文档库 最新最全的文档下载
当前位置:文档库 › 弯曲法测量横梁的杨氏模量

弯曲法测量横梁的杨氏模量

弯曲法测量横梁的杨氏模量
弯曲法测量横梁的杨氏模量

弯曲法测量横梁的杨氏模量

【实验目的】

(1)熟悉霍尔位置传感器的特性;

(2)弯曲法测量黄铜的杨氏模量;

(3)测黄铜杨氏模量的同时,对霍尔位置传感器定标;

(4)用霍尔位置传感器测量可锻铸铁的杨氏模量。

【实验原理】

(1)霍尔位置传感器

霍尔元件置于磁感应强度为的磁场中,在垂直于磁场方向通以电流,则与这二者相垂直的方向上将产生霍尔电势差:

(1)

(1)式中为元件的霍尔灵敏度。如果保持霍尔元件的电流不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为:

(2)

(2)式中为位移量,此式说明若为常数时,与成正比。

为实现均匀梯度的磁场,可以如图1所示,两块相同的磁铁(磁铁截面积及表面磁感应

强度相同)相对放置,即极与极相对,两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范围和测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。

若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差应该为零。当霍尔元件偏离中心沿轴发生位移时,由于磁感应强度不再为零,霍尔元件也就产生相应的电势差输出,其大小可以用数字电压表测量。由此可以将霍尔电势差为零时元件所处的位置作为位移参考零点。

霍尔电势差与位移量之间存在一一对应关系,当位移量较小(),这一对应关系具有良好的线性。

(2)杨氏模量

杨氏模量测定仪主体装置如图2所示,在横梁弯曲的情况下,杨氏模量可以用下式表示:

(3)

其中:为两刀口之间的距离,为所加砝码的质量,为梁的厚度,为梁的宽度,

为梁中心由于外力作用而下降的距离,为重力加速度。

上面公式的具体推导见附录。

【实验仪器】

(1)霍尔位置传感器测杨氏模量装置一台(底座固定箱、读数显微镜、95型集成霍尔位置传感器、磁铁两块等);

(2)霍尔位置传感器输出信号测量仪一台(包括直流数字电压表)。

其中:1.铜刀口上的基线 2.读数显微镜 3.刀口 4.横梁 5.铜杠杆(顶端装有型

集成霍尔传感器) 6.磁铁盒 7.磁铁(极相对放置) 8.调节架 9砝码

【实验过程】

1.基本内容:测量黄铜样品的杨氏模量和霍尔位置传感器的定标。

(1)调节三维调节架的调节螺丝,使集成霍尔位置传感器探测元件处于磁铁中间的位置。

(2)用水准器观察是否在水平位置,若偏离时可以用底座螺丝调节。

(3)调节霍尔位置传感器的毫伏表。磁铁盒下的调节螺丝可以使磁铁上下移动,当毫伏表数值很小时,停止调节固定螺丝,最后调节调零电位器使毫伏表读数为零。

(4)调节读数显微镜,使眼镜观察十字线及分划板刻度线和数字清晰。然后移动读数显微镜前后距离,使能够清晰看到铜架上的基线。转动读数显微镜的鼓轮使刀口架的基线与读数显微镜内十字刻度线吻合,记下初始读数值。

(5)逐次增加砝码(每次增加10g砝码),相应从读数显微镜上读出梁的弯曲位

移及数字电压表相应的读数值(单位mV)。以便于计算杨氏模量和霍尔位置传感器进行定标。在进行测量之前,要求符合上述安装要求,并且检查杠杆的水平、刀口的垂直、挂砝码的刀口处于梁中间,要防止外加风的影响,杠杆安放在磁铁的中间,注意不要与金

属外壳接触,一切正常后加砝码,使梁弯曲产生位移;精确测量传感器信号输出端的数值与固定砝码架的位置Z的关系,也就是用读数显微镜对传感器输出量进行定标,检验

的关系。

(6)测量横梁两刀口间的长度d及测量不同位置横梁宽度b和梁厚度a。

(7)用逐差法按照公式(3)进行计算,求得黄铜材料的杨氏模量,并求出霍尔位置传

感器的灵敏度,并把测量值与公认值进行比较。

2.选作内容:用霍尔位置传感器测量可锻铸铁的杨氏模量。

查:

【注意事项】

(1)梁的厚度必须测准确。在用千分尺测量黄铜厚度a时,将千分尺旋转时,当将要与金属接触时,必须用微调轮。当听到答答答三声时,停止旋转。有个别学生实验误差较大,其原因是千分尺使用不当,将黄铜梁厚度测得偏小;

(2)读数显微镜的准丝对准铜挂件(有刀口)的标志刻度线时,注意要区别是黄铜梁的边沿,还是标志线;

(3)霍尔位置传感器定标前,应先将霍尔传感器调整到零输出位置,这时可调节电磁铁盒下的升降杆上的旋钮,达到零输出的目的,另外,应使霍尔位置传感器的探头处于两块磁铁的正中间稍偏下的位置,这样测量数据更可靠一些;

(4)加砝码时,应该轻拿轻放,尽量减小砝码架的晃动,这样可以使电压值在较短的时间内达到稳定值,节省了实验时间;

(5)实验开始前,必须检查横梁是否有弯曲,如有,应矫正。

【参考资料】

[1] 漆安慎杜婵英《力学》高等教育出版社

[2] 方佩敏《新编传感器原理、应用、电路详解》电子工业出版社

[3] 游海洋赵在忠陆申龙《霍尔位置传感器测量固体材料的杨氏模量》《物理实验》,第20卷第8期

[4] 龚镇雄《普通物理实验》人民教育出版社

【附录】弯曲法测量杨氏模量公式的推导

固体、液体及气体在受外力作用时,形状与体积会发生或大或小的改变,这统称为形变。当外力不太大,因而引起的形变也不太大时,撤掉外力,形变就会消失,这种形变称之为弹性形变。弹性形变分为长变、切变和体变三种。

一段固体棒,在其两端沿轴方向施加大小相等、方向相反的外力,其长度发生改变,

以表示横截面面积,称为应力,相对长变为应变。在弹性限度内,根据胡克定律有:

Y称为杨氏模量,其数值与材料性质有关。

以下具体推导式子:;

在横梁发生微小弯曲时,梁中存在一个中性面,面上部分发生压缩,面下部分发生拉伸,所以整体说来,可以理解横梁发生长变,即可以用杨氏模量来描写材料的性质。

如图所示,虚线表示弯曲梁的中性面,易知其既不拉伸也不压缩,取弯曲梁长为的一小段:

设其曲率半径为,所对应的张角为,再取中性面上部距为厚为的一层面为研究对象,那么,梁弯曲后其长变为,所以,变化量为:

又;

所以

所以应变为:;

根据虎克定律有:;

又;

所以;

对中性面的转矩为:

积分得:

;(1)

对梁上各点,有:;

因梁的弯曲微小:;

所以有:;

(2)

梁平衡时,梁在处的转矩应与梁右端支撑力对处的力矩平衡,

所以有:;

(3)

根据(1)、(2)、(3)式可以得到:

据所讨论问题的性质有边界条件;;;

解上面的微分方程得到:

将代入上式,得右端点的值:

又;

所以,杨氏模量为:

上面式子的推导过程中用到微积分及微分方程的部分知识,作者之所以将这段推导写进去,是希望学生和教师在实验之前对物理概念有一个明晰的认识。

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm , )、游标卡尺(0-150mm,、螺旋测微器(0-150mm, 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ??? ????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方左右位置上;

4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2±以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0‘,' 7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 )()()()(37261504n n n n n n n n n -+-+-+-=? 3. 注:上式中的n ?为增重400g 的金属丝的伸长量。 【实验数据记录处理】 【结果及误差分析】 1. 光杠杆、望远镜和标尺所构成的光学系统一经调节好后,在实验过程中就不可 在移动,否则,所测的数据将不标准,实验又要重新开始; 2. 不准用手触摸目镜、物镜、平面反射镜等光学镜表面,更不准用手、布块或任 意纸片擦拭镜面;

拉伸法测钢丝的杨氏模量(已批阅)教学文案

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种 数据处理的方法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直 接测量困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光 线转过2θ,而且有: 故:)2(D b l L =?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体 重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表 面共面。

(3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面 (1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜 处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰, 用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上 的读数r i ,然后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值 i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

实验 杨氏模量的测定(梁弯 曲法)

实验杨氏模量的测定(梁弯曲法) 【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为、宽为的金属棒放在相距为的二刀刃上(图1),在棒上二刀刃的中点处挂上质量为的砝码,棒被压弯,设挂砝码处下降,称此为弛垂度,这时棒材的杨氏模量

. (1) 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在相距的二点上的横断面,在棒弯曲前互相平行,弯曲后则成一小角度。显然在棒弯曲后,棒的下半部呈现拉伸状态,上半部为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为、厚、形变前长为的一段,弯曲后伸长了,它受到的拉力为,根据胡克定律有 . 式中表示形变层的横截面积,即。于是 . 此力对中间层的转矩为,即 . 而整个横断面的转矩应是 . (2) 如果将棒的中点固定,在中点两侧各为处分别施以向上的力(图3),则棒的弯曲情况当和图1所示的完全相同。棒上距中点为、长为的一段,由于弯曲产生的下降等于

(3) 当棒平衡时,由外力对该处产生的力距应当等于由式(2)求出的转距,即 . 由此式求出代入式(3)中并积分,可求出弛垂度 , (4) 即 . (1) 【仪器介绍】 攸英装置如图4所示,在二支架上设置互相平的钢制刀刃,其上放置待测棒和辅助棒。在待测棒上二刀刃间的中点处,挂上有刀刃的挂钩和砝码托盘,往托盘上加砝码时待测棒将被压弯,通过在待测棒和辅助棒上放置的千分表测量出棒弯曲的情况,从而求出棒材的杨氏模量。

【实验内容与要求】 1.按图4安置好仪器,用千分表直接测出。 2.用螺旋测微计在棒的各处测厚度,要测10次取平均值。 3.用游标卡尺在棒的各处测宽度(测4次)。 4.用米尺测二刀刃间的距离,测4次。 5.将测得的量代入(1)求出棒材的杨氏模量。单位用。 6.求测量结果的误差。 【注意事项】 【思考问题】 1.调节仪器的程序分几步,每一步要达到什么要求? 2.测量时哪些量要特别仔细测?为什么? 3.什么是弛垂度?怎样测量它? 4.如果被测物是半径为的圆棒,式(1)将是什么样子的? 5.如果用读数显微镜或螺旋测微计去测弛垂度,应当怎样进行测量?

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

(完整版)拉伸法测钢丝杨氏模量

拉伸法测钢丝杨氏模量 实验目的 1. 掌握用光杠杆法测量微小量的原理和方法,并用以测定钢丝的杨氏模量; 2. 掌握有效数字的读取、运算以及不确定度计算的一般方法. 3. 掌握用逐差法处理数据的方法; 4. 了解选取合理的实验条件,减小系统误差的重要意义. 实验仪器 YMC-l 型杨氏模量测定仪,如图所示(包括光杠杆、镜尺装置);量程为3m 或5m 钢卷尺;0-25mm 一级千分尺;分度值0.02mm 游标卡尺;水平仪;lkg 的砝码若干. 1.标尺 2.锁紧手轮 3.俯仰手轮 4.调焦手轮 5.目镜 6.内调焦望远镜 7.准星 8.钢丝上夹头 9.钢丝 10.光杠杆 11.工作平台 12.下夹头 13.砝码 14.砝码盘 15.三角座 16.调整螺丝. 实验原理 设一粗细均匀的钢丝,长度为L 、横截面 积为S ,沿长度方向作用外力F 后,钢丝伸长了ΔL .比值F /S 是钢丝单位横截面积上受到的作用力,称为应力;比值ΔL /L 是钢丝的相对伸长量,称为应变.根据胡克定律,在弹性限度内,钢丝的应力与应变成正比,即 F L E S L ?= 或 //F S E L L =? 式中E 称为杨氏模量,单位为 N·m -2,在数值上等于产生单位应变的应力. 由上式可知,对E 的测量实际上就是对F 、L 、S 、ΔL 的测量.其中F 、L 和S 都容易测量,而钢丝的伸长量ΔL 很小,很难用一般的长度测量仪器直接测量,因此ΔL 的准确测量是本实验的核心问题. 本实验采用光杠杆放大法实现对钢丝伸长量ΔL 的间接测量.光杠杆是用光学转换放大的方法来实现微小长度变化的一种装置.它包括杠杆架和反射镜.杠杆架下面有三个支脚,测量时两个前脚放 在杨氏模量测定仪的工作平台上,一个后脚放在与钢丝下夹头相连的活动平台上,随着钢丝的伸长(或缩短),活动平台向下(或向上)移动,带动杠杆架以两个前脚的连线为轴转动. 设开始时,光杠杆的平面镜竖直,即镜面法线在水平位置,在望远镜中恰能看到标尺刻度s 0.当待测细钢丝受力作用而伸长ΔL 时,光杠杆的后脚下降ΔL ,光杠杆平面镜转过一较小角度θ,法线也转过同一角度θ,反射线转过2θ,此 时在望远镜中恰能看到标尺刻度s 1(s 1为标尺某一刻度). 由图可知 2 tan L d θ?= ,1011tan 2s s s d d θ-?== 式中,d 2为光杠杆常数(光杠杆后脚尖至前脚尖连线的垂直距离);d 1为光杠杆镜面至标尺的距离. 由于ΔL << d 2,Δs << d 1 ,偏转角度θ很小,所以近似地有 θtan ≈θ2d L ?= ,θ2tan θ2≈1 101d s d s s ?=-= 由此可得 2 1 2d L s d ?= ? 实验中,外力F 由一定质量的砝码的重力产生,即F =mg ,钢丝横截面积为S =πD 2/4 (D 是钢丝直径),代入可得杨氏模量的计算公式: 1 228mgLd E D d s = π? 其中2d 1/ d 2为放大倍数,为保证大的放大倍数,实验时应有较大的d 1(一般为2m )和较小的d 2(一般为0.08m 左右). 将待测钢丝直径D 和原长L 、光杠杆镜面至标尺的距离d 1、光杠杆常数d 2、砝码产生的拉力mg 、以及对应的Δs 测出,便可计算出钢丝的杨氏模量E . 实验内容 1. 用千分尺测量钢丝的直径D ,在不同方位测六次,计算其不确定度; 2. 用钢卷尺对钢丝的原长L (从支架上端钢丝上夹头开始到平台夹钢丝的下夹头之间的距离)及平面镜与标尺的距离d 1各测一次; 3. 用游标卡尺测量光杠杆常数d 2一次; 4. 采用逐个增加砝码和减去砝码的方法测量钢丝的伸长量,用逐差法求Δs 及其不确定度; 5. 计算钢丝的杨氏模量E 及其不确定度,表达实验结果. 实验步骤 1. 杨氏模量测定仪的调整 (1) 将待测钢丝固定好,调节杨氏模量仪的底脚螺丝,使两根支柱竖直,工作平台水平,并预加1-2块砝码使钢丝拉直; (2) 将光杠杆的两前脚放在工作平台的沟槽中,后脚放在下夹头的平面上,调整平面镜使镜面铅直. (3) 调节望远镜,使镜筒轴线水平,将其移近至工作平台,调节镜筒高度使其和平面镜等高,调好后将望远镜固定在 支架上. 调整到平面镜法线和望远镜轴线等高共轴. (4) 移动望远镜支架距平面镜约2 m 处,调整标尺,使其竖直并与望远镜轴线垂直,且标尺0刻线与轴线等高. (5) 初步寻找标尺的像,从望远镜筒外观察平面镜中是否有标尺或镜筒的像,若没有,则左右移动望远镜、细心调节 平面镜倾角,直到在平面镜中看到镜筒或标尺的像. (6) 调节望远镜找标尺的像.先调节目镜,看到清晰的十字叉丝,再调节调焦手轮,左右移动支架或转动方向,直到在望远镜中看到清晰的标尺刻线和十字叉丝. 杠杆架 反射镜 固定平台 砝码 光杠杆结构图 θ θ 光杠杆 望远镜 标尺 s 0 s 1 d 1 d 2 ΔL θ θ Δs

霍尔位置传感器的定标和杨氏模量的测定

霍尔位置传感器的定标和杨氏模量的测定 通过弯梁法测量固体材料的杨氏模量,可以学习和掌握基本长度和微小位移量测量的方法和手段,提高学生的实验技能,是大学物理实验中一个十分重要的项目。传统的弯梁法测量固体材料杨氏模量实验是采用光杠杆放大的方法测量微小位移量。随着科学技术的发展,微小位移量的测量技术愈来愈先进,在弯梁法测量固体材料杨氏模量的基础上,通过位移传感器的输出电压与位移量线性关系的定标和微小位移量的测量,有利于联系科研和生产实际,使学生了解和掌握微小位移的非电量电测新方法。 【实验目的】 1.本实验要求掌握用米尺、游标卡尺、螺旋测微计、读数显微镜测量长度的方法。 2.用弯曲法测出金属黄铜(或可锻铸铁)的杨氏模量。 【实验原理】 1.位移传感器 位移传感器是将霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者相垂直的方向上将产生霍尔电势差U H H U K I B = (1) 式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为 H dB U KI Z dZ ?=? (2) 式中△U 为位移量,此式说明若dB dZ 为常数时,△U H 与△Z 成 正比。取比例系数为κ,则 H U Z κ?=? (3) 为实现均匀梯度的磁场,可以如图1 所示,两块相同的磁铁(磁铁截面积及表面磁感应强度相同) 相对放置,即N 极与N 极相对( S 极与S 极相对),两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范围的测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差 图1

实验6霍尔传感器的测杨氏模量

实验6 霍尔传感器测杨氏模量 杨氏模量是描述固体材料抵抗形变能力的重要物理量,在工程上作为选择材料的依据之一,是工程技术中常用的参数。 利用霍尔位置传感器测量微小位移,可以改进传统粱弯曲法实验中的测量方法,使古老的实验又增添新的技术内容。而霍尔元件及集成霍尔传感器具有尺寸小、外围电路简单、频响宽、使用寿命长,特别是抗干扰能力强等特点,近年来被广泛应用于物理量的测量、自动控制及信息处理等领域。 【实验目的】 1.了解霍尔位置传感器的结构原理、特性及使用方法。 2.学习掌握粱弯曲法测量金属板的杨氏弹性模量。 3.学会确定灵敏度的方法,并确定仪器的灵敏度。 4.掌握逐差法处理数据。 【实验仪器】 霍尔位置传感器、霍尔位置传感器输出信号测量仪、游标卡尺、螺旋测微器。 【实验原理】 霍尔传感器置于磁感应强度为B 的磁场中,在垂直于磁场的方向通入电流I ,则会产生霍尔效应,即在与这二者相互垂直的方向上将产生霍尔电势: IB K U H H = (5.2.1) 其中H K 为霍尔传感器的灵敏度,单位为T mA mV ?。 如果保持通入霍尔元件的电流I 不变,而使其在一均匀梯度的磁场中移动,则输出的霍尔电势的变化量为: z dz dB I K U H H ?=? (5.2.2) 其中:z ?为位移量; dz dB 为磁感应强度B 沿位移方向的梯度,为常数。

为了实现上述均匀梯度磁场,选用两块相同的磁铁。磁铁平行相对而放,即N 极相对放置。两磁铁之间的空隙内放入霍尔元件,并使此元件平行于磁铁,且与两磁铁的间距相等,即霍尔元件放置两磁铁空隙的中心,如图6.1所示。 若间隙中心截面的中心点A 的磁感应强度为零,霍尔元件处于该处时输出的霍尔电势应为零。当霍尔元件偏离中心沿Z 轴发生位移,由于磁感应强度不再为零,霍尔元件也就有相应电势输出,其大小可由数字电压表读出。一般地,将霍尔电势为零时元件所处的位置作为位移参考点。 霍尔电势与位移量之间存在一一对应的关系,当位移量较小时(小于2mm ),对应关系具有良好的线性,如图6.2所示。 在粱弯曲的情况下,杨氏模量E 用下列公式计算: z b a mg d E ?=334 (6.1) 式中:d 为两刀口间的距离,a 为粱的厚度,b 为粱的宽度,m 为砝码的质量,g 为重力加速度(2 792.9s m g =),z ?为粱中心由于外力的作用而下降的距离。 mm 图6.1 图 6.2

实验1 拉伸法测量杨氏模量

实验1 拉伸法测量杨氏模量 杨氏弹性模量(以下简称杨氏模量)是表征固体材料性质的重要的力学参量,它反映材料弹性形变的难易程度,在机械设计及材料性能研究中有着广泛的应用。其测量方法有静态拉伸法、悬臂梁法、简支梁法、共振法、脉冲波传输法,后两种方法测量精度较高;本实验采用静态拉伸法测量金属丝的杨氏模量,因涉及多个长度量的测量,需要研究不同测量对象如何选择不同的测量仪器。 【实验目的】 1. 学习用静态拉伸法测量金属丝的杨氏模量。 2. 掌握钢卷尺、螺旋测微计和读数显微镜的使用。 3. 学习用逐差法和作图法处理数据。 4. 掌握不确定度的评定方法。 【仪器用具】 杨氏模量测量仪(包括砝码、待测金属丝)、螺旋测微计、钢卷尺、读数显微镜 【实验原理】 1. 杨氏模量的定义 本实验讨论最简单的形变——拉伸形变,即棒状物体(或金属丝)仅受轴向外力作用后的 伸长或缩短。按照胡克定律:在弹性限度内,弹性体的应力S F 与应变L L δ成正比。 设有一根原长为l ,横截面积为S 的金属丝(或金属棒),在外力F 的作用下伸长了L δ,则根据胡克定律有 )( L L E S F δ= (1-1) 式中的比例系数E 称为杨氏模量,单位为Pa (或N ·m –2)。实验证明,杨氏模量E 与外力F 、金属丝的长度L 、横截面积S 的大小无关,它只与制成金属丝的材料有关。 若金属丝的直径为d ,则2 4 1d S π= ,代入(1-1)式中可得 L d FL E δπ2 4= (1-2) (1-2)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。实验中,测量出L d L F δ、、、值就可以计算出金属丝的杨氏模量E 。 2. 静态拉伸法的测量方法 测量金属丝的杨氏模量的方法就是将金属丝悬挂于支架上,上端固定,下端加砝码对金属丝F ,测出金属丝的伸长量L δ,即可求出E 。金属丝长度L 用钢卷尺测量,金属丝直径

实验 杨氏模量的测定(梁弯曲法)

实验 杨氏模量的测定(梁弯曲法) 【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为a 、宽为b 的金属棒放在相距为l 的二刀刃上(图1),在棒上二刀刃的中点处挂上质量为m 的砝码,棒被压弯,设挂砝码处下降λ,称此λ为弛垂度,这时棒材的杨氏模量 λ b a mgl E 3 3 4= . (1) 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在相距dx 的21O O 二点上的横断面, 在棒弯曲前互相平行,弯曲后则成一小角度?d 。显然在棒弯曲后,棒的下半部呈现拉伸状态,上半部为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了?yd ,它受到的拉力为dF ,根据胡克定律有 dx yd E dS dF ? =. 式中dS 表示形变层的横截面积,即bdy dS =。于是

y d y d x d Eb dF ?=. 此力对中间层的转矩为dM ,即 dy y dx d Eb dM 2 ?=. 而整个横断面的转矩M 应是 dx d b Ea dy y dx d Eb M a ??3 2 2 12 12= =? . (2) 如果将棒的中点C 固定,在中点两侧各为2 l 处分别施以向上的力 mg 2 1(图3),则棒的弯曲情 况当和图1所示的完全相同。棒上距中点C 为x 、长为dx 的一段,由于弯曲产生的下降λd 等于 ?λd x l d )2 ( -= (3) 当棒平衡时,由外力mg 2 1对该处产生的力距 )2 ( 21x l mg -应当等于由式(2)求出的转距M , 即 dx d b Ea x l mg ?3 12 1)2 ( 2 1= -. 由此式求出?d 代入式(3)中并积分,可求出弛垂度 b Ea mgl dx x l b Ea mg 3 3210 2 3 4)2 ( 6= -=?λ, (4) 即 λ b a m g l E 3 3 4= . (1)

弹性模量测量方法

弹性模量测量方法 点击次数:3972 发布时间:2010-10-22 ? 弹性模量测量方法?最简单的形变是线状或棒状物体受到长度方向上的拉力 作用,发生长度伸长。设金属丝(或杆)的原长为L,横截面积为S,在弹性限度内的拉力F作用下,伸长了L。比值F/S为金属丝单位横截面积上所受的力,叫做胁强(或应力),相对伸长量L/L叫胁变(或应变)。据虎克定律,胁强和胁变成正比,即: (1) 比例系数: (2) E叫做物体的弹性模量(或称杨氏模量)。E的大小与物体的粗细、长短等形状无关,只决定于材料的性质,它是表示各种固体材料抗拒形变能力的重要物理量,是各种机械设计和工程技术选择构件用材必须考虑的重要力学参量。 任何固体在外力作用下都会改变固体原来的形状大小,这种现象叫做形变。一定限度以内的外力撤除之后,物体能完全恢复原状的形变,叫弹性形变。 杨氏弹性模量的测量方法有静态测量法、共振法、脉冲传输法等,其中以共振法和脉冲法测量精度较高。杨氏弹性模量的静态测量法就是在物体加载以后,测出物体的应力和应变,根据一定的计算式得到E值,主要有拉伸法、梁弯曲法等。 用力F作用在一立方形物体的上面,并使其下面固定(如图一),物体将发生形变成为斜的平行六面体,这种形变称为切变,出现切变后,距底面不同距离处的绝对形变不同(AA'>BB'),而相对形变则相等,即 ?弹性模量测量方法(6-3) 式中称为切变角,当值较小时,可用代替,实验表明,一定限度内切变角与切应力成正比,此处S为立方体平行于底的截面积,现以符号表示切应力,则 (6-4) 比例系数G称切变模量。 测量切变模量的方法有静态扭转法、摆动法。 实验目的

杨氏弹性模量的测定

实验七杨氏弹性模量的测定 测量材料杨氏模量的方法很多,诸如拉伸法、压入法、弯曲法和碰撞法等。拉伸法是最常用的方法之一。但该方法使用的载荷较大,加载速度慢,且会产生驰豫现象,影响测量结果的精确度。另外,此法还不适用于脆性材料的测量。本实验借助于新颖的动态杨氏模量测量仪用振动法测量材料的杨氏模量。该方法可弥补其不足,同时还可扩大学生在物体机械振动方面的知识面,不失为一种非常有用和很有特点的测量方法。 【实验目的】 1.了解振动法测量材料杨氏模量的原理; 2.学会用作图外推求值法测量振动体基频共振频率和杨氏模量; 3. 测量试件机械振动的本征值 4.观察铝平板的振型; 5.通过实验,逐步提高综合运用各种测量仪器的能力。 【实验仪器】 DY-D99型多用途动态杨氏模量测量仪、YXY-3D型音频信号源、示波器(Y轴灵敏度5-10m V)、毫米刻度钢皮尺(250mm长)、0.02mm精度游标卡尺、物理天平(精度0.05克)。 DY-D99型多功能动态杨氏模量测量仪简介 图3 DY-D99型多功能动态杨氏模量测量仪 1电动式激振器、6电动式拾振器、2试件(圆棒)、17试件(金属铝板)、 3、5刀口、26导轨标尺、9标尺支架、25试件压板、24压板固定螺钉、 10接线箱、11试件选择旋钮、12输入接口、13输出接口、22声整流罩、 19发声元件、18小导轨、20声激振器固定螺钉、14-16水平调节螺钉、 4刻度指示板、8备用试件安放支架、7试件限位装置、23底板 该仪器如图3所示。它由棒材试件杨氏模量定量测量装置和板材试件振型演示观察装置两部分组成。两部分用接线箱连接和转换。前一装置包含两个换能器(电动式换能器)、导轨标尺及其支架。其中一个电动式换能器用作激振器,在音频信号发生器输出的音频正弦信号电压的作用下,作机械振动,进而激励试件作机械振动。另一个电动式换能器当作拾振器,将由试件传递过来的机械振动信号转变为电信号,并输到示波器观察波形。当音频信号发生器的信号频率调到与试件的固有频率相同时,试件产生共振,示波器显示的波形幅度达到最大。两个换能器的作用可互换。它们各自设有一个刀口,可搁置棒材试件。标尺用于指示换能器或刀口在试件上的位置。 矩形金属板试件和带有声整流罩的声激振器是振动体振型演示观察装置的基本组成部

金属的杨氏模量的测量

金属的杨氏模量的测量 当固体受外力作用时,它的体积和形状将要发生变化,这种变化,称为形变。当外力不太大时,物体的形变与外力成正比,且外力停止作用物体立即恢复原来的形状和体积,这种形变称为弹性形变。当外力较大时,物体的形变与外力不成比例,且外力停止作用,物体形变不能恢复原来的形状和体积,这种形变称为范性形变。范性形变的产生,是由于物体形变而产生的内应力超过了物体的弹性限度的缘故。如果再继续增大外力,物体内产生的内应力将会超过物体的强度极限时,物体便被破坏了。 固体材料的弹性形变可以分为纵向、切变、扭转、弯曲等,对于纵向弹性形变可以引入杨氏模量来描述材料抵抗形变的能力。杨氏模量是反映材料形变与内应力关系的一个重要的物理量。杨氏模量越大,越不易发生形变。杨氏模量一般只与材料的性质和温度有关,与其几何形状无关。材料杨氏模量测量方法很多,有静态法和动态法。对于静态法来说,又可分为拉伸法和弯曲法。 Ⅰ. 拉伸法测定钢丝的杨氏弹性模量 【实验目的】 1. 学会用拉伸法测定钢丝的杨氏弹性模量。 2. 掌握几种长度测量工具的使用方法及其不确定度的分析和计算。 3. 进一步掌握逐差法、作图法和最小二乘法的数据处理方法。。 【实验仪器】 杨氏模量测量仪、螺旋测微器、钢卷尺、读数显微镜装置等。 【实验原理】 一、拉伸法测金属丝的杨氏弹性模量 设有一根粗细均匀的金属丝,长度为L ,截面积为S ,将其上端紧固,下端悬挂质量为m 的砝码。当金属丝受外力F mg =作用而发生形变?L 时,金属丝受外力作用发生形变而产生的内应力S F ,其应变为L L ?,根据虎克

定律有:在弹性限度内,物体的应力S F 与产生的应变成正比,即 L L E S F ?? = (Ⅰ.1) 式中E 为比例恒量,将上式改写为 E L S F L = ?? (Ⅰ.2) 其中E 为该材料的杨氏弹性模量(又称杨氏模量),在数值上等于产生单位应变的应力。实验证明,杨氏模量E 与外力F 、金属丝的长度L 、横截面积S 的大小无关,它只与制成金属丝的材料有关。 若金属丝的直径为d ,则24 1 d S ??= π,将其代入(Ⅰ.2)式中可得 L d L F E ?= 24π (Ⅰ.3) (Ⅰ.3)式表明,在长度、直径和所加外力相同的情况下,杨氏模量大的金属丝伸长量较小,杨氏模量小的金属丝伸长量较大。因此,杨氏模量反映了材料抵抗外力引起的拉伸(或压缩)形变的能力。实验中,测量出F 、L 、d 和L ?值就可以计算出金属丝的杨氏模量E 。其中F 、L 、d 都可用一般方法测得,唯有 L ?是一个微小的变化量,约mm 110-数量级,用普通量具如钢尺或游标卡尺 是难以测准的。因此,实验的核心问题是对微小变化量L ?的测量。在本实验中用读数显微镜测量(也可利用光杠杆法或其他方法测量) 二、杨氏模量测量仪 杨氏模量测量仪的基本结构如图1所示。在一个较重的三脚底座上固定有两根立柱,支柱上端有横梁,中部紧固一个平台,构成一个刚度极好的支架。整个支架受力后变形极小,可以忽略。通过调节三角底座的水平调节螺母13使整个支架铅直。待测样品是一根粗细均匀的金属丝(长约90cm )。金属丝上端用上端紧固座2夹紧并固定在上横梁上,钢丝下端也用一个钳形平台5夹紧并穿过平台的中心孔,使金属丝自由悬挂。钢丝的总长度L 就是从上端固定座2的下端面至钳形平台5的上端面之间的长度。钳形平台5下方的挂钩上挂一个砝码盘,当盘上逐次加上一定质量的砝码后,钢丝就被拉伸,标尺刻线6也跟着下降。读数标尺9相对

实验一霍尔位置传感器及弯曲法杨氏模量的测定

实验一霍尔位置传感器及弯曲法杨氏模量的测定 实验目的 1.掌握用米尺、游标卡尺、螺旋测微器、读数显微镜测量长度的方法 2.熟悉霍尔位置传感器的特性; 3.弯曲法测量黄铜(或可锻铸铁)的杨氏模量,并对霍尔位置传感器定标; 仪器和用具 1.杨氏模量测定仪主体装置如图1-1所示 图1-1 95型1.铜刀口上的基线 2.读数显微镜 3.刀口 4.横梁 5.铜杠杆(顶端装有A 集成霍尔传感器) 6.磁铁盒 7.磁铁(N极相对放置) 8.调节架 9砝码

图1-2 实验装置的实物照片 2、其他用用具 米尺,游标卡尺,螺旋测微仪,砝码,待测材料(一根黄铜、一根可铸锻铁) 实验原理 1.霍尔位置传感器 霍尔元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者相垂直的方向上将产生霍尔电势差H U : B I K U H ??= (1-1) (1-1)式中K 为元件的霍尔灵敏度。如果保持霍尔元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍尔电势差变化量为: Z dZ dB I K U H ??? ?=? (1-2) (1-2)式中Z ?为位移量,此式说明若 dZ dB 为常数时,H U ?与Z ?成正比。

图1-3 为实现均匀梯度的磁场,可以如图1-3所示,两块相同的磁铁(磁铁截面积及表面磁感应强度相同)相对放置,即N 极与N 极相对,两磁铁之间留一等间距间隙,霍尔元件平行于磁铁放在该间隙的中轴上。间隙大小要根据测量范围和测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。磁铁截面要远大于霍尔元件,以尽可能的减小边缘效应影响,提高测量精确度。 若磁铁间隙内中心截面处的磁感应强度为零,霍尔元件处于该处时,输出的霍尔电势差应该为零。当霍尔元件偏离中心沿Z 轴发生位移时,由于磁感应强度不再为零,霍尔元件也就产生相应的电势差输出,其大小可以用数字电压表测量。由此可以将霍尔电势差为零时元件所处的位置作为位移参考零点。 霍尔电势差与位移量之间存在一一对应关系,当位移量较小(mm 2<),这一对应关系具有良好的线性。 2、杨氏模量 固体、液体及气体在受外力作用时,形状或体积会发生或大或小的改变,称之为形变。当外力不太大时,引起的形变也不会太大,若撤掉外力,形变随之会消失,这种形变称为弹性形变。 如一段固体棒,在其两端沿轴方向施加大小相等,方向相反的外力F ,其长度l 发生改变△1,以S 表示横截面面积,称F/S 为应力,相对长变(△l/l )为应变,在弹性限度内,根据胡克定律有 l l Y S F ?= Y 称为杨氏模量,其数值与材料性质有关。如图2所示,在待测样品发生微小弯曲时,梁中

实验杨氏模量的测定(梁弯曲法)

【实验目的】 用梁的弯曲法测定金属的杨氏模量。 【仪器用具】 攸英装置,光杠杆,望远镜及直尺,螺旋测微计,游标卡尺,米尺,千分表。 【实验原理】 将厚为a 、宽为b 的金属棒放在相距为 丨的二刀刃 上 (图1),在棒上二刀刃的中点处挂上质量为 m 的砝码, 棒被压 弯,设挂砝码处下降 ■,称此-为弛垂度,这时 棒材的杨氏模 量 下面推导上式。图(2)为沿棒方向的纵断面的一部分。在 相距 dx 的0Q 2二点上的横断面, 在棒弯曲前互相平行,弯曲后则成一小角度 d :。显然在棒弯曲后,棒的下半部呈现拉伸状态, 上半部 为压缩状态,而在棒的中间有一薄层虽然弯曲但长度不变,称为中间层。 计算与中间层相距为 y 、厚dy 、形变前长为dx 的一段,弯曲后伸长了 yd 「,它受到的拉 力为dF ,根据胡克定律有 dF —匚 yd? dS dx . 式中dS 表示形变层的横截面积,即 dS 二bdy 。于是 实验 杨氏模量的测定(梁弯曲法) E 審. (1)

d? dF =Eb ydy. dx 此力对中间层的转矩为dM ,即 d? 2 dM -Eb y dy . dx 而整个横断面的转矩M应是 d—a 2 1 3d? M =2Eb 2 y2dy Ea'b . (2) dx 012 dx 1 1 如果将棒的中点C固定,在中点两侧各为处分别施以向上的力mg (图3),则棒的弯曲情 2 2 况当和图1所示的完全相同。棒上距中点C为x、长为dx的一段,由于弯曲产生的下降d等于 (3) 1 1 l 当棒平衡时,由外力mg对该处产生的力距mg( x)应当等于由式(2)求出的转距M , 2 2 2 即 1 J 、 1 3少: mg( x) Ea b - 2 2 12 dx 由此式求出d代入式(3)中并积分,可求出弛垂度

拉伸法测金属丝的杨氏模量

钢丝杨氏模量的测定 创建人:系统管理员总分:100 一、实验目的 本实验采用拉伸法测量杨氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 二、实验仪器 MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 三、实验原理 在胡克定律成立的范围内,应力F/S和应变ΔL/L之比满足 E=(F/S)/(ΔL/L)=FL/(SΔL) 其中E为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F、ΔL/L、S就可以得到物体的杨氏模量,又因为ΔL很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,,其中l是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有: 故:,即是 那么,最终也就可以用这个表达式来确定杨氏模量E。 四、实验内容 1.调节仪器 (1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g砝码(可加到3500g),观察每增加500g时望远镜中标尺上的 读数ri,然后再将砝码逐次减去,记下对应的读数,取两组对应数据的平均值。 (3)用米尺测量金属丝的长度L和平面镜与标尺之间的距离D,以及光杠杆的臂长。 3.数据处理 (1)逐差法 用螺旋测微计测金属丝直径d,上、中、下各测2次,共6次,然后取平均值。将每隔四项相减,得到相当于每次加2000g的四次测量数据,如设,, 和并求出平均值和误差。 将测得的各量代入式(5)计算E,并求出其误差(ΔE/E和ΔE),正确表述E的测量结果。(2)作图法 把式(5)改写为 (6) 其中,在一定的实验条件下,M是一个常量,若以为纵坐标,Fi为横坐标作图应得一直线,其斜率为M。由图上得到M的数据后可由式(7)计算杨氏模量 (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

大学物理实验 报告实验21 用拉伸法测杨氏模量

实验21 用拉伸法测杨氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属杨氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 相关仪器: 杨氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 2.1杨氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量)。 实验证明:杨氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,杨氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 2.2光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2 ,即可得下式: N h d F LD Y ??=π2 8 这就是本实验所依据的公式。 2.3 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。 10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

相关文档
相关文档 最新文档