文档库 最新最全的文档下载
当前位置:文档库 › 土壤中铜的测定

土壤中铜的测定

土壤中铜的测定
土壤中铜的测定

原子吸收分光光度法测定土壤中的铜

一、实验目的:

(一)学习测定铜的技术;

(二)掌握原子吸收分光光度法的原理。

二、实验意义:

土壤是植物生长的基地,是动物、人类赖以生存的物质基础,因此,土壤质量的优劣直接影响人类的生产、生活和发展。但由于近些年人们不合理地施用农药、进行污水灌溉等致使各类污染物质通过多种渠道进入土壤。当污染物进入土壤的数量超过土壤自净能力时,将导致土壤质量下降,甚至恶化,影响土壤的生产能力。此外,通过地下渗漏、地表径流还将污染地下水和地表水。

我国土壤常规监测项目中,金属化合物有镉、铬、铜、汞、铅、铜;非金属无机化合物有砷、氰化物、氟化物、硫化物等;有机化合物有苯并(a)芘、三氯乙醛、油类、挥发酚、DDT、六六六等。

地壳中铜的平均含量约为70mg/kg;全球土壤中铜的含量范围一般在2—100mg/kg之间,平均含量为20mg/kg;我国土壤中铜的含量在3—300mg/kg之间,平均含量为22mg/kg。土壤的铜含量常常与其母质来源和抗风化能力有关,因此也与土壤质地间接相关。土壤中的铜大部分来自含铜矿物——孔雀石、黄铜矿及含铜砂岩等。一般情况下,基性岩发育的土壤,其含铜量多于酸性岩发育的土壤,沉积岩中以砂岩含铜最低。各类土壤的含铜量按多少排列如下:砂姜黑土(25.49mg/kg)>潮土(22.48mg/kg)>褐土(22.18mg/kg)>盐碱土(18.78mg/kg)>棕壤(17.81mg/kg)>黄棕壤(15.58mg/kg)>风沙土(8.44mg/kg)。我国土壤表层或耕层中铜含量的背景值范围为7.3—55.1mg/kg(不同地区有不同的背景值)。土壤中铜的环境质量标准见表一,卫生标准见表二。

表一土壤中铜的环境质量标准值(GB15618—1995)单位:mg/kg

级别一级二级三级

土壤pH值自然背景<6.5 6.5~7.5 >7.5 >6.5

农田等≤ 35 50 100 100 400

果园≤ — 150 200 200 400

表二土壤中铜的卫生标准(GB11728—89)

土壤中铜的阳离子交换量(毫克当量/100g干土)<10 10—20 >20

土壤中的最高容许浓度(mg/kg)50 150 300

三、实验方法和原理:

(一)方法

土壤污染监测的常用方法有:

重量法——适用于测定土壤水分;

容量法——适用于浸出物中含量较高的成分如Ca2+、Mg2+、Cl-、SO42-等测定;

气相色谱法——适用于有机氯、有机磷及有机汞等农药的测定;

分光光度法(AAS、AES、AFS)——适用于重金属如Cu、Cd、Cr、Pb、Hg、Zn等组分的测定。

(二)原理

土壤样品用HNO3—HF—HClO4混酸体系消化后,将消化液直接喷入空气—乙炔火焰。在火焰中形成的铜的基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得铜的含量。计算土壤中铜的含量。

注:该方法的检出限为1mg/kg。

四、实验仪器和试剂:

(一)仪器

原子吸收分光光度计,空气—乙炔火焰原子化器,铜空心阴极灯。

1.工作条件

测定波长:324.8nm;

通带宽度:1.3nm;

灯电流:7.5mA;

火焰类型:空气-乙炔,氧化型,蓝色火焰。

2.主要性能参数

灵敏度:0.1mg/L;

检出限:0.01mg/L;

适测浓度范围:0.2—10mg/L。

注:不同仪器其灵敏度和检出限有差异。

(二)试剂

1.硝酸:优级纯;

2.氢氟酸:优级纯;

3.高氯酸:优级纯;

4.铜标准溶液:市售标准液。一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样。注:具体配制方法见上次的实验报告。

五、实验步骤和注意事项:

(一)土壤样品的预处理

1.把课前采集的土样均匀地摊开在一张比较厚的牛皮纸上;

2.挑出其中的动植物残渣及难以研磨碎的石块;

3.用四分法弃取土壤(留下四分之一);

4.用筛子(尼龙筛网为100目)和研钵(白陶瓷制)对留下的土样进行反复的过筛—研磨,直至几乎全部过筛。

(二)土壤试液的制备

1.称取约0.5g土样于25mL聚四氟乙烯坩埚(高温消化罐)中,用少许水润湿;

2.加入15mLHNO3,在电热板上加热消化至溶解物剩余约5mL;

3.再加入5mLHF,加热分解SiO2及胶态硅酸盐;

4.最后加入5mLHClO4,加热至消解物呈淡黄色;

5.打开盖,先蒸至近干,然后取下冷却;

6.加入(1:5)HNO31mL微热溶解残渣,移入10mL容量瓶中定容。

注:制备土壤试液的同时进行全程序试剂空白实验。

(三)标准曲线的绘制

直接吸取一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样,测其吸光度,绘制标准曲线。

注:详细步骤见上次的实验报告。

(四)土壤样品的测定

本实验采用标准曲线法,按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得并计算铜的含量:

铜(mg/kg)=m/W

式中:m——从标准曲线上查得的铜的含量(0.61g/L×10mL=6.1μg);

W——称量土样干重量(0.4992g)。

结果:铜(mg/kg)=6.1μg/0.4992g=12.22mg/kg。

(五)注意事项

1.进行过筛—研磨,一定要有耐心,直至土壤颗粒几乎全部过筛;

2.有少量细砂吸附在筛网上,千万不能用毛刷刮蹭筛网(只用其轻掸),否则会破坏网眼大小,造成筛网报废;

3.高氯酸、氢氟酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值;

4.土壤试液在加热蒸干时温度不要超过200℃,否则无水HClO4受热后会发生爆炸;

5.土样消化过程中,最后除去HClO4时必须防止将溶液蒸干,不慎蒸干时,Fe、Al盐可能形成难溶的氧化物而包藏铜,使结果偏低。

六、实验数据记录

七、实验讨论和体会:

在星期三做完这个实验后,我并不认为已经结束了实验,因为我对这个实验的思考并未结束。实事求是地说,我们的这个利用火焰原子吸收分光光度法对铜的测定实验并不是很成功,这与我们初次尝试、缺乏经验有关。然而,这个实验的操作过程的繁多,也就是方法上的不完善处,也是我们实验不很成功的“致命伤”!

首先,样品制备大都采用全量消解法。该方法操作过程繁多,消解不完全,待测成分易损失,准确度不易把握。实验中如果任一处环节出现偏差都会对测量结果产生影响。其次,由于土壤中可能含有有机质和植物纤维的影响,使消解往往不完全、待测成分易损失、试剂消耗量很大及产生对操作人员有害的酸气等。

于是,我针对测定土壤中铜的含量的实验缺点,进行了调查研究,总结其它实验方法的优缺点,集合其长处,提出了自己的一套方法,以供老师同学参考。该方法具有方法简单、引入干扰少、提取率高等优点,也具有很好的经济效益与环境效益。

关于消化方法的探讨:

经过调查,土壤中铜的环境样品,组分复杂,测定难度较大。而测定准确与否,在一定程度上取决于样品的消化方法。

(1)按标准所述准确称取0.45—0.50g (准确度至0.0002g)试样于25mL 聚四氟乙烯消化罐中。在实际试验中可以称取0.60—1.00g (准确度至0.0002g) 试样于50mL 聚四氟乙烯消化罐。之所以称量数量较试验规程较多,是为了提高样品测定时的灵敏度。

(2)整个样品的消解过程, 对温度的控制是严格的, 它直接影响着土壤消解能否达到要求。根据经验, 试样开始加入硝酸20mL ,高氯酸8mL ,氢氟酸8mL 后,中温加热,温度必须控制在低于400°C。温度过高,可使聚四氟乙烯熔化;温度过高,不利于消解除硅。

(3)在整个消解过程中, 先后加入硝酸20mL 、高氯酸5mL、氢氟酸5mL 后,就立即加热了,而在实际操作中加入三种混合酸后,盖严,轻轻摇动,使之混匀,有利于充分溶解。在加热一段时间后,打开杯盖,以取得良好效果。为了防止飞溅,应该注意经常摇动烧杯。由于土壤种类较多,所含有机质差异较大,在消解时,注意观察各种酸的用量,可视消解情况酌情增减。土壤消解液应呈白色或淡黄色(含铁量高的土壤呈现黄色) ,但没有明显沉淀物存在。

(4)在温度控制的同时, 应注意对时间的控制问题。温度过高, 时间则相应缩短, 否则加热时间过长造成消解样品焦糊,使测定结果偏低。

(5)一个不能不提的问题:市售的氢氟酸含有杂质(如上海某试剂厂生产的优级纯氢氟酸中铜的杂质含量相当高),故造成校准曲线高浓度点弯曲,而且在消化过程中酸的消耗量大,

消化时间长,试样易玷污,在高氯酸冒烟赶F-的操作中,时间不易控制,时间的不够或过长均将直接导致土壤中铜测定结果的偏高或偏低。所以,我个人认为,在样品消解的方法中避免HF的使用是上策,另外,HF还有毒,有腐蚀性,太危险!

仪器测定过程中的问题探讨:

(1)仪器开、关机时必须严格遵守操作规程。空心阴极灯预热30 分钟, 为了输送给放大系统足够的能量,必须在灯电流、狭缝、光电倍增管负高压三者之间进行合理的调试和区配,以得到最佳选择,一般的灯电流的最佳值,要比理论值大一点。

(2)调节燃气和燃气压力时, 要注意静止状态和气流状态是不同的。一定在燃烧器点火的工作条件下调节,并且在测量过程中, 经常检查设定值是否已经改变。如有变化, 应随时校正,以保持在测量过程中条件的一致性。

(3)毛细管的长度增加会使吸喷试液的阻力增大, 使试液提升量下降;试液放置高度相差5cm ,可导致吸喷试液量10 %的变化, 这对于精确的测量有明显的影响。因此测量时, 每个试样放置的位置高度要保持一致。

(4)温度升高, 试液的粒度下降, 其吸喷试液的提升量增加,同时使雾化效率增大。加热试样,可提高测量的灵敏度。为获得准确一致的测量,应保持试液的温度相同。一般是使试液在室温下放置一定时间,使其于室温达到平衡。

(5)当燃烧器缝口积有盐类或尘土时, 可使火焰变化不规则, 呈锯齿状。应卸下燃烧头, 用刀片刮去淀积的盐块, 最好依次用稀盐酸和蒸馏水彻底清洗。

(6)测定土壤消解液时, 由于土壤含盐类过高会产生背景吸收,使测定结果偏高。因此必须消去背景的吸收。

(7)经过研究,铜的化合物易离解,而且不形成难挥发性化合物,试液中的基体干扰较少。虽然土壤中大量的硅会产生影响,但由于采用了HNO3-HF-HClO4体系分解土样,此时极大部分硅已被除去,所以一般不会产生干扰。

土壤有效性铜-锌-铁-锰简易测定方法

土壤有效性铜\锌\铁\锰简易测定方法 植物所需微量元素包括铜、锌、铁、锰、硼、钼等,其主要生理作用有参与体内碳氮代谢、与叶绿素合成及稳定性有关、参与体内氧化还原反应、促进生物固氮、促进生殖器官的发育等。总之,尽管作物对微量元素的需求很少,但其对植物的生理作用却是必不可少的。目前,全国缺乏微量元素的农田面积逐年增加,但微肥的重要性还未引起农民的足够重视。因此,推广测土配方施肥,大力宣传植物所需微量元素的重要性以及测定土壤微量元素的含量迫在眉睫。现就土壤微量元素铜、锌、铁、锰简易测定方法介绍如下: 1基本方法 土壤样品经DTPA-TEA-CaCl2提取后,用原子光谱法直接测定溶液中的锌、锌、铁、锰。 2主要仪器、设备 ①原子吸收分光光度计;②酸度计;③往复式振荡机;④带盖塑料瓶。 3试剂 3.1DTPA浸提剂其成分为0.005mol/L DTPA、0.01mol/ L CaCl2和0.10mol /L TEA。称取1.967g二乙酸胺五乙酸(DTPA),溶于1 4.92g三乙醇胺(TEA)和少量水中;再将 1.47g氯化钙(CaCl2.H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用6mol/ L盐酸溶液调节pH至7.30,用水定容,贮于塑料瓶中。 3.2标准贮备液 3.2.1铜标准贮备液称取1.00g金属铜(优级纯),溶解于20mL 1:1硝酸溶液,移入1L容量瓶中,用水定容,即为1 000ug /mL铜标准贮备液。分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铜标准溶液。 3.2.2锌标准贮备液称取1.00g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容,即为1 000ug/ mL锌标准贮备液。分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL锌标准溶液。 3.2.3铁标准贮备液称取1.00g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容,即为1 000ug/ mL铁标准贮备液。分取此液5mL于100mL容量瓶中,用水定容,即为含50 ug/ mL铁标准溶液。 3.2.4锰标准贮备液称取1.00g金属锰(优级纯),用20mL 1:1硝酸溶液溶解,移

土壤检测方法

土壤有机质的测定 称取通过孔径筛的风干试样,(一般为,精确到),放入硬质试管中,然后从滴定管准确加入 l重铬酸钾-硫酸溶液,摇匀并在每个试管口插入一玻璃漏斗。将试管逐个插入铁丝笼中,沉入加热至185℃-190℃的油浴锅内,试管液面低于油面,要求放入后油浴温度下降至170-180℃,待试管内溶液开始沸腾开始计时,此刻必须控制电炉温度,不使溶液沸腾,其间可轻轻提起铁丝笼在油浴锅中晃动几次,以使液温均匀,并维持在170-180℃,5min±后取出,冷却片刻,擦去试管外壁的油液。把试管内的消煮液及土壤残渣无损的转入250ml三角瓶中,用水冲洗试管及小漏斗,洗液并入三角瓶中,使三角瓶内溶液控制在50-60ml。加3滴邻菲罗啉指示剂,用硫酸亚铁铵标准溶液滴定剩余的K2Cr2O7,变色过程是橙黄-蓝绿-棕红。 空白试验:称取石英砂,其他步骤相同。 如果试样滴定所用硫酸亚铁铵标准溶液的体积不到空白的1/3,则有氧化不完全的可能,应减少称样量重测。 结果计算: 有机质(%)=c×(V0-V)××××100/m V0:空白试验消耗硫酸亚铁铵标准溶液体积,ml V:试样测定消耗硫酸亚铁铵标准溶液体积,ml

c: 硫酸亚铁铵标准溶液的浓度,mol/l m:风干试样的质量,g 土壤全氮的测定方法 称取通过孔径筛的风干试样(含氮约1mg,精确到)。 1.不包括硝态氮和亚硝态氮的消煮:将试样送入干燥的消化管底部,加入加速剂,加水约2ml湿润试样,再加8ml浓硫酸,摇匀,将消化管置于控温消煮炉上,用小火加热,待管反应缓和时,(约10~15min),加强火力至375℃,待消煮液和土粒全部变为灰白稍带绿色后(白烟消失),再继续消煮1h,冷却,待蒸馏。在消煮试样的同时,做两份空白测定。 2.包括硝态氮和亚硝态氮的消煮:将试样送入干燥的消化管底部,加入1ml高锰酸钾溶液,轻轻摇动消煮管,缓缓加入2ml 1:1硫酸溶液,不断转动消化管,放置5min后,再加入1滴辛醇。通过长颈漏斗加(±)还原铁粉送入消化管底部,瓶口盖上弯颈漏斗,转动消化管,使铁粉与酸接触,待剧烈反应停止时(约5min),将消化管置于控温消煮炉上缓缓加热45min(管内土液应保持微沸,以不引起大量水分丢失为宜)。停止加热,待消化管冷却后,加加速剂和5ml 浓硫酸,摇匀,待蒸馏。在消煮试样的同时,做两份空白测定。 蒸馏前先按仪器使用说明检查定氮仪,并空蒸洗净管道。待消煮

黄铜中铜、锌含量的测定

黄铜中铜、锌含量的测定(络合滴定法) (一)、实验目的 1.掌握络合滴定法测量铜、锌的原理 2.掌握黄铜的溶解方法 3.学习查阅参考书刊,综合参考资料及设计实验 (二)实验原理 试样以硝酸(或HCl+H 2O 2)溶解。用 1:1NH 3.H 2O 调至 pH8-9,沉淀分离Fe 3+、Al 3+、Mn 2+、Pb 2+、Sn 4+、Cr 3+、Bi 3+ 等干扰离子,Cu 2+、Zn 2+、则以络氨离子形式存在于溶液中,过滤。取两等份滤液,将一份滤液调至微酸性,用 Na 2S 2O 3(或硫脲)掩蔽 Cu 2+,在 pH5.5 HAc-NaAc 的缓冲溶液中,XO (二甲酚橙)作指示剂,用标准 EDTA

直接络合滴定Zn2+.而在另一等份滤液中,于pH5.5.加热至70-80摄氏度,加入10mL 乙醇,以PAN(-(2-吡啶偶氮)-2-萘酚)为指示剂用标准EDTA 直接滴定Cu2+、Zn2+总含量.差减可得Cu2+。 (三)、实验步骤 1.0.01mol·L-1EDTA标准溶液的配置 用洁净的500mL烧杯称取配制 300mL0.01mol·L-1EDTA标准溶液所需的EDTA二钠盐固体,在烧杯中加水、温热溶解、冷却后转移入试剂瓶中,摇匀。 2.Ca2+标准溶液的配制 准确称取100mL0.01mol·L-1 Ca2+所需的CaCO3(0.1001±0.0002g)于150mL烧杯中。先用少量水润湿,盖上表面皿,从烧杯嘴滴加5mL6mol·L-1HCl溶液使CaCO3全部溶解(注意:5mLHCl不用加完,溶解完全后,再补

加1~2滴HCl即可)。加水使溶液总量约50mL,微沸几分钟以除去CO2。冷却后用少量水冲洗表面皿,定量地转移到100mL容量瓶中,用水稀释至刻度,摇匀。 3.在pH 10 时以CaCO3为基准物质标定 0.01mol·L-1EDTA标准溶液 吸取10.00mLCa2+标准溶液于锥形瓶 中,加1滴0.05%甲基红,用(1+2) NH3·H2O溶液中和至溶液由红色变浅 黄色。加入20mL水和3mLMg2+-EDTA, 再加5mLpH 10的缓冲溶液和4滴络黑T 指示剂。立即用0.01mol·L-1EDTA标准 溶液滴定至由酒红色变纯蓝色即为终 点。平行标定三份,计算EDTA溶液的 准确浓度。 4. 试样的溶解 准确称取0.3g黄铜试样于150mL烧杯中,

GBT17141-1997土壤质量铅、镉的测定石墨炉原子吸收分光光度法

. . 索立德环保服务 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.1试剂的验证 3.2标准物质的验证 3.3材料的验证 无 4.仪器和设备的验证 4.1仪器的验证

设备的验证 4.2 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至 100g,缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm 尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入 5mL盐酸,于通风橱的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热1 h左右,然后开盖,电热板温度控制在150 ℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色

土壤有效硼的测定方法及注意事项

土壤有效硼的测定方法及注意事项 摘要从方法原理、试剂配制、操作步骤、结果计算等方面介绍了土壤有效硼的检测方法,并指出检测中的注意事项。 关键词土壤有效硼;测定方法;注意事项 硼是植物正常生长发育不可缺少的微量元素,能够促进植物生长茂盛和生殖器官的正常发育,有利于开花结实,促进作物早熟,提高产量和品质;土壤缺硼,易使作物根尖分生组织的细胞分化和伸长受到抑制,发生木栓化而坏死,并形成“蕾而不花”、“花而不实”、“有壳无仁”及“不穗症”等,严重影响农作物的产量和品质。但供硼过多会使作物形成硼中毒,因此根据土壤有效硼含量,合理供给硼元素是提高作物产量和品质的关键措施之一,土壤有效硼的检测准确度是制定施硼数量的重要依据。笔者根据近年来对土壤有效硼的检测经验,现就土壤有效硼检测方法和注意事项介绍如下。 1测定方法 1.1方法原理 土壤中有效硼采用沸水提取,提取液用EDTA消除铁、铝离子的干扰,用高锰酸钾消褪有机质的颜色后,以甲亚胺-H比色法测定提取液中的硼量。在弱酸介质中硼与甲亚胺生成黄色络合物,测定浓度范围为0~1mg/mL符合朗伯-比尔定律,显色稳定时间可达3h,一般在显色1h后比色。 1.2试剂配制 高锰酸钾溶液:称取高锰酸钾31.62g溶于水中,稀释至1L。硫酸溶液:量取浓硫酸(优级纯)168mL缓缓加入到盛有约800mL的大烧杯中,不断搅拌,冷却后,稀释至1L。酸性高锰酸钾溶液:上述配制的高锰酸钾溶液与硫酸等体积混合,当天现配。抗坏血酸溶液:称取抗坏血酸5.00g溶于水中,稀释至5 0mL,当天现配。甲亚胺溶液:称取甲亚胺0.90g和抗坏血酸2.00g溶液于微热的60mL 水中,稀释至100mL,必要时过滤,用时现配。pH值5.6~5.8缓冲液:称取乙酸铵250g和EDTA二钠盐10.0g溶于250mL水中,冷却后稀释至500mL,再加入80mL 1∶4硫酸(优级纯)溶液,摇匀(用酸度计检查PH)。混合显色剂:量取3份体积上述甲亚胺溶液和2份体积上述缓冲液混合,当天现配。硫酸镁溶液:称取硫酸镁10.0g溶于水中,稀释至100mL。硼标准系列溶液:称取预先在

土壤中重金属全量测定方法

版本1: 土壤中铜锌镉铬镍铅六中重金属全量一次消解测定方法.用氢氟酸-高氯酸-硝酸消解法,国家标准物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取0.5克土壤样品(过0.15mm筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),电热板上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加0.5毫升的100g/L的氯化铵溶液,定容,然后原子吸收分光光度计检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉. 版本2: 1)称量0.5000g样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标 样),用少量去离子水润湿; 2)缓缓加入10.0mLHF和4.0mLHClO4(如果在开始加热蒸发前先把样品在混合 酸中静置几个小时,酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时); 3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都 需要蒸发至尽干;若消化完全则直接进行下一步; 4)加入4.0mLHClO4,蒸发至近干,以除尽残留的HF; 5)加入10.0mL的5mol/L HNO3,微热至溶液清亮为止。检查溶液中有无被分解 的物料。如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸); 6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶 液中硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。 附: 现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.

铜的测定方法

锌试剂法测定铜含量 1方法提要 本标准方法是将水样中的全铜溶解为离子态,在PH3.5-4.8的条件下与锌试剂反应形蓝色络合物,然后在600nm波长下测定其吸光度。 2试剂 锌试剂溶液 准确称取0.072g锌试剂,加50ml甲醇(或乙醇)温热(50℃以下),完全溶解后用1级试剂水稀释至100mL,注入棕色瓶内。此溶液应贮存在冰箱中。 2.2 50%的乙醇铵溶液 成500g乙醇铵溶于1级试剂水中,移入1L容量瓶稀释至刻度。乙醇铵溶液的除铜方法如下:将100mL乙醇铵溶液注入分液漏斗,加20mL的锌试剂-异戊醇溶液(2mL锌试剂溶液溶于100mL异戊醇),充分摇动,静止5min,分离,弃去带色的醇层。 2.3 1mol/L酒石酸溶液 称15g酒石酸溶液溶于1级试剂水中,移入100mL容量瓶稀释至刻度。 2.4 铜标准溶液 2.4.1 铜贮备溶液(1mL含1mg铜):称0.1金属铜(含铜99.9%以上)于20mL硝铵(1+2)和5mL硫酸(1+2)中,缓慢加热溶解,继续加热蒸发至干涸,冷却后加1级试剂水溶解,移入1L容量瓶稀释至刻度。 2.4.2 铜工作溶液(1mL含1μg铜):吸取铜贮备溶液10mL注入1L容量瓶稀释至刻度。 2.5 浓盐酸(优级纯) 3 仪器 3.1 分光光度计,带有100mm长比色皿。 3.2 本方法所用的器皿,用盐酸溶液(1+4)浸泡过夜,然后用1级试剂水充分洗净。 4 分析步骤 4.1绘制工作曲线 按表1取铜工作溶液注入一组100ml的容量瓶中(也可根据水样中铜的含量制作更小范围的工作曲线),各加浓盐酸8ml,加I级试剂水使体积成为约50ml,摇均。一次各加50%乙酸铵溶液25ml和1mol/L酒石酸溶液2ml,并准确加入锌试剂溶液0.2ml发色,用I级试剂水稀释至刻度,用100mm长比色皿、在波长600mm下测定吸光度,绘制铜含量与吸光度关系曲线。 4.2.1 将取样瓶用温热浓盐酸洗涤,再用I级试剂水充分洗净,然后向取样瓶内加入浓盐酸(每500ml水样加浓盐酸2ml),直接采取水样,取样后将水样摇均。 4.2.2 取200ml水样(铜含量在50μg/L以上时,适当减少取样量,用I级试剂水稀释至约200ml)注入300ml锥形瓶中,加8ml浓盐酸,小心煮沸浓缩至20~40ml。 4.2.3 冷却后全部移入100ml容量瓶中,加25ml乙酸铵溶液和2ml酒石酸溶液,PH值调至3.5~4.8. 4.2.4 准确加入0.2魔力锌试剂溶液发色,用I级试剂水稀释至刻度。以I级试剂水进行相同操作做参比,用100mm长比色皿,在600mm波长下测定吸光度,从工作曲线上查得铜含量a(μg).

水中铅测定方法详解终审稿)

水中铅测定方法详解文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水中铅详解(1)在中性和碱性溶液中,双硫腙与铅反应生成单取代双硫腙络合物,溶于有机溶剂而呈洋红色。反应灵敏,最大吸收波长为520nm,摩尔吸光系数(ε)6.86×104L/(mol·cm)。有机溶剂通常使用三氯甲烷或四氯化碳,四氯化碳可比三氯甲烷在较低pH值萃取铅,不形成二铅酸盐,且四氯化碳不溶于水,挥发性较低,比重较大。另一方面,铅一双硫腙络合物在三氯甲烷中溶解度较大,可萃取较大量的铅。由于双硫腙在三氯甲烷中溶解度比四氯化碳为大,因此,当需要从三氯甲烷中完全除去双硫腙时,必须保持较高的pH值。当使用三氯甲烷作溶剂时,铅可在pH8~11.5被定量萃取。,通常采用百里酚蓝 (pH8.O~9.6)作指示剂,调节水相由绿变蓝(pH~9.5),然后进行萃取。亦有建议在高pH值进行萃取,如SnydercsJ提出,在含柠檬酸铵和氰化钾的pH9.5~10.0水溶液中,用双硫腙一三氯甲烷溶液萃取铅,继用稀硝酸反萃取,最后用氨性氰化物溶液调节至pH11.5,以双硫腙三氯甲烷溶液萃取,在pHll.5的高pH值下,使过量双硫腙成为铵盐而进入水层。影响铅的萃取率,除pH外,还与所用溶剂、存在阴离子的种类和数量、两相的体积比、双硫腙在有机相中的浓度等参数有关。阴离子由于与铅形成络合物而影响萃取平衡,如在同样的pH,当含一定浓度的乙酸盐、酒石酸盐和柠檬酸盐时,可使萃取率降低。双硫腙法测定铅,可采用单色法,亦可采用混色法,前者以氨性氰化物溶液洗去有机层中过量的双硫腙后,测量络合物的吸光度,后者则有机层中残留过量的双硫腙不经除去直接测量吸光度,操作简便。然而对铅含量极微的水样,由于受基体影响,当采用混色法测定,以无铅水制备的空白试验为

土壤和植物中的铁

土壤和植物中的铁 地壳中大约含铁5%,是岩石圈中第四个含量丰富的元素。作物充足含铁量一般是50×10-6~250×10-6 。铁既作为结构组分,又充当酶促反应的辅助因子。代谢需要亚铁离子(Fe 2+)且以此形态被作物吸收。Fe +2活性高且有效地结合进生物分子结构。而一些富含高铁(Fe 3+)的植物组织却能出现缺铁症状。 含铁矿物通常有橄榄石[(Mg,Fe)2SiO 4]、黄铁矿(FeS )、菱铁矿(FeCO 3)、赤铁矿(Fe 2O 3)、针铁矿 (FeOOH )、磁铁矿(Fe 3O 4)和褐铁矿[FeO(OH)?nH 2O+ Fe 2O 3.nH 2O]。土壤中大多数铁存在于原生矿物、粘粒、 氧化物和氢氧化物中,赤铁矿和针铁矿是土壤中最常见的含铁氧化物。 铁以低铁离子(Fe 2+)形态被植物根系吸收,并以螯合态铁被运移到根表面。含高铁离子(Fe 3+)的化合物可溶性低,这严重限制了Fe 3+的有效性和植物对Fe3+的吸收。一般认为,扩散和质流是铁从土壤向根表面转移的机制。土壤中铁的溶解度主要受氧化铁控制。水解作用、土壤酸度、螯合作用和氧化作用都影响铁的溶解度。 无机铁在土壤溶液中可能被水解为Fe(OH)42+、Fe 3+、Fe(OH)2+、Fe(OH)30、和Fe(OH)4-。在酸性条件下以 前四种形式为主,在pH 值大于7时主要为后两种形式。植物吸收这些离子中任何一种都将引起其它离子解离,所有这些离子之间将重新恢复平衡关系。 铁在土壤溶液中的溶解度取决于土壤pH 值,pH 值每增加1,Fe 3+和Fe 2+的溶解度就各降低1000倍和100倍。在pH 值=3时,可溶性铁总浓度将会高得足以全部由质流为根系充分供铁。在正常土壤pH 值条件下,即使铁以扩散、根系截获和质流全部三种方式向根系转移,有效铁的数量也远远低于植物所需。土壤溶液中铁的溶解度在pH 值介于7.4~8.5时达到最低点,这是常见的土壤缺铁范围。土壤中碳酸氢根离子(HCO 3-)多最易出现缺铁。碳酸氢根离子在石灰性土壤中是通过二氧化碳和水作用于方解石而形成的: CaCO 3 + CO 2 +H 2O ←----→Ca 2+ +2HCO 3- 虽然单凭石灰不一定诱导缺铁,但石灰与一定环境条件相结合似乎可能造成某些植物缺铁。石灰性土壤中形成难溶的碳酸铁。在中性和微酸性土壤中铁主要形成氢氧化铁沉淀。酸性土壤尤其是长期淹水时铁被还原为速效性的亚铁,亚铁离子过多使植物发生铁中毒。形成亚铁还与氧化还原作用有关。 土壤空气中氧分压的改变引起铁离子的氧化还原反应,显著影响土壤溶液中可溶性铁的数量。排水良好的土壤中铁以Fe 3+形式存在,而土壤因水分过多缺氧时,可溶性Fe 2+水平则显著提高。要与土壤pH 值同时考虑氧化还原电位。氧化还原电位低时可溶性Fe 2+水平高。 根系分泌物、土壤有机质、微生物活动代谢产物等可溶性有机复合物在溶液中与铁发生络合或螯合反应。在土壤溶液中,这些天然螯合铁保持的铁浓度一般远高于仅与无机铁化合物处于平衡状态的离子铁浓度。土壤腐殖质中的富里酸和胡敏酸具有络合和转移的能力。这些螯合物有助于增加土壤溶液中铁的浓度,促使铁向植物根系扩散。 铜、锰、锌、钴等养分会引起缺铁。过多的磷或钼也会造成缺铁。植物吸收硝酸盐导致根区附近和植物体内的碱化作用,显著降低铁的溶解性;而当植物利用铵态氮时,铵盐产出的酸有利于铁的溶解,提高其有效性。缺钾和缺锌可扰乱铁在植物体内的移动,造成铁在玉米茎节内的积累。在淹水土壤中,还原含

75铜、锌、镉、铬、锰及镍的原子吸收分光光度法《空气与废气监测分析方法》(第四版增补版)剖析

新项目试验报告 项目名称:铜、锌、镉、锰及镍的原子吸收分光光度法 《空气与废气监测分析方法》(第四版) 项目负责人: 审批日期:

一、项目概述 悬浮颗粒物(SP)中痕量金属(如Pb、Cd、Zn等)是重要的大气污染物之一。这些颗粒中的金属元素多来源于人为污染,主要存在于《2.5um的细小颗粒物中。目前已证实颗粒物中至少有10种痕量金属具有生物毒性,以Cd、As等为代表的无机金属元素及其化合物,不但对人体具有毒害,而且具有致癌作用。在一些城市中Pb、Cd已达有害水平。用大流量采样器或中流量采样器将SP采集在滤料山,样品酸消解处理后,用原子吸收分光光度法作颗粒物各组分分析。 二、检测方法和原理 检测方法:原子吸收分光光度法。 原理:采集在过氯乙烯滤膜上的颗粒物,用硫酸-灰化法消化,制备成样品溶液,然后将溶液引入火焰或石墨炉原子化器内,用标准曲线法或标准加入法测定溶液中各元素的浓度。 除镉外,其他元素均未见到明显的干扰。测定镉时,用碘化钾-甲基异丁基酮进行萃取分离以消除干扰。如用石墨炉测定,则可用氘灯扣除背景,消除干扰。 各元素测定范围见表1(按采样10m3,定容10ml计)。 表1 *经碘化钾-甲基异丁基酮萃取测定。 三、主要仪器和试剂 1.试剂和材料 除非另有说明,分析时均使用符合国家标准的分析纯试剂,去离子水或同等纯度的水。 1.1 过氯乙烯滤膜。

1.2 硝酸、盐酸、氢氟酸:优级纯。 1.3 0.7%(V/V)硫酸溶液:用优级纯硫酸配制。 1.4 1%(V/V)硝酸溶液:用优级纯硝酸配制。 1.5 硝酸溶液:0.16mol/L。 1.6 5%(m/V)抗坏血酸溶液:称取 5.0g抗坏血酸,溶解于水中并稀释至100ml。临用时配制。 1.7 甲基异丁酮。 1.8 碘化钾溶液:1.0mol/L。 1.9铜、锌、镉、锰及镍标准贮备液:称取上述金属(99.99%)各0.5000g,分别用(1+1)盐酸溶液5.0ml、硝酸5.0ml溶解,移入500ml容量瓶中,用水稀释至标线,摇匀。上述溶液每毫升含相应元素1.00mg。贮于聚乙烯塑料瓶中,冰箱内保存。 1.10铜、锌、镉、锰及镍标准使用液:临用时,吸取10.00ml标准贮备液于100ml容量瓶中,底价1.0ml硝酸,用水稀释至标线。此溶液没毫升含铜、锌、镉、锰及镍各元素100ug。 2.仪器和设备 2.1 总悬浮颗粒物采样器:大流量采样器或中流量采样器。 2.2 马弗炉。 2.3 铂坩埚或裂解石墨坩埚:20~30ml。 2.4 原子吸收分光光度计:具有火焰、石墨炉原子化器。 四、采样要求和样品预处理技术 同总悬浮颗粒物采样方法。 五、检测步骤 3.1原子吸收分光光度计工作条件 ①火焰原子吸收分光光度法工作条件,见表2

GBT 17141-1997 土壤质量 铅、镉的测定 石墨炉原子吸收分光光度法

江西索立德环保服务有限公司 方法验证报告 项目名称:铅镉 方法名称:GB/T 17141-1997 土壤质量铅、镉的测定石墨炉原子吸收分光光度法 编写人及日期:_______________ 校核人及日期:_______________ 审核人及日期:_______________

1.目的 采用《土壤质量铅、镉的测定石墨炉原子吸收分光光度法》GB/T 17141-1997对土壤里面的铅、镉的测试进行验证,并对验证结果进行评估。本实验室现有条件与标准方法的规定一致,并按照该方法做基础实验,验证本实验室现有条件下开展该检测项目的适用性。 2.方法原理 采用盐酸-硝酸-氢氟酸-高氯酸消解的方法,使铅、镉溶解于试液,然后将试液注入到石墨炉中。经过预先设定的干燥、灰化、原子化等升温程序使共存基体成分蒸发除去,同时在原子化阶段的高温下铅镉化合物离解为基态原子蒸气,并对空心阴极灯发射的特征谱线(铅283.3nm 镉228.8nm)产生选择性吸收,在选择在最佳条件下,通过背景扣除,测定铅镉的吸光度。3.试剂和材料的验证 3.3材料的验证

无 4.仪器和设备的验证 6.样品的验证 6.1 采样方法:HJ/T 166-2004。 6.2 样品运输和保存:用塑料袋采集样品,常温下保存。 6.3 样品制备:将采集的土壤样品(一般不少于500g)混匀后用四分法缩分至100g,缩分至100g,

缩分后的土样经风干后,除去土样中石子和动植物残体等异物,用木棒研压,通过2mm尼龙筛,混匀。用玛瑙研钵将筛过的土样研磨至全部通过100目尼龙筛,混匀后备用。 6.3.1消解 准确称取0.1~0.3g(精确至0.0002 g)试样于50 mL聚四氟乙烯坩埚中,用水润湿后加入 5mL盐酸,于通风橱内的电热板上低温加热,使样品初步分解,待蒸发至约剩2-3 mL左右时,取下稍冷,然后加入5 mL硝酸、4mL氢氟酸、2mL高氯酸,加盖后于电热板上中温加热1 h 左右,然后开盖,电热板温度控制在150 ℃,继续加热除硅,为了达到良好的飞硅效果,应经常摇动坩埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机碳化物分解。待坩埚壁上的黑色有机物消失后,开盖,驱赶白烟并蒸至内容物呈粘稠状。视消解情况,可再补加2 mL硝酸、2mL氢氟酸、1 mL高氯酸,重复以上消解过程。取下坩埚稍冷,加入1mL(1+1)硝酸溶液,温热溶解可溶性残渣,全量转移至25.00 mL 容量瓶中,加入3mL 5%磷酸氢二铵冷却后用水定容至标线,摇匀。 6.4样品质控样制备: 6.4.1 空白试样的制备:用去离子水代替试样,采用和试液制备相同的步骤和试剂,制备全程序 空白溶液,并按相同条件进行测定。每批样品至少制备2个以上的空白溶液。 6.4.2 质控试样的制备:称取质控样,按样品制备步骤进行制备。 7.分析步骤 7.1曲线建立 于一组6个100.0mL容量瓶中,依次加入0.00mL、0.50mL、1.00mL、2.00mL 、3.00mL、 4.00mL、 5.00mL浓度为1mg/L铅标准使用液,再依次加入0.00mL、0.10mL、0.20mL、0.30mL 、 0.40mL、0.50mL、0.60 mL浓度为500μg/L镉标准使用液,加入12ml 5%磷酸氢二铵,再分别 7.2 曲线的测定 调整好仪器条件,将标准曲线系列点上机测定吸光度。 7.3样品的测定 上机测定样品的吸光度。 8.结果计算与表示

土壤有效硼的测定姜黄素光度法1范围

FHZDZTR0103 土壤有效硼的测定姜黄素光度法 F-HZ-DZ-TR-0103 土壤—有效硼的测定—姜黄素光度法 1 范围 本方法适用于土壤中有效硼的测定。 测定范围:适用于0.0025μg/mL~0.05μg/mL硼的测定。 2 原理 土壤用热水浸提出的硼,与作物对硼的反映有较高的相关性。浸提液中硼在草酸存在下与姜黄素作用,经脱水生成玫瑰红色的络合物。用乙醇溶解后,于550nm波长处测量其吸光度。硼含量在0.0025μg/mL~0.05μg/mL范围,符合朗伯-比尔定律。 3 试剂 配制试剂及浸提用的水均须用经石英蒸馏器蒸馏过的蒸馏水。 3.1 市售95%乙醇。 3.2 硫酸镁溶液ρ (MgSO4·7H2O)=100g/L:10.0g MgSO4·7H2O溶于100mL水中。 3.3 姜黄素-草酸溶液:称取0.040g姜黄素和5.0g草酸(优级纯)溶于100mL 95%乙醇中。贮于石英容量瓶或塑料瓶中,黑纸包容量瓶。此溶液在使用前一天配制好,密闭好存放在冰箱中可使用一周。 3.4 硼标准溶液 3.4.1 硼标准贮备溶液:100.0μg/mL硼,称取0.5720g经40℃~50℃烘2h的硼酸(H3BO3,光谱纯)溶于水中,温热溶解后,移入1000mL石英容量瓶中,稀释至刻度,摇匀。此溶液1mL 含100μg硼。 3.4.2 标准溶液:10.0μg/mL硼,将硼标准贮备溶液稀释10倍,配制成1mL含10.0μg硼标准溶液。 4 仪器与设备 实验中所用玻璃器皿使用前应用盐酸(1+3)浸泡2h~4h,然后用水和蒸馏水冲洗干净并晾干后使用。 玻璃器皿中含硼,测硼应用石英器皿或聚四氟乙烯、聚乙烯制的器皿。 分光光度计。 5 试样制备 风干粉末土样,粒度应小于2.0mm。在称样测定时,另称取一份试样测定吸附水,最后换算成烘干样计算结果。 6 操作步骤 6.1 空白试验:随同试样的分析步骤做空白试验。 6.2 试样的测定 6.2.1 待测液的制备:称取10.0g风干土样,精确至0.001g。置于250mL石英锥形瓶中,按1∶2土水比加20.0mL水,连接冷凝管,文火煮沸5min,立即移开热源,继续回流冷凝5min(准确计时),取下锥形瓶,加入2滴硫酸镁溶液,摇匀后立即过滤,将瓶内悬浮液一次倾入慢速滤纸上,滤液承接于聚乙烯瓶内。 同一试样做两个平行测定。 6.2.2 测量吸光度:移取1.00mL滤液于50mL蒸发皿中(石英或聚乙烯制品),加4.0mL姜黄素-草酸溶液,在恒温水浴上55℃±3℃蒸发至干,自呈现玫瑰红色时开始计时继续烘焙15min,取下蒸发皿冷却到室温,加入20.0mL 95%乙醇,用橡胶淀帚擦洗皿壁,使内容物完全溶解,用慢速滤纸干过滤到具塞比色管(石英或塑料)中(此溶液放置时间不要超过3h),以95%乙醇为参比溶液,在分光光度计上于550nm波长处,用1cm吸收皿,测量吸光度。

EDTA的标定(二甲酚橙)及锡铜中锌的测定-讲解

EDTA的标定(二甲酚橙)及锡铜中锌的测定 一.实验目的 1.学习配制Zn2+标准溶液,EDTA标准溶液; 2.学会以六亚甲基四胺-盐酸为缓冲溶液,二甲酚橙为指示剂标定EDTA标准溶液; 3.了解黄铜片的组成,学会铜合金的溶解方法; 干扰离子的掩蔽方法;、 4.掌握铜合金中Zn的测定方法 二.实验原理: 1.EDTA配置及标定原理: ⑴用EDTA二钠盐配制EDTA标准溶液的原因: EDTA是四元酸,常用H 4 Y表示,是一种白色晶体粉末,在水中的溶解度很小,室 温溶解度为0.02g/100g H 2 O。因此,实际工作中常用它的二钠盐 Na 2H 2 Y·2H 2 O, Na 2 H 2 Y·2H 2 O的溶解度稍大,在22℃(295K)时,每100g水中 可溶解11.1g. ⑵标定EDTA标准溶液的工作基准试剂,基准试剂的预处理; 实验中以纯金属Zn为工作基准试剂。预处理:称量前一般应先用稀盐酸洗去氧化层,然后用水洗净,烘干。 ⑶滴定用的指示剂是可以选用铬黑T和二甲酚橙,本次实验选用二甲酚橙与后面黄铜中Zn的滴定的指示剂保持一致,减小误差。二甲酚橙有6级酸式解离,其 中H 6In至H 2 In4-都是黄色,HIn5-至In6-是红色。 H 2 In4-=H++ HIn5-(p K a=6.3) 黄色红色 从平衡式可知,pH>6.3指示剂呈现红色;pH<6.3呈现黄色。二甲酚橙与M n+形成的配合物都是红紫色,因此,指示剂只适合在pH<6的酸性溶液中使用。 测定Zn2+的适宜酸度为pH=5.5,终点时,溶液从红紫色变为纯黄色。化学计量点时,完成以下反应: MIn + H 2Y2-→ MY + H 2 In4- ⑷ EDTA浓度计算公式:C(EDTA)= m (Zn)/10M Zn V EDTA 2.黄铜片中Zn测定原理:

土壤微量元素的测定

科学研究和生产实践证明微量元素为有机体正常生命活动所必需,在有机体的生活中起着重要作用。土壤和植物中的微量元素都很低,并且这些微量元素在植物体中的缺乏量、适量及致毒量范围很窄,因此微量元素的分析测定工作较常量元素要求更加严格。 1 土壤有效硼的测定(姜黄素比色法) 方法原理土样经沸水浸提5分钟,浸出液中的硼用姜黄素比色法测定。姜黄素是由姜中提取的黄色色素,以酮型和稀醇型存在,姜黄素不溶于水,但能溶于甲醇、酒精、丙酮和冰醋酸中而呈黄色,在酸性介质中与B结合成玫瑰红色的络合物,即玫瑰花青苷。它是两个姜黄素分子和一个B原子络合而成,检出B的灵敏度是所有比色测定硼的试剂中最高的(摩尔吸收系数ε550 =1.80×105)最大吸收峰在550nm处。在比色测定B时应严格控制显色条件,以保证玫瑰花青苷的形成。玫瑰花青苷溶液在0.0014—0.06mg/LB的浓度范围内符合Beer定律。溶于酒精后,在室温下1—2小时内稳定。 主要仪器石英(或其他无硼玻璃);三角瓶(250或300ml)和容量瓶(100ml,1000ml);回流装置;离心机;瓷蒸发皿(Φ7.5cm);恒温水浴;分光光度计;电子天平(1/100)。 试剂 (1)95%酒精(二级); (2)无水酒精(二级); (3)姜黄素—草酸溶液:称取0.04g姜黄素和5g草酸,溶于无水酒精(二级)中,加入4.2ml6mol/LHCl,移入100ml石英容量瓶中,用酒精定容。贮存在阴凉的地方。姜黄素容易分解,最好当天配制。如放在冰箱中,有效期可延长至3—4天。

(4)B标准系列溶液:称取0.5716gH3BO3(一级)溶于水,在石英容量瓶中定容成1升。此为100mg/LB标准溶液,再稀释10倍成为10mg/LB标准贮备溶液。吸取10mg/LB溶液1.0,2.0,3.0,4.0,5.0ml,用水定容至50ml,成为0.2,0.4,0.6,0.8,1.0mg/LB的标准系列溶液,贮存在塑料试剂瓶中。 (5)1mol/LCaCl2溶液:称取7.4gCaCl2·2H2O(二级)溶于100ml水中。 操作步骤 1 待测液制备:称取风干土壤(通过1mm尼龙筛)10.00g于250ml 或300ml的石英三角瓶(或塑料瓶)中,加20.0ml无硼水。连接回流冷凝器后煮沸5分钟整,立即停火,但继续使冷却水流动。稍冷后取下石英三角瓶。放置片刻使之冷却。倒入离心管中,加2滴1mol/LCaCl2溶液以加速澄清(但不要多加),离心分离出清液(或过滤到塑料杯中)。 2 测定:吸取1.00ml清液,放入瓷蒸发皿中,加入4ml姜黄素溶液。在55±3℃的水浴上蒸发至干,并且继续在水浴上烘干15分钟除去残存的水分。在蒸发与烘干过程中显出红色,加20.0ml95%酒精溶解,用干滤纸过滤到1cm光径比色槽中,在550nm波长处比色,用酒精调节比色计的零点。假若吸收值过大,说明B浓度过高,应加95%酒精稀释或改用580或600nm的波长比色。 3 工作曲线的绘制:分别吸取0.2,0.4,0.6,0.8,1.0mg/LB标准系列溶液各1ml放入瓷蒸发皿中,加4ml姜黄素溶液,按上述步骤显色和比色。以B标准系列的浓度mg/L对应吸收值绘制工作曲线。 结果计算:有效B,mg/L=C×液土比 式中C----由工作曲线查得B的mg/L数; 液土比---浸提时,浸提剂毫升数/土壤克数。

土壤有效态铁锰铜锌的测定

土壤有效态铁锰铜锌的测定 (DTPA浸提-原子吸收分光光度法) 1、方法原理: 用PH7.3的DTPA-TEA-CaCl2缓冲液作为浸提剂,螯合浸提出土壤中有效铁锰铜锌,用原子吸收分光光度法测定。其中DTPA为螯合剂,氯化钙能防止石灰性土壤中游离碳酸钙的溶解,避免因碳酸钙包蔽的Zn、Fe等元素释放产生影响。三乙醇作为缓冲剂,能使溶液pH保持7.3左右,对碳酸钙溶解也有抑制作用。 2、试剂: DTPA浸提剂[c(DTPA)=0.005mol/L,c(CaCl2)=0.01mol/L,c(TEA)=0.1mol/L,PH7.30]:称取1.967g二乙三胺五乙酸(DTPA),溶于14.92g(约13.3mL)三乙醇胺(TEA)和少量水中;再将1.47g氯化钙(CaCl2.2H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL; 在酸度计上用1:1盐酸或1:1氨水调节pH至7.3,用水定容,贮于塑料瓶中。 3、方法步骤: 称取过2mm孔的土样12.5g于塑料瓶中——加入DTPA 25mL,盖瓶盖,摇匀——振荡2h,立即使用定量滤纸过滤,保留滤液,在48h 内完成测定。同时做空白实验。 4、标准曲线的配制: 分别吸取铁锰铜锌标准溶液(100ug/ml)一定体积于100mL容量瓶中,用DTPA浸提剂定容,即为铁锰铜锌混合标准系列溶液。

原子吸收分光光度法混合标准溶液系列 编号Cu Zn(小)Fe Mn 加入标液体积(mL)相应浓度 (ug/mL) 加入标液 体积(mL) 相应浓度 (ug/mL) 加入标液 体积(mL) 相应浓度 (ug/mL) 加入标液 体积(mL) 相应浓度 (ug/mL) 1 2 3 4 5 6 7 0.50 1.00 2.00 3.00 4.00 5.00 0.50 1.00 2.00 3.00 4.00 5.00 0.50 1.00 2.00 3.00 4.00 5.00 0.50 1.00 2.00 3.00 4.00 5.00 1.00 2.00 4.00 6.00 8.00 10.00 1.00 2.00 4.00 6.00 8.00 10.00 1.00 2.00 4.00 6.00 8.00 10.00 1.00 2.00 4.00 6.00 8.00 10.00 5、结果计算: 有效铜(锌、铁、锰),mg/kg=(p*V*D/ m / 103)×1000 式中:p——测定液的质量浓度,ug/mL; V——浸提液体积,mL;25 D——浸提液稀释倍数;1 103和1000——分别将ug换算成mg和将g换算成kg; m——试样质量,g。12.5 取平行测定结果的算术平均值作为测定结果。

土壤有效硼的测定

土壤有效硼的测定 A 、甲亚胺-H 比色法 1 方法提要 土壤中有效硼采用沸水提取,提取液用EDTA 消除铁、铝离子的干扰,用高锰酸钾消褪有机质的颜色后,以甲亚胺-H 比色法测定提取液中的硼量。 2 适用范围 本方法适用于各类土壤中有效硼含量的测定。 3 主要仪器设备 3.1 分光光度计; 3.2 石英三角烧瓶,250mL ; 3.3 石英回流冷凝装置。 4 试剂 4.1高锰酸钾溶液[c ( 51KMnO 4)=0.2mol ·L -1]:称取31.62g 高锰酸钾溶于水中,稀释至1L ; 4.2 硫酸溶液[c (2 1H 2SO 4)=3mol ·L -1]:量取168mL 浓硫酸缓缓加入到盛有约800mL 水的大烧杯中,不断搅拌,冷却后,稀释至1L ; 4.3 酸性高锰酸钾溶液:0.2mol ·L -1高锰酸钾溶液与3 mol ·L -1硫酸等体积混合,当天现配; 4.4 抗坏血酸溶液(100g ·L -1):称取10g 抗坏血酸溶于水中,稀释至100mL ,当天现配; 4.5 甲亚胺溶液:称取0.90g 甲亚胺和2.00g 抗坏血酸溶解于微热的60mL 水中,稀释至100mL ,必要时过滤,用时现配; 4.6 pH 5.6~5.8缓冲液:称取250g 乙酸铵和10.0gEDTA 二钠盐溶于250mL 水中,冷却后用水稀释至500mL ,再加入80mL 1:4硫酸溶液,摇匀(用酸度计检查pH 值); 4.7 混合显色剂:量取份3份体积上述甲亚胺溶液和2份体积pH 5.6~5.8缓冲液混合; 4.8 硼标准贮备溶液[ρ(B )=100μg ·mL -1]:称取预先在浓硫酸干燥器内至少干燥24h 的硼酸(H 3BO 3,优级纯)0.5719g 于400mL 烧杯中,加200mL 无硼水溶解,移入1L 容量瓶中定容,贮于塑料瓶中。 4.9 硼标准系列溶液:吸取50.00mL 硼标准贮备溶液于500mL 容量瓶中,用无硼水定容,

土壤中铅镉的测定步骤

土壤中铅镉的测定 一、样品制备 工具: 晾干白磁盘 磨样玛瑙研钵(白色瓷研钵) 过筛尼龙筛(10目和100目)。 分装具塞磨口玻璃瓶、具塞无色聚乙烯塑料瓶,无色聚乙烯塑料袋或特制牛皮纸袋。 二、湿样晾干 摊成2 cm厚的薄层 室内,防阳光直射, 风干后称重(结果报告要求) 三、样品制备: 将采集的土壤样品(一般不少于500 g)混匀后用四分法缩分至约100 g 。 缩分后的土样经风干(自然风干或冷冻干燥)后除去土样中石子和动植物残体等异物,用木棒(或玛瑙棒)研压,通过2 mm 尼龙筛(9目或10目,除去2 mm 以上的砂砾 , 混匀。 用玛瑙研钵将通过 2 mm 尼龙筛的土样研磨至全部通过100 目(孔径0.149 mm) 尼龙筛,混匀后备用 四、注意事项 采样时的土壤标签与土壤样始终放在一起,严禁混错。 制样所用工具每处理一份样品后应擦洗一次,严防交叉

污染。 五、消解 准确称取0. 2~0. 5g(石墨炉0.1-0.3g,精确至0.0002 g)试样于50 mL 聚四氟乙烯坩埚中。用水润湿后加入 10 mL盐酸,于通风橱内的电热板上低温加热,使样品 初步分解,待蒸发至约剩3 mL 左右时,取下稍冷。 然后加入5 mL 硝酸, 5 mL 氢氟酸,3 mL 高氯酸,加盖后于电热板上中温加热 1 h 左右,然后开盖,继 续加热除硅,为了达到良好的飞硅效果,应经常摇动坩 埚。当加热至冒浓厚高氯酸白烟时,加盖,使黑色有机 物充分分解。待坩埚壁上的黑色有机物消失后,开盖。 驱赶臼烟并蒸至内容物呈粘稠状。 视消解情况,可再加入3 mL 硝酸、3 mL氢氟酸、 1mL 高氯酸,重复上述消解过程。当白烟再次冒尽且内容物 呈粘稠状时,取下稍冷,用水冲洗坩埚盖放内壁,并加 入1 mL 盐酸榕液(1+1) 温热溶解残渣。然后全量转移 至100 mL 分液漏斗中,加水至约50 mL 处(石墨炉法 为25mL)。 不同种类土壤所含物质差异较大,在消解时,应注意观察,各种酸的用量可视消解情况酌情增减。含有机物过 多的土壤,应增加硝酸量,使大部分有机物消化完全,再加高氯酸,否则加高氯酸会发生强烈反应,致使瓶中 内容物溅出,甚至发生爆炸,消解时务必小心。土壤消 解液应呈白色或淡黄色(含铁较高的土壤) ,没有明显

相关文档
相关文档 最新文档