∈? ????0,π2,所以α∈?

????0,π4.

2.已知椭圆x 2

4

+y 2

=1的焦点为F 1,F 2,点M 在该椭圆上,且MF 1→·MF 2→=0,则点M 到x

轴的距离为( )

A.233

B.263

C.33

D. 3

解析:选C.因为MF 1→·MF 2→=0,所以MF 1→⊥MF 2→,故|MF 1|2+|MF 2|2=|F 1F 2|2=4c 2

=12,① |MF 1|+|MF 2|=2a =4,②, 由①②得|MF 1|·|MF 2|=2.

故点M 到x 轴的距离为|MF 1|·|MF 2||F 1F 2|=223=3

3.

3.已知周长为16的△ABC 的两顶点与椭圆M 的两个焦点重合,另一个顶点恰好在椭圆

M 上,则下列椭圆中符合椭圆M 条件的是( )

A.x 225+y 2

16

=1 B.

x 2

25

+y 2

9

=1 C.

x 2

16+y 29=1 D.x 29+y 2

4

=1 解析:选A.不妨设B 、C 分别为椭圆M 的两个焦点,点A 在椭圆上,故|AB |+|AC |=2a ,|BC |=2c ,|AB |+|AC |+|BC |=2a +2c =16,即a +c =8.对于A :a +c =8,满足要求;对于B :a +c =5+4=9,排除B.对于C :a +c =4+7,排除C ;对于D :a +c =3+5,排除D.故选A.

4.与椭圆9x 2+4y 2

=36有相同焦点,且b =25的椭圆方程是( )

A.x 225+y 220=1

B.x 280+y 285=1

C.

x 2

20+y 2

45

=1 D.

x 2

20+y 2

25

=1 解析:选D.9x 2

+4y 2

=36的焦点坐标为(0,±5).对于A :焦点坐标为(±5,0),b =25,排除A ;对于B :焦点坐标为(0,±5),b =45,排除B ;对于C :焦点坐标为(0,±5),b =25,排除C.选项D 符合要求.

5.如图,椭圆x 225+y 2

9

=1上的点M 到焦点F 1的距离为2,N 为MF 1的中点,则|ON |(O 为坐

标原点)的值为( )

A .8

B .2

C .4 D.3

2

解析:选C.由椭圆定义知|MF 1|+|MF 2|=2a =10,又|MF 1|=2,所以|MF 2|=8,由于N

为MF 1的中点,所以ON 为△F 1MF 2的中位线,所以|ON |=1

2

|MF 2|=4.

6.已知两定点F 1(-1,0),F 2(1,0),且|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹方程是________.

解析:由题意得:|PF 1|+|PF 2|=2|F 1F 2|=4>|F 1F 2|=2, 所以动点P 是以F 1、F 2为焦点的椭圆,且a =2,c =1,

所以b 2

=a 2

-c 2

=3,轨迹方程为x 24+y 2

3=1.

答案:x 24+y 2

3

=1

7.已知椭圆x 2

5

+y 2

=1的焦点为F 1,F 2,设P (x 0,y 0)为椭圆上一点,当∠F 1PF 2为直角时,

点P 的横坐标x 0=________.

解析:由椭圆的方程为x 2

5

+y 2

=1,

得c =2,

所以F 1(-2,0),F 2(2,0),PF 1→

=(-2-x 0,-y 0), PF 2→

=(2-x 0,-y 0). 因为∠F 1PF 2为直角,

所以PF 1→·PF 2→

=0,

即x 20+y 2

0=4,① 又x 20

5

+y 2

0=1,② ①②联立消去y 20得x 2

0=154,

所以x 0=±152

. 答案:±

15

2

8.已知椭圆x 2a 2+y 2

b

2=1(a >b >0)的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P

到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是________.

解析:如图,依题意:|PF 1|+|PF 2|=2a (a >0是常数). 又因为|PQ |=|PF 2|,所以|PF 1|+|PQ |=2a ,

即|QF 1|=2a .所以动点Q 的轨迹是以F 1为圆心,2a 为半径的圆.

答案:以F 1为圆心,2a 为半径的圆

9.在△ABC 中, ∠A ,∠B ,∠C 所对的三边分别是a ,b ,c ,且|BC |=2,求满足b ,a ,c 成等差数列且c >a >b 的顶点A 的轨迹.

解:由已知条件可得b +c =2a ,则|AC |+|AB |=2|BC |=4>|BC |,

结合椭圆的定义知点A 在以B ,C 为焦点的一个椭圆上,且椭圆的焦距为2.

以BC 所在的直线为x 轴,BC 的中点为原点O ,建立平面直角坐标系,如图所示.

设顶点A 所在的椭圆方程为x 2m 2+y 2n

2=1(m >n >0),则m =2,n 2=2

2

-12

=3,从而椭圆方程为x 24

+y 23

=1.又c >a >b 且A 是△ABC 的顶点,结合图形,易知x >0,y

≠0.

故顶点A 的轨迹是椭圆x 24+y 2

3

=1的右半部分除去与x 轴,y 轴的交点.

10.设F 1,F 2为椭圆x 29+y 2

4

=1的两个焦点,P 为椭圆上的一点,

(1)若PF 1⊥PF 2,且|PF 1|>|PF 2|,求|PF 1|

|PF 2|

的值.

(2)当∠F 1PF 2为钝角时,求|PF 2|的取值范围. 解:(1)因为PF 1⊥PF 2,所以∠F 1PF 2为直角,

则|F 1F 2|2=|PF 1|2+|PF 2|2

.

所以?

????20=|PF 1|2+|PF 2|2

,|PF 1|+|PF 2|=6,

解得|PF 1|=4,|PF 2|=2,所以|PF 1|

|PF 2|

=2.

(2)设|PF 1|=r 1,|PF 2|=r 2,则r 1+r 2=6. 因为∠F 1PF 2为钝角,所以cos ∠F 1PF 2<0.

又因为cos ∠F 1PF 2=r 21+r 2

2-202r 1r 2

<0,所以r 21+r 2

2<20,所以r 1r 2>8,所以(6-r 2)r 2>8,

所以2

即|PF 2|的取值范围是(2,4).

[B.能力提升] 1.已知点P 是椭圆x 216+y 2

8

=1(x ≠0,y ≠0)上的动点,F 1,F 2是椭圆的两个焦点,O 是

坐标原点,若M 是∠F 1PF 2的角平分线上一点,且F 1M →·MP →

=0,则|OM |的取值范围是( )

A .[0,3)

B .(0,22)

C .[22,3)

D .[0,4] 解析:选B.延长F 1M 交PF 2的延长线于点N ,

可得|OM |=12|F 2N |=1

2

(|PN |-|PF 2|)

=1

2

(2a -2|PF 2|)=a -|PF 2|. 设点P 的坐标为(x 0,y 0),

则x 2016+y 20

8

=1. |PF 2|=(x 0-22)2

+y 2

0=2

2

|x 0-42| =4-

2

2

x 0, 故|OM |=a -|PF 2|=4-(4-

22x 0)=22

x 0. 由题意知x 0∈(-4,0)∪(0,4). 又因为|OM |>0,

所以|OM |∈(0,22). 2.已知椭圆C :x 2

2

+y 2

=1的焦点F (1,0),直线l :x =2,点A ∈l ,线段AF 交C 于点

B ,若FA →=3FB →,则|AF →

|=( )

A. 3 B .2 C. 2 D .3

解析:选C.如图所示,设l 与x 轴交于点A 1,过B 点作x 轴的垂线BB 1,交x 轴于点B 1,设|AF →

|=t ,

则|FB →

|=t 3

得:|AA 1→

|=t 2

-1,|BB 1→

|=t 2-1

3

|FB 1→

|=13,故B ? ????4

3

,t 2-13,

代入椭圆方程得:

? ??

??4322

t 2-1

9

=1,

得:t = 2.

3.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则椭圆C 的方程为________.

解析:设椭圆的标准方程为x 2a 2+y 2

b

2=1.

由题意可得????

?a 2-b 2

=1,

1a 2

+9

4b

2

=1,得?

????a 2

=4,b 2

=3,

故椭圆C 的方程为x 24+y 2

3=1. 答案:x 24+y 2

3

=1

4.已知△ABC 的顶点A (-2,0)和B (2,0),顶点C 在椭圆x 216+y 2

12=1上,则

sin A +sin B

sin C

=________.

解析:设∠A 、∠B 、∠C 的对边分别为a 1,b 1,c 1, a =4,b =23,c =a 2-b 2=2. a 1+b 1

=2a =8,c 1=2c =4,

由sin A =a 12R ,sin B =b 12R ,sin C =c 1

2R

sin A +sin B sin C =a 1+b 1c 1=8

4=2.

答案:2

5.已知F 1,F 2为椭圆C :x 2a 2+y 2

b

2=1(a >b >0)的左、右焦点,O 是坐标原点,过F 2作垂直

于x 轴的直线MF 2交椭圆于M ,设|MF 2|=d .

(1)证明:d ,b ,a 成等比数列;

(2)若M 的坐标为()2,1,求椭圆C 的方程.

解:(1)证明:由条件知M 点的坐标为()c ,y 0,其中|y 0|=d ,

所以c 2a 2+d 2b 2=1,d =b ·1-c 2a 2=b 2

a ,

所以d b =b

a

,即d ,b ,a 成等比数列.

(2)由条件知c =2,d =1,所以?????b 2=a ·1,a 2=b 2

+2,所以???a =2,b =2,

所以椭圆C 的方程为x 24+y 2

2

=1.

6.(选做题)(1)设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B

两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2PA →,且OQ →·AB →

=1,求P 点的轨迹方程.

(2)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2

=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.

解:(1)由题意Q 坐标为(-x ,y )(x >0,y >0),设A (x 0,0),B (0,y 0), 由BP →=2PA →

得(x ,y -y 0)=2(x 0-x ,-y ),

所以????

?x =2x 0-2x ,y -y 0=-2y ,即??

???x 0=32x ,y 0=3y .

由OQ →·AB →

=1得(-x ,y )·(-x 0,y 0)=1,

所以x 0x +y 0y =1,把?

????y 0=3y ,x 0=32x 代入上式得32x 2+3y 2

=1(x >0,y >0).

(2)由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,

所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2. 由椭圆的定义可知,曲线C 是以M ,N 为左,右焦点的椭圆(与x 轴的左交点除外),又a =2,c =1,得b 2

=3,故其方程为x 24+y 2

3=1(x ≠-2).

2019-2020学年人教版高一数学新教材全套题库含答案详解

2019-2020学年人教版高一数学新教材 全套题库含答案详解 目录 专题01 集合及其表示方法 专题02 集合的基本关系 专题03 集合的基本运算 专题04 《集合》单元测试卷 专题05 命题与量词 专题06 全称量词命题与存在性量词命题的否定 专题07 充分条件、必要条件 专题08 《常用逻辑用语》单元测试卷 专题09 《集合与常用逻辑用语》综合测试卷 专题10 等式的性质与方程的解 专题11 一元二次方程的解集及其根与系数的关系 专题12 方程组的解集 专题13 《等式》单元测试卷 专题14 不等式及其性质 专题15 不等式的解集 专题16 一元二次不等式的解法 专题17 均值不等式及其应用 专题18《不等式》单元测试卷 专题19《等式与不等式》综合测试卷

专题01 集合及其表示方法 一、选择题 1.下列给出的对象中,能表示集合的是( ). A .一切很大的数 B .无限接近零的数 C .聪明的人 D .方程 的实数根 2.已知集合A={x ∈N|-1<x <4},则集合A 中的元素个数是( ) A .3 B .4 C .5 D .6 3.用列举法表示集合正确的是( ) A. ?2,2 B. {?2} C. {2} D. {?2,2} 4.已知集合A ={0,1,2},则集合B ={x -y|x ∈A ,y ∈A}中元素的个数是( ) A .9 B .5 C .3 D .1 5.下列说法正确的是( ) A .我校爱好足球的同学组成一个集合 B .是不大于3的自然数组成的集合 C .集合 和 表示同一集合 D .数1,0,5,,,, 组成的集合有7个元素 6.集合{x |x ≥2}表示成区间是 A .(2,+∞) B .[2,+∞) C .(–∞,2) D .(–∞,2] 7.集合A ={x ∈Z|y = ,y ∈Z}的元素个数为( ) A .4 B .5 C .10 D .12 8.不等式 的解集用区间可表示为 A .(–∞,) B .(–∞,] C .(,+∞) D .[,+∞) 9.下列说法正确的是( ) A .0与{}0的意义相同 B .高一(1)班个子比较高的同学可以形成一个集合 {} 2 |40A x x =-=

第二章 圆锥曲线与方程(复习)

第二章 圆锥曲线与方程(复习) 校对人:聂格娇 审核人:徐立朝 1.掌握椭圆、双曲线、抛物线的定义及标准方程; 2.掌握椭圆、双曲线、抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 7881,找出疑惑之处) 复习2: ① 若椭圆221x my +=,则它的长半轴长为__________; ②双曲线的渐近线方程为20x y ±=,焦距为10,则双曲线的方程为 ; ③以椭圆22 12516 x y +=的右焦点为焦点的抛物线方程为 .

二、新课导学 ※ 典型例题 例1 当α从0到180变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化? 变式:若曲线22 11x y k k +=+表示椭圆,则k 的取值范围是 . 小结:掌握好每类标准方程的形式. 例2设1F ,2F 分别为椭圆C :22 22x y a b + =1(0)a b >>的左、右两个焦点. ⑴若椭圆C 上的点A (1,32 )到F 1、F 2两点的距离之和等于4,写出椭圆C 的方程和焦点坐标; ⑵设点K 是(1)中所得椭圆上的动点,求线段1F K 的中点的轨迹方程. 变式:双曲线与椭圆22 12736 x y +=有相同焦点,且经过点,求双曲线的方程.

※动手试试 练1.已知ABC ?的两个顶点A,B坐标分别是(5,0) -,(5,0),且AC,BC 所在直线的斜率之积等于m(0) m≠,试探求顶点C的轨迹. 练2.斜率为2的直线l与双曲线 22 1 32 x y -=交于A,B两点,且4 AB=, 求直线l的方程. 三、总结提升 ※学习小结 1.椭圆、双曲线、抛物线的定义及标准方程; 2.椭圆、双曲线、抛物线的几何性质; 3.直线与圆锥曲线. ※知识拓展 圆锥曲线具有统一性: ⑴它们都是平面截圆锥得到的截口曲线; ⑵它们都是平面内到一个定点的距离和到一条定直线(不经过定点)距离的比值是一个常数的点的轨迹,比值的取值范围不同形成了不同的曲线; ⑶它们的方程都是关于x,y的二次方程.

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

(完整)2019年高中数学虚设零点消元法在导数压轴大题中的应用含解析答案.doc

谈虚设零点消元法在导数压轴大题中的应用 ------以 2019 年几道模拟题为例 在高考的导数压轴题中,经常会遇到导函数具有零点但求解又相对比较复杂甚至是无法求解的问题,这个时候,从正面去强求函数的零点值是很困难的,我们不妨只须设出函数的零点,然后利用其满足的关系式,谋求一种整体的替换和过 渡,往往会给我们带来意向不到的效果,最后再结合题目的其他条件,就可以很快 解决这类问题。对于最近的几道地市模拟题的导数压轴题,我们发现它们 用的好像都是同一个方法 -- 虚设零点消元法,只分析第一道,其他同理,顺便再看看之前曾经出现过的两道经典题. 一、【 2019 合肥一模理科 21】 二、【 2019 顺德三模理科 21】 三、【 2019 佛山 3 月统考(北京燕博园)理科21】 四、【 2019 广州一模理科 21】 五、【 2019 广东模拟理科 21】 六、【 2018 广州二模理科 21】 七、【 2013 全国二卷理科 21】 一、【 2019 合肥一模理科21】 21.(本小题满分12 分 ) 已知函数 f (x) e x ln(x 1) ( e 为自然对数的底数 ). (Ⅰ )求函数 f (x) 的单调区间; (Ⅱ )若 g(x) f (x) ax , a R ,试求函数g(x) 极小值的最大值. 解析: ( Ⅰ) 易知x 1 ,且 f (x) e x 1 . x 1 【求一阶导数发现是超越函数,无法确定导数的零点】 令 h(x) e x 1 ,则 h (x) e x 1 0 , x 1 (x 1)2 【进一步求二阶导数,发现二阶导数恒大于0, 说明一阶导数递增】 ∴函数 h(x) e x 1 在 x ( 1, ) 上单调递增,且h(0) f (0) 0 . x 1 【找到一阶导数的一个零点,而且是唯一的由负变正的零点,从而确定单调区间】可知,当 x ( 时,h(x) f (x) 0 , f (x) x ln(x 1) 单调递减; 1, 0) e 当 x (0, ) 时, h(x) f (x) 0 , f (x) e x ln(x 1) 单调递增. ∴函数 f (x) 的单调递减区间是( 1, 0) ,单调递增区间是 (0, ) . 【反思:有的学生提出,我们很容易就观察得到了h(0) f (0) 0 . 但是,对于

高考数学圆锥曲线与方程总结题型详解

高考数学圆锥曲线与方程章总结题型详解 圆锥曲线与方程 题型一 定义运用 1..(2017·湖南高考模拟(理))已知抛物线2 2x y = 上一点P 到焦点F 的距离为1,,M N 是直线2 y =上的两点,且2MN =,MNP ?的周长是6,则sin MPN ∠=( ) A . 4 5 B . 25 C . 23 D . 13 【答案】A 【解析】由题意,22p = ,则 122p = ,故抛物线22x y = 的焦点坐标是10,2?? ??? ,由抛物线的定义得,点P 到准线1 2y =- 的距离等于PF ,即为1 ,故点P 到直线2y =的距离为132122d ??=---= ??? . 设 点P 在直线MN 上的射影为P' ,则3 '2 PP = . 当点,M N 在P'的同一侧(不与点P'重合)时,35 2=622 PM PN MN ++> ++ ,不符合题意;当点,M N 在P'的异侧(不与点P'重合)时,不妨设()'02P M x x =<<,则'2P N x =- ,故由 2=6PM PN MN ++= ,解得0x = 或2 ,不符合题意,舍去, 综上,M N 在两点中一定有一点与点P'重合,所以 24552 sin MPN <= = ,故选A. 2.(2017·河南高考模拟(文))已知直线()()20y k x k =+>与抛物线2 :8C y x =相交于A ,B 两点, F 为C 的焦点,若2FA FB =,则点A 到抛物线的准线的距离为( ) A .6 B .5 C .4 D .3 【答案】A 【解析】由题意得,设抛物线2 8y x =的准线方程为:2l x =-,直线()2y k x =+恒过定点()2,0-, 如图过,A B 分别作AM l ⊥于M ,BN l ⊥于N ,连接OB ,

“圆锥曲线与方程”复习讲义

“圆锥曲线与方程”复习讲义 高考《考试大纲》中对“圆锥曲线与方程”部分的要求: (1) 圆锥曲线 ①了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用. ②掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质. ③了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质. ④了解圆锥曲线的简单应用. ⑤ 理解数形结合的思想. (2)曲线与方程:了解方程的曲线与曲线的方程的对应关系. 第一课时 椭 圆 一、基础知识填空: 1.椭圆的定义:平面内与两定点F 1 ,F 2的距离的和__________________的点的轨迹叫做椭圆。 这两个定点叫做椭圆的_________ , 两焦点之间的距离叫做椭圆的________. 2.椭圆的标准方程:椭圆)0b a (1 b y a x 22 22>>=+的中心在______,焦点在_______轴上, 焦点的坐标分别是是F 1 ______,F 2 ______; 椭圆)0b a (1 b x a y 22 22>>=+的中心在______,焦点在_______轴上,焦点的坐标 分别是F 1 _______,F 2 ______. 3.几个概念:椭圆与对称轴的交点,叫作椭圆的______.a 和b 分别叫做椭圆的______长和______长。 椭圆的焦距是_________. a,b,c 的关系式是_________________。 椭圆的________与________的比称为椭圆的离心率,记作e=_____,e 的范围是_________. 二、典型例题: 例1.(2006全国Ⅱ卷文、理)已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦 点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) (A )2 3 (B )6 (C )4 3 (D )12 例2.(2007全国Ⅱ文)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为( ) (A) 3 1 (B) 3 3 (C) 2 1 (D) 2 3 例3.(2005全国卷III 文、理)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ) A B C .2 D 1 例4.(2007重庆文)已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线04y 3=++x 有且仅有一个交点,则椭圆的长轴长为( ) (A )23 (B )62 (C )72 (D )24 三、基础训练: 1.(2007安徽文)椭圆142 2 =+y x 的离心率为( ) (A ) 23 (B )4 3 (C ) 22 (D )3 2 2.(2005春招北京理)设0≠abc ,“0>ac ”是“曲线c by ax =+2 2为椭圆”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件 3.(2004福建文、理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆

高考数学专题复习曲线与方程

第8讲 曲线与方程 一、选择题 1.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( ). A .圆 B .椭圆 C .双曲线 D .抛物线 解析 依题意,点P 到直线x =-2的距离等于它到点(2,0)的距离,故点P 的轨迹是抛物线. 答案 D 2. 动点P (x ,y )满足5x -1 2 y -2 2 =|3x +4y -11|,则点P 的轨迹 是 ( ). A .椭圆 B .双曲线 C .抛物线 D .直线 解析 设定点F (1,2),定直线l :3x +4y -11=0,则|PF |= x -1 2 y -2 2 ,点P 到直线l 的距离d =|3x +4y -11| 5 . 由已知得|PF | d =1,但注意到点F (1,2)恰在直线l 上,所以点P 的轨迹是直 线.选D. 答案 D 3.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为 ( ). A.4x 221-4y 2 25=1 B.4x 221+4y 2 25=1 C.4x 225-4y 2 21 =1 D.4x 225+4y 2 21 =1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,∴

a =52,c =1,则 b 2=a 2- c 2=214 , ∴椭圆的标准方程为4x 225+4y 2 21=1. 答案 D 4.在△ABC 中,A 为动点,B ,C 为定点,B ? ? ???- a 2,0,C ? ????a 2,0且满足条件 sin C -sin B =1 2sin A ,则动点A 的轨迹方程是( ) A.16x 2 a 2-16y 2 15a 2=1(y ≠0) B.16y 2a 2-16x 2 3a 2=1(x ≠0) C.16x 2a 2-16y 2 15a 2=1(y ≠0)的左支 D.16x 2a 2-16y 2 3a 2=1(y ≠0)的右支 解析:sin C -sin B =12sin A ,由正弦定理得|AB |-|AC |=12|BC |=12a (定值). ∴A 点的轨迹是以B ,C 为焦点的双曲线的右支,其中实半轴长为a 4,焦距为 |BC |=a . ∴虚半轴长为? ????a 22-? ?? ??a 42 =34a ,由双曲线标准方程得动点A 的轨迹方程 为16x 2 a 2-16y 2 3a 2=1(y ≠0)的右支. 答案:D 5.正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,AE =BF =3 7 .动点 P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为( ). A .16 B .14 C .12 D .10 解析 当E 、F 分别为AB 、BC 中点时,显然碰撞的结果为4,当E 、F 分别为

2019_2020学年新教材高中数学全册综合检测新人教B版必修第二册

全册综合检测 (时间:120分钟 满分:150分) 一、选择题(本大题共13小题,每小题4分,共52分.在每小题所给的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的不得分) 1.已知函数f (x )=log 2(x +1),若f (a )=1,则a 的值为( ) A .0 B .1 C .2 D .3 解析:选B 由题意知log 2(a +1)=1,∴a +1=2,∴a =1. 2.函数y =x -1·ln(2-x )的定义域为( ) A .(1,2) B .[1,2) C .(1,2] D .[1,2] 解析:选B 要使解析式有意义,则? ?? ?? x -1≥0, 2-x >0,解得1≤x <2,所以所求函数的定义域 为[1,2). 3.已知O ,A ,B 是同一平面内的三个点,直线AB 上有一点C 满足2AC ―→+CB ―→=0,则OC ―→ =( ) A .2OA ―→-O B ―→ B .-OA ―→+2OB ―→ C.23OA ―→-13 OB ―→ D .-13OA ―→+23 OB ―→ 解析:选A 依题意,得OC ―→=OB ―→+BC ―→=OB ―→+2AC ―→=OB ―→+2(OC ―→-OA ―→),所以OC ―→ =2OA ―→-OB ―→ ,故选A. 4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .至少有一个黑球与都是红球 B .至少有一个黑球与都是黑球 C .至少有一个黑球与至少有一个红球 D .恰有1个黑球与恰有2个黑球 解析:选D A 中的两个事件是对立事件,不符合要求;B 中的两个事件是包含关系,不是互斥事件,不符合要求;C 中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D 中是互斥而不对立的两个事件.故选D.

高中数学人教A版选修1-1 第二章圆锥曲线与方程 11

学业分层测评 (建议用时:45分钟) [学业达标] 一、选择题 1.抛物线的焦点是? ?? ??-14,0,则其标准方程为( ) A .x 2=-y B .x 2=y C .y 2=x D .y 2=-x 【解析】 易知-p 2=-14,∴p =12,焦点在x 轴上,开口向左, 其方程应为y 2=-x . 【答案】 D 2.(2014·安徽高考)抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-2 【解析】 ∵y =14x 2,∴x 2=4y .∴准线方程为y =-1. 【答案】 A 3.经过点(2,4)的抛物线的标准方程为( ) A .y 2=8x B .x 2=y C .y 2=8x 或x 2=y D .无法确定 【解析】 由题设知抛物线开口向右或开口向上,设其方程为y 2 =2px (p >0)或x 2=2py (p >0),将点(2,4)代入可得p =4或p =12,所以 所求抛物线的标准方程为y 2=8x 或x 2=y ,故选C. 【答案】 C

4.若抛物线y 2=ax 的焦点到准线的距离为4,则此抛物线的焦点坐标为( ) A .(-2,0) B .(2,0) C .(2,0)或(-2,0) D .(4,0) 【解析】 由抛物线的定义得,焦点到准线的距离为???? ??a 2=4,解得a =±8.当a =8时,焦点坐标为(2,0);当a =-8时,焦点坐标为(-2,0).故选C. 【答案】 C 5.若抛物线y 2 =2px 的焦点与椭圆x 26+y 22=1的右焦点重合,则p 的值为( ) A .-2 B .2 C .-4 D .4 【解析】 易知椭圆的右焦点为(2,0),∴p 2=2,即p =4. 【答案】 D 二、填空题 6.已知圆x 2+y 2-6x -7=0与抛物线y 2=2px (p >0)的准线相切,则p =________. 【解析】 由题意知圆的标准方程为(x -3)2+y 2=16,圆心为(3,0), 半径为4,抛物线的准线为x =-p 2,由题意知3+p 2=4,∴p =2. 【答案】 2 7.动点P 到点F (2,0)的距离与它到直线x +2=0的距离相等,则P 的轨迹方程是________. 【解析】 由题意知,P 的轨迹是以点F (2,0)为焦点,直线x +2

2019版高中数学新课程标准测试题及答案

高中数学新课标测试题 一选择题: 1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是( ) A.提高学习数学的兴趣,树立学好数学的信心 B.形成锲而不舍的钻研精神和科学态度 C.开阔数学视野,体会数学的文化价值 D.只需崇尚科学的理性精神 2.《高中数学课程标准》在课程目标中提出的基本能力是( ) A.自主探究、数据处理、推理论证、熟练解题、空间想象 B.运算求解、数据处理、推理论证、空间想象、抽象概括 C.自主探究、推理论证、空间想象、合作交流、动手实践 D.运算求解、熟练解题、数学建模、空间想象、抽象概括 3.高中数学新课程习题设计需要( ) A.无需关注习题类型的多样性,只需关注习题功能的多样性 B.只需关注习题类型的多样性,无需关注习题功能的多样性 C.既要关注习题类型的多样性,也要关注习题功能的多样性 D.无需关注习题类型的多样性,也无需关注习题功能的多样性 4.下面关于高中数学课程结构的说法正确的是( ) A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要 B.高中数学课程包括4个系列的课程

C.高中数学课程的必修学分为16学分 D.高中数学课程可分为必修与选修两类 5.在教学中激发学生的学习积极性方法说法正确的是( ) A.让学生大量做题,挑战难题 B.创设问题情境,让学生有兴趣、有挑战 C.让学生合作交流讨论、动手操作、有机会板演讲解 D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义 6.要实现数学课程改革的目标,关键是依靠( ) A.学生 B.教师 C.社会 D.政府领导 7.在新课程中教师的教学行为将发生变化中正确的是( ) A.在对待自我上,新课程强调反思 B.在对待师生关系上,新课程强调权威、批评 C.在对待教学关系上,新课程强调教导、答疑 D.在对待与其他教育者的关系上,新课程强调独立自主精神 8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是( )

高中二年级数学 第二章 圆锥曲线与方程(A)

第二章 圆锥曲线与方程(A) (时间:120分钟 满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值是( ) A.14 B.12 C .2 D .4 2.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12 ,则此椭圆的方程为( ) A.x 212+y 216=1 B.x 216+y 212 =1 C.x 248+y 264=1 D.x 264+y 248=1 3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( ) A.x 236-y 2108=1 B.x 29-y 227 =1 C.x 2108-y 236=1 D.x 227-y 29 =1 4.P 是长轴在x 轴上的椭圆x 2a 2+y 2b 2=1上的点,F 1、F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|的最大值与最小值之差一定是( ) A .1 B .a 2 C .b 2 D .c 2 5.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24 =1 C.y 24-x 28=1 D.x 28-y 24 =1 6.设a >1,则双曲线x 2a 2-y 2(a +1)2 =1的离心率e 的取值范围是( ) A .(2,2) B .(2,5) C .(2,5) D .(2,5) 7. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( ) A .直线 B .圆 C .双曲线 D .抛物线 8.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若 FA +FB +FC =0,则|FA |+|FB |+|FC |等于( )

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

圆锥曲线与方程单元知识总结

圆锥曲线与方程单元知识总结、公式及规律 一、圆锥曲线 1.椭圆 (1)定义 定义1:平面内一个动点到两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|),这个动点的轨迹叫椭圆(这两个定点叫焦点). 定义2:点M 与一个定点的距离和它到一条定直线的距离的比是常 数=<<时,这个点的轨迹是椭圆. e (0e 1)c a (2)图形和标准方程 图-的标准方程为:+=>>图-的标准方程为:+=>>811(a b 0) 821(a b 0) x a y b x b y a 222 2222 2 (3)几何性质

2.双曲线 (1)定义 定义1:平面内与两个定点F F2的距离的差的绝对值等于常数(小于|F1F2|)的点 1、

的轨迹叫做双曲线(这两个定点叫双曲线的焦点). 定义2:动点到一定点的距离与它到一条定直线的距离之比是常数e(e>1)时,这个动点的轨迹是双曲线(这定点叫做双曲线的焦点). (2)图形和标准方程 图8-3的标准方程为: x a y b 2 2 2 2 -=>,> 1(a0b0) 图8-4的标准方程为: y a x b 2 2 2 2 -=>,> 1(a0b0) (3)几何性质

3.抛物线 (1)定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. (2)抛物线的标准方程,类型及几何性质,见下表: ①抛物线的标准方程有以下特点:都以原点为顶点,以一条坐标轴为对称轴;方程不同,开口方向不同;焦点在对称轴上,顶点到焦点的距离等于顶点到准线距离. ②p 的几何意义:焦点F 到准线l 的距离. ③弦长公式:设直线为=+抛物线为=,=y kx b y 2px |AB|212+k |x x ||y y |2121-=-11 2+ k 焦点弦长公式:|AB|=p +x 1+x 2 4.圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义 与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e 表示,当0<e <1时,是椭圆,当e >1时,是双曲线,当e =1时,是抛物线. 二、利用平移化简二元二次方程 1.定义 缺xy 项的二元二次方程Ax 2+Cy 2+Dx +Ey +F =0(A 、C 不同时为0)※,通过配方和平移,化为圆型或椭圆型或双曲线型或抛物线型方程的标准形式的过程,称为利用平移化简二元二次方程. A =C 是方程※为圆的方程的必要条件. A 与C 同号是方程※为椭圆的方程的必要条件. A 与C 异号是方程※为双曲线的方程的必要条件. A 与C 中仅有一个为0是方程※为抛物线方程的必要条件.

【精选8套高考试卷】2019版高中数学导学案

第二章 平面向量 1 向量和差作图全攻略 两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握. 一、向量a 、b 共线 例1 如图,已知共线向量a 、b ,求作a +b. (1)a 、b 同向; (2)a 、b 反向,且|a|>|b|; (3)a 、b 反向,且|a|<|b|. 作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB → =a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a|+|b|;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a|-|b||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b.作图如下: 例2 如图,已知共线向量a 、b ,求作a -b. (1)a 、b 同向,且|a|>|b|; (2)a 、b 同向,且|a|<|b|; (3)a 、b 反向. 作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA → =a -b.事实上a -b 可看作是a +(-b),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下: 二、向量a 、b 不共线 如果向量不共线,可以应用三角形法则或平行四边形法则作图. 例3 如图,已知向量a 、b. 求作:(1)a +b ;(2)a -b. 作法1 (应用三角形法则) (1)一般情况下,应在两已知向量所在的位置之外任取一点O.

第一步:作OA → =a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a|,并使OA → 与a 同向. 第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB → 作成与b 的方向相反.) 第三步:作OB →,即连接OB ,在B 处打上箭头,OB → 即为a +b. 作图如下: (2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB → =b ; 第三步:连接AB ,在A 处加上箭头,向量BA → 即为a -b. 作图如下: 点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2 (应用平行四边形法则) 在平面上任取一点A ,以点A 为起点作AB → =a , AD →=b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB → =a -b.作图如下: 点评 向量的平行四边形法则和三角法则在本质上是一样的,但在解决某些问题时平行四边形法则有一定的优越性,因此两种法则都应熟练掌握. 向量和差作图,要注意的是保证所作向量与目标向量“方向相同,长度相等”,最忌讳的是“作法不一”,比如作法中要求的是作AB →=b ,可实际上作的是AB → =-b.只要作图的过程与作法的每一步相对应,一定能作出正确的图形. 2 向量线性运算的应用 平面向量的线性运算包括加法、减法以及数乘运算,在解题中具有广泛的应用.在对向量实施线性运算时,要准确利用对应的运算法则、运算律,注意向量的大小和方向两个方面. 一、化简 例1 化简下列各式:

第二章圆锥曲线与方程教案

第二章圆锥曲线与方程 一、课程目标 在必修阶段学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步体会数形结合的思想。 二、学习目标: (1)、圆锥曲线: ①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用。 ②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质。 ③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质。 ④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题。 ⑤通过圆锥曲线的学习,进一步体会数形结合的思想。 三、本章知识结构框图: 四、课时分配 本章教学时间约需9课时,具体分配如下: 2.1 曲线与方程约1课时 2.2 椭圆约2课时 2.3 双曲线约2课时 2.4 抛物线约2课时 直线与圆锥曲线的位置关系约1课时 小结约1课时 2.1 求曲线的轨迹方程(新授课) 一、教学目标 知识与技能:结合已经学过的曲线及方程的实例,了解曲线与方程的对应关系,了解两条曲线交点的求法;能根据曲线的已知条件求出曲线的方程,并初步学会通过方程来研究曲线的性质。 过程与方法:通过求曲线方程的学习,可培养我们的转化能力和全面分析问题的能力,帮助我们理解研究圆锥曲线的基本方法。 情感、态度与价值观:通过曲线与方程概念的学习,可培养我们数与形相互联系,对立统一的辩证唯物主义

观。 二、教学重点与难点 重点:求动点的轨迹方程的常用技巧与方法. 难点:作相关点法求动点的轨迹方法. 三、教学过程 (一)复习引入 平面解析几何研究的主要问题是: 1、根据已知条件,求出表示平面曲线的方程; 2、通过方程,研究平面曲线的性质. 我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析. (二)几种常见求轨迹方程的方法 1.直接法 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1、(1)求和定圆x2+y2=R2的圆周的距离等于R的动点P的轨迹方程; (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹. 对(1)分析: 动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0. 解:设动点P(x,y),则有|OP|=2R或|OP|=0. 即x2+y2=4R2或x2+y2=0. 故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0. 对(2)分析: 题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.解答为: 设弦的中点为M(x,y),连结OM, 则OM⊥AM. ∵k OM·k AM=-1, 其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点). 2.定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程.

人教版高中数学圆锥曲线与方程教案

基础巩固强化 一、选择题 1.椭圆2x 2+3y 2=12的两焦点之间的距离是( ) A .210 B.10 C. 2 D .2 2 [答案] D [解析] 椭圆方程2x 2 +3y 2 =12可化为:x 26+y 2 4=1, a 2=6, b 2=4, c 2=6-4=2,∴2c =2 2. 2.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k 的值为( ) A .-1 B .1 C. 5 D .- 5 [答案] B [解析] 椭圆方程5x 2+ky 2=5可化为:x 2+y 25k =1, 又∵焦点是(0,2),∴a 2 =5k ,b 2=1,c 2 =5k -1=4, ∴k =1. 3.已知方程x 225-m +y 2 m +9=1表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .-98 [答案] B

[解析] 由题意得???? ? m +9>025-m >0 m +9>25-m ,解得8

圆锥曲线与方程复习资料

高中数学选修2-1 第二章 圆锥曲线与方程 知识点: 一、曲线的方程 求曲线的方程(点的轨迹方程)的步骤:建、设、限、代、化 ①建立适当的直角坐标系; (),M x y 及其他的点; ③找出满足限制条件的等式; ④将点的坐标代入等式; ⑤化简方程,并验证(查漏除杂)。 二、椭圆 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12 F F )的点的轨迹称为椭圆。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距。()12222MF MF a a c +=> 2、椭圆的几何性质: 焦点的位置 焦点在x 轴上 焦点在y 轴上 图形 标准方程 ()22 2210x y a b a b +=>> ()22 2210y x a b a b +=>> 第一定义 到两定点21F F 、 的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >) 第二定义 到一定点的距离和到一定直线的距离之比为常数e ,即 (01)MF e e d =<< 范围 a x a -≤≤且 b y b -≤≤ b x b -≤≤且a y a -≤≤ 顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称 焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c

3、设M 是椭圆上任一点,点M 到F 对应准线的距离为1d ,点M 到F 对应准线的距离为2d ,则121 2 F F e d d M M ==。 常考类型 类型一:椭圆的基本量 1.指出椭圆36492 2 =+y x 的焦点坐标和离心率. 【变式1】椭圆 116 252 2=+y x 上一点P 到椭圆一个焦点的距离为3,则P 到另一个焦点的距离=________ 【变式2】椭圆 125 162 2=+y x 的两个焦点分别为21F F 、,过2F 的直线交椭圆于A 、B 两点,则1ABF ?的周长1ABF C ?=___________. 【变式3】已知椭圆的方程为11622 2=+m y x ,焦点在x 轴上,则m 的取值范围是( )。

相关文档
相关文档 最新文档