文档库 最新最全的文档下载
当前位置:文档库 › 对高精度激光脉冲测距技术的

对高精度激光脉冲测距技术的

对高精度激光脉冲测距技术的
对高精度激光脉冲测距技术的

对高精度激光脉冲测距技术的分析

杨 帆

(神华宁夏煤业集团有限责任公司 宁夏 银川 750000)

摘 要: 高精度激光测距技术在现代社会生产中的应用非常的广泛,主要的介绍激光脉冲测距技术的原理,分析影响脉冲激光测距的主要原因,以及针对原因给出解决的措施,介绍提高测量精度的几个方法及其工作原理。

关键词: 高精度激光脉冲;测距;技术分析

中图分类号:TN247 文献标识码:A 文章编号:1671-7597(2012)1110188-02

脉冲式激光测距具有结构简单、无需目标合作、测量速度系统中传播所消耗的时间对测距的精确的影响,它与测距的距快和测量距离远等优点,这使其在航天和军事以及工业生产领离无关。距离行走误差则是指由于回波信号的幅度变化所引起域都得到了广泛的利用。提高激光脉冲测距技术的精度,是急的误差,测绘仪与目标之间距离和反射率上的变化往往会造成需解决的问题。回路接收器接受到的回波的能量的变化,从而导致回波信号的

幅度有所变化。在鉴别阀值一定的情况下,回波信号幅度的变

1 高精度激光脉冲测距技术的原理

化会引起其通过阀值的时间发生改变,从而导致测距结果的误第一台脉冲式激光测距仪诞生于上世纪60年代,现在,激

差。系统误差可以通过地面标定的方式来进行调节,尽量的将光脉冲测距技术以得到迅速的发展并有了大量成熟的应用。其

系统误差调整为最小使其不影响激光脉冲测距的准确性。

发展的趋势包括小型化测距仪和人眼安全激光测距仪等。脉冲

3.2 随机误差

激光测距技术是通过测量脉冲的飞行时间来测量其与目标之间

激光脉冲测距仪的主要误差既是来自于随机误差,随机误的距离的。具体的说,就是激光测距仪向着目标发射一个激光

差包括脉冲时刻鉴别误差和时间间隔测量误差和阀值鉴别芯片脉冲,激光脉冲经目标反射后有测绘仪器的回波接收通道接

的输出抖动误差,是影响激光脉冲测距精度的主要原因。

收,并计算出激光脉冲从发射到返回测距仪所消耗的时间。这

3.2.1 脉冲时刻鉴别精度

样,测距仪与目标之间的距离D就可以通过所得的数据来计算求

由脉冲激光测距技术的公式可知,计算式中只有T是一个得,即:

变量,由时刻鉴别系统测定,所以,时刻鉴别系统是脉冲激光D=CT/2

测距系统的极为重要的组成部分,因此其测量的精度直接决定其中,C是激光在介质中的传播速度,T被称作飞行时间。

了整个测距仪器的精度。如果难以保证时刻鉴别的精度,即不

2 高精度激光脉冲测距技术的设计

能精确的确定激光飞行开始和结束的时间,就无法进一步计算高精度脉冲激光测距系统主要是由信号发射模块、接收模

时间间隔和飞行时间,脉冲激光测距的结果难以保证。

块和信号处模块三大部分组成。

回波幅度不稳定是对时刻鉴别精度影响较大的一个因素。

发射模块由驱动电路、调制电路以及激光管三部分组成,

在激光脉冲测距中,大气湍流、跟瞄抖动和目标姿态的变化都大多数的激光管选用是是具有内置驱动装置的脉冲激光二极

会引起回波信号在小范围内的幅度变化。以目标姿态变化带来管。发射模块实现根据需要对激光脉冲进行周期性的脉冲信号

的影响为例,当测距对象的倾角产生较大的变化时,就会引起处理调制,然后利用激光二极管对其进行发射。

回波幅度的变化。因为脉冲激光上升的时间是有限的,当激光接收模块由前置的放大电路、光电探测仪和主放大电路三

脉冲测距仪器采用固定阀值来采集回波信号时,不稳定的回波部分组成,光电探测仪器采用的是光电二极管APD。接收模块

的幅度导致回波到达固定阀值的时刻也不统一,从而产生△t误的主要作用是接收反射回的激光信号并将其转化为电信号,除

差,对测量的精度造成很大的影响。要减小这个误差,要进行去噪音的影响然后进行放大,最后计算出需要的激光回波脉

连个方面的改进,一方面是减少采用固定的阀值来进行时刻的冲。

鉴别,一方面是是要尽量的稳定回波脉冲信号的幅度。

信号处理模块是对仪器采集的数据进行计算和分析最后给

3.2.2 时间间隔精度因素

出计算的结果的模块。信号处理模块主要包括采样模块、存储

时间间隔测量系统也是激光脉冲测距技术的一个重要的组芯片和信号处理模块三个部分。信号处理芯片是处理模块的核

成部分,当确定了激光发出和回收的两个时间,计算两个时间心,它能够接受和迅速的处理大量数据,信号处理要求芯片有

之间的T就决定了距离D的准确测试。在以确定时刻鉴别系统精较高的质量,当下多采用的是DSP这款性能较好的芯片。

度的情况下,时间间隔的精度就成为直接影响测距仪精度的因系统的工作流程是这样的:由发射模块产生固定频率的周

素。

期脉冲激光信号,触发激光脉冲二极管发射激光,脉冲激光信

时间间隔测量准确性的影响因素主要有三个,分别是数量号到达测距目标后被测距目标被反射,返回的激光由接收系统

化误差、计数器时钟误差、计晶体振荡器的频率误差。对于脉

进行接收,采集模块将接收到的信号转换为数字信号后储存到

冲信存储模块中,DSP读取存储模块中的数据然后对数据进行分析

和处理,计算出回波信号到达时刻,最终计算出测试目标与测

距仪之间的距离。

3 影响激光脉冲测距仪器精度的原因

3.1 系统误差

脉冲式激光测距仪的系统误差主要来自于固定延时器的误

差和距离行走的误差。固定延时器的误差是指由于脉冲信号在号时间间隔的测量,测量系统采用的是直接计数法来进行

的。提高计数时钟的频率是提高测量精度的有效方法,但测距系统电路的工作频率并不能无限提高,受到分布参数效应等因素的作用,电路一般只能达到纳秒级的精度,若追求更高的时钟频率,其精度就难以保证。

计数量化误差是指,当鉴别系统以发出和接收激光脉冲的

时间来启动和结束计数器的计数时,由于发射脉冲和接收脉冲

日本尼康激光测距仪1200S中文说明书和操作指南

L ASER 1200S C OMPACT R ANGEFINDER 激光测距仪 使用说明书 ——为了得到最佳性能和最长的使用寿命,使用前请仔细阅读此说明 【生产商】 ◆日本尼康 【主要特点】 ◆ 利用红外激光进行简单、快速的距离量测,并以数字形式显示 ◆适合各种条件的4种目标模式的选择,加上观测不同目标的快速扫描模式,牢固,轻巧的设计 ◆从仪器至目标的可量测距离:10--1100m (Laser1200S ),好的反射目标可测得更远 【量测模式】 有4种目标模式加一种扫描模式可适用于各种情况。只要按Mode 键即可在仪器的视场中选择模式。

【目标模式】 ◆标准模式(无指示器)用于典型的距离和中等的反射目标 ◆反射模式(REFL)用于高反射目标(反射器、停止标记等) ◆扫描模式(SCAN)当不同的目标扫描时,并开关3秒钟调用此功能 【技术指标】 规格Laser1200S; 放大率7 X ; 有效孔径25 mm; 视场5°; 瞳孔3.6 mm; 眼调节18 .6mm; 距离显示在LCD视场中显示数字; 量测精度± 0.5m; 量测范围10-1100 m (11-1200yd.); 照准器调节±4dpt; 电源CR2锂电池(DC3V)电源自动关闭功能(8秒后); 尺寸(L×W×H)145 x 47 x 82mm; 重量280g(包括电池); 仪器准备: 拧下仪器底部螺钮——》打开电池后盖——》装入CR2电池(注意)极性——》旋上电池后盖。

常见故障的排除: 仪器没有显示 ——压下发射按纽; ——如果有必要,请更换电池; 转换测量目标时没有清除上一次的测量值 ——上一次测量值不需清除,只需把十字叉对准新的目标,按下发射按纽并保持,直到出现测量值。 光学系统中出现黑点 ——是正常情况,在加工过程中无法完全消除。 无法得到测量值 ——确保LCD有显示 ——确保压下发射按纽 ——确保没有任何物体遮住目镜 ——确保压下发射按纽时仪器稳定 ——低反射率的目标要扫描其表面以找到反射率比较高的点。按住发射按纽,使十字叉在待测物体表面移动,LCD显示的待测物体信号比较强时,把仪器固定在这个位置,按住发射按纽,直到测量值出现 ——确保模式选择正确

激光脉冲测距实验报告讲解

激光脉冲测距

1 目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7) 2 一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫

反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图激光脉冲测距仪光学原理结构2() 3

图二)测距仪的大致结构组成(3 时钟脉冲门控电路、脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、 振荡器以及计数显示电路组成4)主要的工作过程(其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停实验装置实止工作。这样,根据计数器的输出即可计算出待测目标的距离。三单片机开放板和激光脉冲发射、接收电路验装置包括“”“”。 4 (5)激光脉冲发射、接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EPM3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到差分信号转换芯片;T23为差分信号到单端信号转换芯片;LD为半导体激光器;PD为光电探测器。板子上端的EPM3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EPM3032被编程为计数器,对125MHz晶振进行计数。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12 位二进制数据输出,对应的时间范围为0~32.7?s。 二激光脉冲测距的应用领域 激光测距仪一般采用两种方式来测量距离:脉冲法和相位法.脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收.测距仪同时记录激光往返的时间.光速和往返时间的乘积的一半.就是测距仪和被测量物体之间的距离.脉冲法测量距离的精度是一般是在+/-1米左右.另外.此类测距仪的测量盲区一般是15米左右。 激光测距仪已经被广泛应用于以下领域:电力.水利.通讯.环境.建筑.地质.警务.消防.爆破.航海.铁路.反恐/军事.农业.林业.房地产.休闲/户外运动等。 由于激光在亮度、方向性、单色性以及相干性等方面都有不俗的特点,它一出现就吸引了众多科学工作者的目光,并被迅速地被应用在工业生产方面、国防军工方面、房地产业、各级科研机构、工程、防盗安全等各个行业各个领域:激光焊接、激光切割、激光打孔(包括斜孔、异孔、膏药打孔、水松纸打孔、钢板打孔、包装印刷打孔等)、激光淬火、激光热处理、激光打标、玻璃内雕、激光微调、激光光刻、激光制膜、激光薄膜加工、激光封装、激光修复电路、激光布线技术、激光清洗等。有关于激光的研究与生产制造也如火如荼地开展了起来。 5

高精度高重频脉冲激光测距系统

第40卷第8期红外与激光工程2011年8月Vol.40No.8Infrared and Laser Engineering Aug.2011 高精度高重频脉冲激光测距系统 纪荣祎,赵长明,任学成 (北京理工大学光电学院,北京100081) 摘要:在三维激光扫描探测系统中,激光测距的测量重频和测量精度是影响整个系统性能的关键参数。介绍了三维激光扫描探测系统的工作特点,设计了一种以Nios II嵌入式软处理器为核心的高重频、高精度脉冲激光测距系统。通过分析影响测量重频和测距精度的因素,采用双阈值时刻鉴别方法进行计时起止时刻的鉴别,使用TDC-GP2高精度时间间隔测量芯片进行精密计时,设计了基于Nios II嵌入式软处理器的计时控制系统以提高测量重频。实验结果表明:实现了测量重频为20000次/s、测距精度为3cm的激光测距。与传统的单片机控制的计时系统相比,该系统不仅测量重频和测量精度高,且具有更好的可扩展性和灵活性。 关键词:脉冲激光测距;精密时间测量;三维激光扫描;Nios II 中图分类号:TN247文献标志码:A文章编号:1007-2276(2011)08-1461-04 High precision and high frequency pulse laser ranging system Ji Rongyi,Zhao Changming,Ren Xuecheng (School of Photoelectronics,Beijing Institute of Technology,Beijing100081,China) Abstract:In three-dimensional(3D)laser scanning detection system,the measurement repetition rate and measurement precision of laser ranging are the key parameters affecting the performance of the whole system.The work characteristics of3D laser scanning detection system were introduced,and a high repetition rate and high measurement precision pulse laser ranging system based on the Nios II soft-core was designed.According to the analysis of the factors which affected the repetition rate and precision of range measure,the double-threshold time discriminator was adopted to produce timing mark for the start-stop time discrimination,and the TDC-GP2high-precision interval measuring chip was used to achieve high precision on time measure.In addition,the time measure control system based on the Nios II soft-core was designed to improve the measurement repetition rate.Experimental results show that the measurement repetition rate of20000/s and the ranging precision of±3cm are https://www.wendangku.net/doc/ed6717117.html,pared with the traditional MCU time measure control system,the designed system owns the advantages of high repetition rate and high measurement precision,furthermore,it is more expandable and flexible. Key words:pulse laser ranging;high precision time measure;3D laser scanning;Nios II 收稿日期:2010-12-18;修订日期:2011-01-17 基金项目:国防科技工业技术基础科研项目(J172009C001) 作者简介:纪荣祎(1984-),男,博士生,主要从事三维扫描激光探测系统的研究。Email:xiaoxiao8673@https://www.wendangku.net/doc/ed6717117.html,。 导师简介:赵长明(1960-),男,教授,博士生导师,博士,主要从事新型激光器件与技术、光电子信息技术与系统方面的研究工作。 Email:zhaochm1@https://www.wendangku.net/doc/ed6717117.html,

激光测距仪操作规程

激光测距仪操作规 程

1.使用方法触按电源开关,接通电源,“电源、测试指示灯”为绿色。触按档位选择开关,选择适合的档位。 2.将仪表测量端子的两个电流输出端子用两根测试线接到被测导体的两个端子,两个电压输入端子也接到被测导体的两个端子。 3. 如图所示,电压端子应位于电流端子的内侧,并尽量靠近被测试品,以减少引线电阻引入的误差。 4.接线完毕后,触按一下 TESTE 键,“电源、测试指示灯”为红色,显示屏显示的值即为测得的电阻值。 5.当被测导体开路或阻值大于选定量程时, 显示屏首位显示“1”,后三位数字熄灭。 6.注意事项 a)本仪表使用6 节1.5V(LR6,AA)电池供电。当显示屏出现欠压符号“”时,请更换电池,以保障得到正确的试值。换下的旧电池请勿乱扔,以免造成污染。B)仪器应避免受潮、雨淋、跌落、暴晒等。

1.目的: 建立超声波测厚仪标准操作规程。 2.适用范围: 试验室所有检验人员执行本规程,部门领导监督,检查本规程的执行。 一、操作规程 1、机器校准 仪器壳下方有一个厚度为4mm的试块,按“菜单”键进入菜单,经过“上下”箭头选择“声速”,在选择“声速设置”,把声速设置为5920m/s,并在试块上涂抹耦合剂,把探头放在试块中央轻轻压紧,按一下“下箭头”,能够看到仪器显示试块厚度为4.000mm,如果试块厚度测试值不为4.000mm请在进行校准,直到试块测量厚度为 4.000mm。仪器校准完成后即能够正常测量了。 2、测试块准备 准备50mm的测试医用消毒超声耦合剂样品三份,以备测试。 3、声速测试 将探头与已准备好的测试样品耦合,确保探头不晃动并耦合良好,此时能够看到显示屏上耦合标志。选择声速测试界面,输

激光脉冲测距实验报告

百度文库- 让每个人平等地提升自我 激光脉冲测距 组长:孙汉林(制作PPT) 组员:张莹(讲解) 吕富敏(制作报告)

目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7)

一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图 (2)激光脉冲测距仪光学原理结构

自制低成本3D激光扫描测距仪(3D激光雷达)

来自CSK的低成本3D scanner。Very Impressive! 在开始介绍原理前,先给出一些扫描得到的3D模型以及演示视频,给大家一个直观的认识。视频链接 相关的图片: 扫描得到的房间一角(点击查看原始尺寸) 扫描的我(点击查看原始尺寸)

扫描仪实物 本文结构 1. 简单介绍了激光雷达产品的现状 2. 激光三角测距原理 3. 线状激光进行截面测距原理 4. 3D激光扫描仪的制作考虑 5. 参考文献 简介-激光扫描仪/雷达 这里所说的激光扫描测距仪的实质就是3D激光雷达。如上面视频中展现的那样,扫描仪可以获取各转角情况下目标物体扫描截面到扫描仪的距离,由于这类数据在可视化后看起来像是由很多小点组成的云团,因此常被称之为:点云(Point Clould)。 在获得扫描的点云后,可以在计算机中重现扫描物体/场景的三维信息。 这类设备往往用于如下几个方面: 1) 机器人定位导航 目前机器人的SLAM算法中最理想的设备仍旧是激光雷达(虽然目前可以使用kinect,但他无法再室外使用且精度相对较低)。机器人通过激光扫描得到的所处环境的2D/3D点云,从而可以进行诸如SLAM 等定位算法。确定自身在环境当中的位置以及同时创建出所处环境的地图。这也是我制作他的主要目的之一。 2) 零部件和物体的3D模型重建

3) 地图测绘 现状 目前市面上单点的激光测距仪已经比较常见,并且价格也相对低廉。但是它只能测量目标上特定点的距离。当然,如果将这类测距仪安装在一个旋转平台上,旋转扫描一周,就变成了2D激光雷达(LIDAR)。相比激光测距仪,市面上激光雷达产品的价格就要高许多: 图片: Hokuyo 2D激光雷达 上图为Hokuyo这家公司生产的2D激光雷达产品,这类产品的售价都是上万元的水平。其昂贵的原因之一在于他们往往采用了高速的光学振镜进行大角度范围(180-270)的激光扫描,并且测距使用了计算发射/反射激光束相位差的手段进行。当然他们的性能也是很强的,一 般扫描的频率都在10Hz以上,精度也在几个毫米的级别。 2D激光雷达使用单束点状激光进行扫描,因此只能采集一个截面的距离信息。如果要测量3D的数据,就需要使用如下2种方式进行扩充: 1. 采用线状激光器 2. 使用一个2D激光雷达扫描,同时在另一个轴进行旋转。从而扫描出3D信息。 第一种方式是改变激光器的输出模式,由原先的一个点变成一条线型光。扫描仪通过测量这束线型光在待测目标物体上的反射从而一次性获得一个扫描截面的数据。这样做的好处是扫描速度可以很快,精度也比较高。但缺点是由于激光变成了一条线段,其亮度(强度)将随着距离大幅衰减,因此测距范围很有限。对于近距离(<10m)的测距扫描而言,这种方式还是 很有效并且极具性价比的,本文介绍的激光雷达也使用这种方式,

高功率脉冲激光应用

高功率脉冲激光应用 High peak power, low power consumption and compact package 峰值功率高,功耗低,紧密封装 Mining, Civil Engineering, Manufacturing, Forest Management, Underwater Topography, … require long range 3D laser scanning and with the most advanced lasers. Keopsys’s KULT (Ultra compact Laser Transmitter) series are the world's most used laser in 3D scanning applications. 采矿、土木工程、制造、森林管理、水下地形等需要远程三维激光扫描和最先进的激光器。Keopsys KULT(超紧凑型激光发射机)系列是世界上使用最多的三维激光扫描设备。 The KULT series, pulsed fiber lasers, cover the major eye safe wavelengths 1,5μm and 2μm but also 532nm and 1μm for specific applications. The KULT lasers provide high energy per pulse in an extremely compact package, making them the preferred lasers in many 3D scanning systems. KULT系列脉冲光纤激光器覆盖主要的人眼安全波长1.5μm、2μm以及532 nm和1μm,用于特定应用场合。KULT激光器在极其紧凑封装的条件下能提供高能量脉冲,使其成为三维激光扫描系统的首选。 In terms of high peak power, power consumption and compact package, KEOPSYS has one of the best offers on the market. We have developed very strong partnership with the leading manufacturers of 3D scanning systems. Our experienced and highly educated team will work with you to design custom solutions for your next generation scanner. 在高峰值功率、低功耗、紧凑封装方面,KEOPSYS拥有市场上最好的产品之一。我们已经和领先的三维扫描系统制造商建立了强力合作关系。我们的经验和高精尖团队将与您合作,为您的下一代扫描设备制定解决方案。 Telemetry for environmental and industrial surveys Range-Finding and Speed sensing for collission avoidance

激光测距仪使用教程

美国LaserCraft高精度激光测距仪-Contour XLRic型,这款激光测距仪是高精度和远量程的结合体,是目前市场性能最好的一款手持激光测量系统。它能成功地在保持良好精度的前提下测量以下目标到前所未有的距离:175米到电力线,400米到电线杆,800米到建筑物。同时,它是一款坚固防水的仪器,遇到下雨,下雪,大雾或沙尘暴天气时,您只把工作模式选择到“坏天气”模式,您的工作就不会受到任何影响。在坏天气下使用它,就如同在好天气下使用一样方便,好用。如果装配了三脚架,它就可以用来进行更远距离的精确测量和进行精密的倾斜测量。 Contour XLR采用最新激光技术,小巧、轻便、使用方便,可准确测量目标距离。有恶劣天气工作模式保证仪器在仪器在雨、雪、雾、沙尘暴天气条件下仍可可靠工作。仪器配备HUD显示器,可边瞄准边测量。是建筑结构规划等通用距离测量的得力仪器。最大测量距离1850米,精度0.1米。 Contour XLRi具有XLR系列的全部特点,同时增加360度倾角传感器。有六种工作模式,分别是距离、角度、水平距离、垂直距离、二点高度、三点高度。有串行口,可通过计算机或数据记录器记录数据。典型应用:矿山地形测量、森林资源调查、倾斜测量、高度测量、水平杆测量、塔高测量。 Contour XLRic将XLRi和GPS以及数据采集器结合起来,可测量不易达到目标的参数。内置软件可计算树高、倾斜、面积、周长、不见线的长度、水平距离等。XLRic内部有数字罗盘和倾角传感器,是测绘的得力仪器。

ContourMAX最大测量距离达到3000米,重仅1.6公斤,首/末目标可选,门控能力、恶劣天气模式、手持/平台安装可选。典型应用:火灾控制系统、遥测、GPS偏移测、航空测量等。和Contour 系列手持激光测量系统中的Contour XLRi比较起来,Contour XLR ic在内部又集成了一个高精度磁通量数字罗盘。配合高精度磁通量数字罗盘,XLR ic在功能就比XLR和XLRi多了不少。有了Contour XLRic,您就可以把它和您的GPS系统连接起来,去测量那些无法到达或不容易到达的地方的坐标信息,省时又省钱。或者您也可以使用它内置的软件计算:树高,倾斜度,面积,周长,空间线段的长度,水平距离,高差等等数据。由于Contour XLRic配置了数字罗盘和倾斜角度测量仪,所以它完全可以被看作是一个手持式全站仪,可以协助您进行测绘和测量工作。一级人眼安全的激光测距仪精确地向您报告以下测量数据:距离,方位,倾斜角。技术特点-测量距离到: 1850米;-测量精度达到:10厘米;-倾斜角度测量;-方位角测量;-周长测量;-面积测量;-电力线高度和垂度测量;- 3D空间尺寸测量;-连接GPS工作;-高度测量功能;-“点到点”斜距测量;-水平距离测量和垂直距离测量;-独特的坏天气模式:一般的测距仪在天气不好的情况下,测量的距离往往会大大缩短,甚至无法工作。Contour系列激光测距仪的“坏天气模式”消除了这种现象。当天气情况不好的时候,比如:多云,大雾,扬尘,潮湿等,启动该模式,测量起来就和好天气时测量一样轻松快速!工作模式(详细功能)模式一标准测量模式:该模式测量仪

激光脉冲测距实验报告

激光脉冲测距 组长:孙汉林(制作PPT) 组员:张莹(讲解) 吕富敏(制作报告)

目录 一工作原理 (3) (1)测距仪工作原理 (3) (2)激光脉冲测距仪光学原理结构 (3) (3)测距仪的大致结构组成 (4) (4)主要的工作过程 (4) (5)激光脉冲发射、接收电路板组成及工作原理 (5) 二激光脉冲测距的应用领域 (5) 三关键问题及解决方法 (6) (1)优点 (6) (2)问题及解决方案 (7)

一工作原理 (1)测距仪工作原理 现在就脉测距仪冲激光测距简要叙述其工作原理。简单地讲,脉冲法测距的过程是这样的:测距仪发射出的激光经被测量物体的反射后又被测距仪接收,测距仪同时记录激光往返的时间t,光速 c 和往返时间t 的乘积的一半,就是测距仪和被测量物体之间的距离。一般一个典型的激光测距系统应具备以下四个模块:激光发射模块;激光接收模块;距离计算与显示模块;激光准直与聚焦模块,如图2-1 所示。系统工作时,由发射单元发出一束激光,到达待测目标物后漫反射回来,经接收单元接收、放大、整形后到距离计算单元计算完毕后显示目标物距离。在测距点向被测目标发射一束强窄激光脉冲,光脉冲传输到目标上以后,其中一小部分激光反射回测距点被测距系统光功能接收器所接受。假定光脉冲在发射点与目标间来回一次所经历的时间间隔为t,那么被测目标的距离 D 为:式中:c 为激光在大气中的传播速度;D 为待测距离;t 为激光在待测距离上的往返时间。 R=C*T/2 (公式1) 图一脉冲激光测距系统原理框图 (2)激光脉冲测距仪光学原理结构

图二 (3)测距仪的大致结构组成 脉冲激光测距仪主要由脉冲激光发射系统、光电接收系统、门控电路、时钟脉冲振荡器以及计数显示电路组成 (4)主要的工作过程 其工作过程大致如下:首先接通电源,复原电路给出复原信号,使整机复原,准备进行测量;同时触发脉冲激光发生器,产生激光脉冲。该激光脉冲有一小部分能量由参考信号取样器直接送到接收系统,作为计时的起始点。大部分光脉冲能量射向待测目标,由目标反射回测距仪的光脉冲能量被接收系统接收,这就是回波信号。参考信号和回波信号先后由光电探测器转换成为电脉冲,并加以放大和整形。整形后的参考信号能触发器翻转,控制计数器开始对晶格振荡器发出的时钟脉冲进行计数。整形后的回波信号使触发器的输出翻转无效,从而使计数器停止工作。这样,根据计数器的输出即可计算出待测目标的距离。三实验装置实验装置包括“激光脉冲发射、接收电路”和“单片机开放板”。

激光扫描测量系统的应用及发展

激光扫描测量系统的应用及发展 发表时间:2019-08-13T17:07:08.937Z 来源:《防护工程》2019年9期作者:张帆 [导读] 随着激光扫描测量系统在理论算法和硬件需求方面的不断完善与发展,势必在相关应用领域内引起新一轮的技术革新,不难看出其应用前景将十分广阔。 身份证号码:13040419910120**** 摘要:激光扫描仪作为一种新的空间数据获取手段,可高速、高精度获取物体表面点云的三维坐标值和实体纹理信息。从激光扫描测量系统的工作原理、激光扫描仪的分类、激光扫描测量系统的应用领域出发,阐述了激光扫描测量系统的应用现状,并指出该技术的未来发展趋势。 关键词:激光扫描测量:测量系统;应用发展 激光扫描测量系统通过后处理软件对采集的点云数据或者影像数据进行处理,进而转换成空间坐标系中的位置坐标或模型,并可以以多种不同的格式输出,以提供满足空间信息数据库建库的数据源和不同行业应用的需要。是集成了多种新技术的新型空间信息数据获取的手段与工具。激光扫描测量系统是继全站仪和GNSS之后,测绘领域又一次技术新突破。作为一种新的数据获取手段,以其非接触性、高效率、精确、高时效性和可获得大量测量目标物的三维坐标数据的优势广泛应用于各个研究领域,克服了传统测量技术的局限性,在国内外都有很好的发展和应用。 一、激光扫描测量系统概述 1.激光扫描测量技术原理 激光扫描仪的工作原理是通过发射红外线光束到旋转式镜头的中心,旋转检测环境周围的激光,一旦接触到物体,光束立刻被反射回扫描仪,由记录器记录并计算出激光发射点与物体的距离,最后再配合扫描的水平和垂直方向角,以获得每个点的X、Y、Z坐标。设测点到目标点的观测距离为S,精密时钟编码器同步测量获得每个激光脉冲的水平方向扫描角度观测值α和垂直方向扫描角度观测值θ。一般采用内部坐标系统,X轴在水平扫描面内,Y轴在垂直扫描面内与X轴垂直,Z轴与横向扫描面垂直。扫描过程中,在每个站点上都可以获取大量的点云测量数据,且每个点云的位置信息在扫描坐标中均以极坐标(α,ζ,d)的形式来存储。如果是用传统测量手段获取了控制点的大地坐标,则可以将将点云数据的扫描数据转换为大地坐标,然后应用到测绘领域的各项工程建设中。 2.激光扫描仪分类 现阶段扫描仪在扫描距离、扫描精度、点间距和数量、光斑点的大小等指标有所不同。按照系统运行平台,机载型激光扫描系统可以在短时间内采集大范围内详细的三维点云数据和影像信息。具有测量范围广、速度快的特点,但其测量精度相对较低,且造价昂贵。车载激光扫描系统主要用于城市的建设和维护。地面激光扫描系统是一种固定式扫描系统,精度可以达到变形监测精度的要求。现阶段,地面激光扫描系统在如矿区开采沉降、隧道变形等变形监测中已得到越来越广泛的应用[1]。便携式激光扫描系统是一种手持式激光测距系统,主要应用于测量物体的长度、面积、体积等。 二、激光扫描测量系统应用现状 近年来,随着电子信息技术的不断进步,激光扫描测量系统产业化应用方面的研究也在不断深入,其应用领域日益扩大,逐步从科学研究进入到人们的日常生活。 1.工程应用领域 大型土木工程测量:主要是在道路、桥梁、地下坑道等施工工程现场,对施工之前的地形图进行扫描,提高准确的数据支持,建立施工后目标三维图形,对施工进行质量上的把控,并进行相关数据的记录。复杂工业设备测量:工业设备一般管线林立,纵横交错,因此对工业设备进行规划、改造过程中,可以对激光扫描测量系统进行利用,生成高精度3d模型,为数据测量提供依据。地质应用:可以在地质方面的地质调查、编录、环境监测、安全监测以及裂缝研究中提供技术支持。变形监测:相较于常规变形监测技术,激光扫描测量系统可以得到精度均匀、密度高的数据,可以发现许多细节变化,数据中包含任意截取断面,能够对目标的整体稳定性分析。 2.文物保护领域 通过激光扫描测量仪的高精度、无缝隙测量实现对古建筑的高精度模拟存储、古建筑结构探测和古建筑修复性测量等。同时,还能够通过高精度测量对文物进行真伪鉴别,因此激光扫描测量仪是考古技术发展的重要突破。 3.空间信息技术领域 激光扫描技术与全球定位系统(GPS)、惯性导航系统(INS)、电荷耦合(CCD)等技术相结合,在大范围内高精度数字高程模型(DTM)的实时获取、城市三维模型重建、局部区域地理信息数据的获取等方面均表现出强劲的优势,成为测绘科学与技术的一个重要补充。 4.其他领域 激光扫描测量系统还有一些应用,在制造业中,基于激光扫描仪数据的快速原型法为产品模型设计开发提供了另一种思路,与虚拟制造技术(VirtualManufacturing)一起,被称为未来制造业的两大支柱技术。基于激光扫描测量系统重建的三维模型,可直接应用到国防、执行机关及政府机构等社会安全辨认上。在电脑游戏业方面,利用激光扫描仪获取数据构建三维场景。在电影特技制作方面,也有着广泛的应用[2]。激光扫描测量系统的介入促进了相关应用领域的发展,同时应用领域的大量需求也成为促进研究的动力。 三、激光扫描测量系统发展趋势 随着激光扫描测量系统、三维建模算法及技术的研究和计算机硬件环境的不断发展,结合其自身所具备的特点,激光扫描测量系统也将在以下方面取得较大的发展和应用。1)点云数据处理软件的多功能化和公用化,实现海量数据处理及实时数据共享。2)在硬件设备不变的情况下,测量方法和算法上提高精度,多种方法相结合。3)进一步扩大扫描范围,实现全圆球扫描,获得被测景物空间三维虚拟实体显示[3]。4)能够与其他测量设备(如IMU、GPS、全站仪等)进行联合测量,实现实时导航,定位、并扩大测程和提高精度。5)激光扫

激光脉冲测距实验报告

激光脉冲测距实验报告 一.实验目的 通过学习激光脉冲测距的工作原理,了解激光脉冲测距 系统的组成,搭建室模拟激光器系统进行正确测距,为今后 的工程设计奠定理论基础和工程实践基础。 二.实验原理 激光脉冲测距与雷达测距在原理上是完全相同的,如图2.1所示。 在测距点激光发射机发射激光脉冲,光脉冲经过光纤到达接收端,并被测距机上的探测系统接收。测出从激光发射时刻到被接收时刻之间的时间间隔t,根据已知光速,即可求出光纤的长度R为 R=/2 (2-1) 式中c为光速。真空中的光速是一个精确的物理常数 C1=299792458 m/s 光纤中的平均折射率n为 n=1.45(查阅得知) 故光纤中的光速为 C=299710000 可见,激光测距的任务就是准确地测定时间间隔t。当不考虑光纤中光速的微小变化时,测距精度⊿R主要是由测时精度⊿t确定的 ⊿R=C⊿t/2 (2-2) 实际脉冲激光测距机中是利用时钟晶体振荡器和脉冲计数器来测定时间间隔 t的。时钟晶体振荡器用于产生固定的频率的电脉冲振荡,脉冲计数器的作用是对晶体产生的电脉冲个数进行计数。设晶体振荡器产生的电脉冲频率为f,则脉冲间隔T=1/f。若从激光脉冲发出时刻脉冲计数器开始计数,到光脉冲被接收时刻停止计数。设这段时间脉冲计数器共计得脉冲个数为m,则可计算出被测光纤的长度为 R=cmT=cm/f=1.6m (2-3) 相应的测距精度为

⊿R =Ct=c/f (2-4) 可见,脉冲激光测距机的测距精度由晶振的频率决定。常用军用激光测距仪的晶振频率有15MHz、30MHz、75MHz和150MHz等,与其相对应的测距精度分别为正负10m、正负5m 、正负2m和正负1m。晶振的频率愈高,测距精度就愈高, 但随之而来的,不仅是计数器的技术难度增加,而且要求激光脉冲的宽度愈窄,激光器的难度也增加。 对脉冲测距系统,计数器的“开门”信号是由取出一小部分发射激光脉冲经光探测器转换成电信号形成的。这两个信号既可由同一探测器提供,也可以用两个探测器提供。 激光脉冲测距机由激光器、发射光学系统、接收及瞄准光学系统、取样及回波探测放大系统、技数及显示器和电源几部分组成,如图2.2所示 系统操作人员一旦下达发射激光命令,激光器发射一束窄激光脉冲,经发射光学系统扩束后射向接收系统,其中一小部分经取样后启动计数器开始计数。激光回波经测距机的接收和瞄准光学系统,聚焦到前面有窄带滤光片的光探测器上。由探测器将其转换成电信号,再经取样及回波探测放大系统处理后产生“关门”信号用于关闭计数器。由计数器计得的脉冲个数计算出光纤得电源计数及显示器激光器长度,再通过显示器显示出来。 三.实验装置 实验装置包括“激光脉冲发射/接收电路板”、电脑和“单片机开放板”。 1.激光脉冲发射/接收电路板组成及工作原理 激光脉冲发射/接收电路板原理框图如图2.3所示。图中EMP 3032为CPLD;MAX3656为激光驱动器;MAX3747为限幅放大器;T22为单端信号到分差信号转换芯片;T23为差分信号单短信号转换芯片;LD为半导体激光器;PD为光探测器。板子上端的EMP3032被编程为脉冲发生器,输出重复频率为1KHz,脉冲宽度为48ns的电脉冲信号。此信号经MAX3656放大后驱动LD发光。板子下端的EMP 3032被编程为计数器,对125MHz 晶振计数器。其计数的开门信号来自上端的TX信号,关门信号来自PD的输出。计数器的计数结果采用12位二进制数据输出,对应时间围为0~32.76us.

脉冲式激光测距系统设计

脉冲式激光测距系统设计 摘要本文通过对高精度脉冲式激光测距系统的研究,并在参照课题技术指标的基础上,旨在提供一种高精度脉冲式激光测距系统的解决方案,并对脉冲式激光测距仪系统设计中所涉及的脉冲读取与放大电路、时刻鉴别、时间间隔测量等关键技术进行了深入的研究和探讨。 本论文详细讨论了一种可实现高速激光测距的接收电路和计时电路。实验系统采用APD作为光电传感器,将激光脉冲信号转变为微弱电流脉冲,经过两级放大后,信号变为幅度较大的电压脉冲,经过时点鉴别电路分别确定计时起点和终点后,由计时电路来精确测量两个时间点之间的时间间隔。 关键词:脉冲激光测距,时刻鉴别,TDC-GP2,传递延时,APD

Pulse laser rangefinder system design Abstract:A high-precision pulse laser rangefinder solution is proposed in this paper through the research of high-precision pulsed laser rangefinder system on the basis of referring to the subject technical indexes. Besides, some key technology involved in pulse laser range finder system design such as pulse reading, amplifying circuit, timing discrimination, time-interval measurement, etc, have been researched and discussed in depth. A type of receiver circuit and timing circuit which can be applied in high-speed laser range- finder is discussed in this paper. After two-level amplification we got a voltage pulse that had a enough amplitude to be applied,the timing point was discriminated by the constant-fraction timing discriminator circuit. Key words: Pulsed Laser Rangefinder,Timing Discrimination,TDC-GP2,Propagation delay,APD

XR01 360度二维激光扫描雷达测距系统产品介绍

一、简介 新软汇通XR01 360度二维激光扫描雷达测距系统:是一款低成本二维激光雷达解决方案。它可以实现360度6米范围内的激光测距扫描,产生所在空间的平面点云地图信息用于地图测绘、机器人定位导航、物体/环境建模等应用。 在进行360点采样/周的设置下,XR01扫描频率达6hz,并且最高可达10hz的扫描频率。 XR01采用的激光三角测距系统,可以在各类室内环境以及无日光直接照射的室外环境下应用。产品图片: 规格(长*宽*高):170 *150*80 二、说明 供电与动力 XR01自身带有转速检测与自适应系统,雷达的扫描频率会自动随着实际的电机转速做出调整。无需使用者为XR01提供复杂的供电系统,降低了总体成本。并且外部系统可以通过通讯接口获取当

前雷达的实际转速。 ?安全性与适用范围 采用低功率(<5mW)的红外线激光器作为发射源,并采用调制脉冲方式驱动,激光器仅在极短的时间内进行发射动作。因而可以确保对人类及宠物的安全性,可以达到Class I级别的激光器安全标准。调制的激光可以有效避免在测距扫描过程当中的环境光与日光干扰。可以在各类室内环境以及无日光直接照射的室外环境下应用 ?输出数据 在XR01工作时,每次采样的数据将通过通讯接口输出。每个采样点的数据将包括如下的信息。如果需要具体的数据格式和通讯接口的协议,请与新软汇通联系联系。

三、测量性能 *注:三角测距系统距离分辨率将随着实际距离值变化,XR01的理论具体变化情况如下图所示: 四、光学信息

五、工作环境 ?预热与最佳工作时间 由于测距核心在工作中将产生热量,建议在XR01工作(开启扫描模式、扫描电机开始运转)2分钟后使用。此时测距精度将达到最佳水平。 ?环境温度 当环境温度与常温差距过大将影响测距系统的精度,并可能对扫描系统的结构产生损害。请避免在高温(>40摄氏度)以及低温(<-10摄氏度)的条件中使用。 ?环境光照 XR01的理想工作环境为室内,室内环境光照(包含无光照)不会对XR01工作产生影响。但请避免使用强光源(如大功率激光器)直接照射XR01的视觉系统。 如果需要在室外使用,请避免XR01的视觉系统直接面对太阳照射,这将这可能导致视觉系统的感光芯片出现永久性损伤,从而使测距失效。XR01标准版本在室外强烈太阳光反射条件下的测距范围将缩短。

连续激光脉冲激光对比

测风激光雷达对比与思考 (连续激光雷达、脉冲激光雷达) 将激光雷达应用于测风领域是最近几年的新事物,正是因为新事物大家在刚接触或者使用过程中往往会产生一些误解。就容易产生误解的几个问题同您探索和思考: 一、关于连续激光、脉冲激光的对比[参考百度中不同对比] 从激光的工作原理看,连续激光就是一直都有光出来,就像手电筒,你打开开关它就一直亮。连续激光输出的激光是连续的。脉冲激光就是一闪一闪,脉冲激光输出的激光是不连续的。 连续波激光雷达系统发射的激光束每秒往返一次,1秒钟360度测量一次,如果数据采样点多达50个,每个点需至少20毫秒,这个已经是连续激光的最好状况,通常情况都达不到这样速率。但实际上脉冲激光的脉宽很短,脉宽就是指的它每发一次光的时间,也就是亮的时间,长的有几纳秒(就是1/1000000000秒),短的只有几飞秒(1纳秒=1000000飞秒),可以想象它亮的时间有多短,而且这种激光器平均功率都不小,可想而知它在亮的时候,就是有激光输出那一刻光强有多强、有多快!两者的峰值功率相差很多。脉宽越短,热作用效应越少,精细加工中大多数都是使用脉冲方式。【请参照专业激光原理https://www.wendangku.net/doc/ed6717117.html,/how_lidar.html】

根据两个不同原理进行同样的测距功能,连续激光是依靠持续 亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作 特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特 性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折 中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评 估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲激光的 原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这 几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一 个立体的概念,因此才有探测长度的理论。在一个探测区间内,几 千个不同点位的立体风况,同时进行综合评价才能真正的描述出某 个高度的风况。从激光的特性来看,脉冲激光要比连续激光测量的 点位多几十倍,更能够精确的反应出某个高度风况。 如果测量不同的高度,连续激光需要不停的调整激光的的连续 性,这就导致连续激光不能同时测量不同的高度,假如测量8个高 度,从第一个高度开始测量,到测量全部的8个高度,之间有8秒 的测量间隔,而且每个高度的时间都不相同。脉冲激光是依靠高能 量的激光粒子,在以飞秒级的速度同时出去几万个激光粒子,依靠 不同激光粒子返回的时间差来确定测量的高度变化,依靠频率的变 化来确定风速等风况的变化。所以脉冲激光才是真正意义上的不同 高度下的同步测量,连续激光每次只能测量一个高度,测量高度越 多,彼此之间的时间间隔就越长。

相关文档