文档库 最新最全的文档下载
当前位置:文档库 › 椭圆的标准方程与性质(有答案)

椭圆的标准方程与性质(有答案)

椭圆的标准方程与性质(有答案)
椭圆的标准方程与性质(有答案)

椭圆的标准方程与性质

1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

2.2第1课时 椭圆及其标准方程

一、选择题

1.平面上到点A (-5,0)、B (5,0)距离之和为10的点的轨迹是( ) A .椭圆 B .圆 C .线段 D .轨迹不存在 2.椭圆ax 2+by 2+ab =0(a

A .(±a -b ,0)

B .(±b -a ,0)

C .(0,±a -b )

D .(0,±b -a )

3.已知椭圆x 216+y 2

9=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形

的三个顶点,则点P 到x 轴的距离为( )

A.95 B .3 C.977 D.94

4.椭圆x 212+y 2

3=1的一个焦点为F 1,点P 在椭圆上,如果线段PF 1的中点M 在y 轴上,那么点P 的

纵坐标是( )

A .±34

B .±22

C .±32

D .±3

4

5.椭圆x 24+y 2

=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则

|PF 2|=( )

A.

32 B.3 C.7

2

D .4 6.(09·陕西理)“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件

D .既不充分也不必要条件

7.椭圆x 2m +y 2

4=1的焦距是2,则m 的值是( )

A .5

B .3或8

C .3或5

D .20

8.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2

构成△ABF 2的周长是( )

A .2

B .4 C.2 D .2 2

9.已知椭圆的方程为x 216+y 2

m 2=1,焦点在x 轴上,则m 的取值范围是( )

A .-4≤m ≤4

B .-4

C .m >4或m <-4

D .0

10.若△ABC 的两个顶点坐标为A (-4,0),B (4,0),△ABC 的周长为18,则顶点C 的轨迹方程为( )

A.x 225+y 2

9=1 B.y 225+x 29=1(y ≠0) C.x 216+y 29=1(y ≠0) D.x 225+y 2

9

=1(y ≠0) 二、填空题

11.如图所示,F 1,F 2分别为椭圆x 2a 2+y 2

b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正

三角形,则b 2=______.

12.已知A (-12,0),B 是圆F :(x -1

2) 2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于

P ,则动点P 的轨迹方程为____________.

13.(08·浙江)已知F 1、F 2为椭圆x 225+y 2

9=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+

|F 2B |=12,则|AB |=________.

14.如图,把椭圆x 225+y 2

16=1的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于

P 1、P 2、…、P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+…+|P 7F |=________.

三、解答题

15.求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,且经过两个点(0,2)和(1,0). (2)坐标轴为对称轴,并且经过两点A (0,2),B (1

2,3)

16.已知椭圆的中心在原点,且经过点P (3,0),a =3b ,求椭圆的标准方程.

17.已知m 为常数且m >0,求证:不论b 为怎样的正实数,椭圆x 2b 2+m +y 2

b 2=1的焦点不变.

18.在面积为1的△PMN 中,tan M =1

2,tan N =-2,建立适当的坐标系,求以M 、N 为焦点且过点

P (x 0,y 0)(y 0>0)的椭圆方程.

2.2第2课时 椭圆的简单几何性质

一、选择题

1.将椭圆C 1∶2x 2+y 2=4上的每一点的纵坐标变为原来的一半,而横坐标不变,得一新椭圆C 2,则C 2与C 1有( )

A .相等的短轴长

B .相等的焦距

C .相等的离心率

D .相等的长轴长

2.若椭圆的短轴为AB ,它的一个焦点为F 1,则满足△ABF 1为等边三角形的椭圆的离心率是( ) A.14 B.12 C.22 D.32

3.(2010·广东文,7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )

A.45

B.35

C.25

D.15

4.已知椭圆2x 2+y 2=2的两个焦点为F 1,F 2,且B 为短轴的一个端点,则△F 1BF 2的外接圆方程为( )

A .x 2+y 2=1

B .(x -1)2+y 2=4

C .x 2+y 2=4

D .x 2+(y -1)2=4

5.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是( ) A .[6,10]

B .[6,8]

C .[8,10]

D .[16,20]

6.椭圆C 1:x 225+y 29=1和椭圆C 2:x 29-k +y 225-k =1 (0

A .等长的长轴

B .相等的焦距

C .相等的离心率

D .等长的短轴

7.椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆离心率为( ) A.

22 B.32 C.53 D.6

3

8.已知椭圆的对称轴是坐标轴,离心率为1

3,长轴长为12,则椭圆方程为( )

A.x 24+y 26=1

B.x 26+y 24=1

C.x 236+y 232=1或x 232+y 236=1

D.x 236+y 2

32=1 9.已知点(3,2)在椭圆x 2a 2+y 2

b

2=1上,则( )

A .点(-3,-2)不在椭圆上

B .点(3,-2)不在椭圆上

C .点(-3,2)在椭圆上

D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 10.椭圆x 2a 2+y 2b 2=1和x 2a 2+y 2

b

2=k (k >0)具有( )

A .相同的长轴

B .相同的焦点

C .相同的顶点

D .相同的离心率 二、填空题

11.(2009·广东理)已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为3

2

,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.

12.椭圆x 29+y 2

2=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大

小为________.

13.椭圆x 2a 2+y 2

b 2=1上一点到两焦点的距离分别为d 1、d 2,焦距为2

c ,若

d 1、2c 、d 2成等差数列,则

椭圆的离心率为________.

14.经过椭圆x 2a 2+y 2

b 2=1(a >b >0)的焦点且垂直于椭圆长轴的弦长为________.

三、解答题

15.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =3

2

,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.

16.已知椭圆的中心在原点,它在x 轴上的一个焦点F 与短轴的两个端点B 1,B 2的连线互相垂直,且这个焦点与较近的长轴的端点A 的距离为10-5,求这个椭圆的方程.

17.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =3

2,连接椭圆的四个顶点得到的菱形的面积为4.求椭圆

的方程.

2.2第1课时 椭圆及其标准方程

一、选择题 1.[答案] C

[解析] 两定点距离等于定常数10,所以轨迹为线段. 2.[答案] D

[解析] ax 2

+by 2

+ab =0可化为x 2-b +y 2

-a

=1

∵a -b >0,∴y 2-a +x 2

-b =1,

焦点在y 轴上,c =

-a +b =

b -a

∴焦点坐标为(0,±b -a ) 3.[答案] D

[解析] a 2=16,b 2=9?c 2=7?c =7. ∵△PF 1F 2为直角三角形.

∴P 是横坐标为±7的椭圆上的点.(P 点不可能是直角顶点)

设P (±7,|y |),把x =±7代入椭圆方程,知716+y 29=1?y 2=8116?|y |=9

4.

4.[答案] C

[解析] 设F 1(-3,0)∴P 点横坐标为3代入x 212+y 23=1得y 23=1-34=14,y 2=34,∴y =±3

2

5.[答案] C

[解析] 如图所示,由x 24+y 2

=1知,F 1、F 2的坐标分别为(-3,0)、(3,0),即P 点的横坐标为x p

=-3,代入椭圆方程得y p =1

2

∴|PF 1|=1

2,

∵|PF 1|+|PF 2|=4.

∴|PF 2|=4-|PF 1|=4-12=7

2.

6. [答案] C

[解析] 方程mx 2+ny 2=1表示焦点在y 轴上的椭圆?1n >1

m

>0?m >n >0.故选C. 7.[答案] C

[解析] 2c =2,c =1,故有m -4=12或4-m =12,∴m =5或m =3且同时都大于0,故答案为C. 8.[答案] B

[解析] ∵|AF 1|+|AF 2|=2,|BF 1|+|BF 2|=2,

∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=4, 即|AB |+|AF 2|+|BF 2|=4. 9.[答案] B

[解析] 因为焦点在x 轴上,故m 2<16且m 2≠0,解得-4

[解析] 顶点C 满足|CA |+|CB |=10>|AB |,由椭圆定义知2a =10,2c =8 所以b 2=a 2-c 2=25-16=9, 故椭圆方程为x 225+y 2

9=1(y ≠0).

二、填空题 11.[答案] 2 3

[解析] 由题意S △POF 2=

34

c 2

=3,则c 2=4?c =2 ∴P =(1,3)代入椭圆方程x 2b 2+4+y 2

b 2=1中得,

1b 2

+4+3b

2=1,求出b 2

=2 3. 12. [答案] x 2+4

3

y 2=1

[解析] 如图所示,由题意知,|P A |=|PB |,|PF |+|BP |=2,

∴|P A |+|PF |=2,且|P A |+|PF |>|AF |,

即动点P 的轨迹是以A 、F 为焦点的椭圆,a =1,c =12,b 2=3

4

.

∴动点P 的轨迹方程为x 2

+y 234

=1,即x 2+4

3y 2=1.

13. [答案] 8

[解析] (|AF 1|+|AF 2|)+(|BF 1|+|BF 2|) =|AB |+|AF 2|+|BF 2|=4a =20,∴|AB |=8. 14.[答案] 35

[解析] 设椭圆右焦点为F ′,由椭圆的对称性知, |P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,

∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+1

2(|P 4F |+|P 4F ′|)=7a =35.

三、解答题

15.[解析] (1)由于椭圆的焦点在y 轴上,所以设它的标准方程为y 2a 2+x 2

b 2=1(a >b >0)

由于椭圆经过点(0,2)和(1,0),

∴???

4a 2+0

b 2

=1,0a 2

+1b 2

=1.

??

????

a 2=4,

b 2=1

故所求椭圆的方程为y 24

+x 2

=1.

(2)设所求椭圆的方程为x 2m +y 2

n =1(m >0,n >0).

∵椭圆过A (0,2),B (1

2

,3),

∴???

0m +4

n =1,14m +3

n =1,

解得?????

m =1,n =4.

∴所求椭圆方程为x 2

+y 2

4

=1.

16. [解析] 当焦点在x 轴上时,设其方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆过点P (3,0),知9a 2+0

b 2=1,又

a =3

b ,代入得b 2

=1,a 2

=9,故椭圆的方程为x 29

+y 2

=1.

当焦点在y 轴上时,设其方程为y 2a 2+x 2

b

2=1(a >b >0).

由椭圆过点P (3,0),知0a 2+9b 2=1,又a =3b ,联立解得a 2=81,b 2

=9,故椭圆的方程为y 281+x 29=1.

故椭圆的标准方程为y 281+x 29=1或x 29

+y 2

=1.

17. [解析] ∵m >0,b 2+m >b 2,∴焦点在x 轴上,由(b 2+m )-b 2=m ,得椭圆的焦点坐标为

(±m ,0),由m 为常数,得椭圆的焦点不变.

18. [解析] 以线段MN 的中点为原点,MN 所在直线为x 轴,建立坐标系. 设M (-c,0),N (c,0),c >0, 又P (x 0,y 0),y 0>0.

由?????

y 0

x 0-c

=-2,y 0x 0+c =1

2,

cy 0

=1

????

x 0=53

c ,

y 0

=4

3c ,

?P (523,23

).

设椭圆方程为x 2

b 2+34+y 2

b 2=1,又P 在椭圆上,

故b 2(523)2+(b 2+34)(23)2=b 2(b 2+34),

整理得3b 4-8b 2-3=0?b 2=3. 所以所求椭圆方程为x 2154

+y 2

3=1.

2.2第2课时 椭圆的简单几何性质

一、选择题 1. [答案] C

[解析] 把C 1的方程化为标准方程,即 C 1:x 22+y 24=1,从而得C 2:x 22+y 2

=1.

因此C 1的长轴在y 轴上,C 2的长轴在x 轴上.

e 1=

2

2

=e 2,故离心率相等,选C. 2.[答案] D

[解析] △ABF 1为等边三角形, ∴2b =a ,∴c 2=a 2-b 2=3b 2 ∴e =c a

c 2a 2

=3b 24b 2=3

2

. 3. [答案] B

[解析] 本题考查了离心率的求法,这种题目主要是设法把条件转化为含a ,b ,c 的方程式,消去b 得到关于e 的方程,由题意得:4b =2(a +c )?4b 2=(a +c )2?3a 2-2ac -5c 2=0?5e 2+2e -3=0(两边都除以a 2)?e =3

5

或e =-1(舍),故选B.

4.[答案] A

[解析] 椭圆的焦点为F 1(0,1),F 2(0,-1),短轴的一个端点为(1,0),于是△F 1BF 2的外接圆是以原点为圆心,以1为半径的圆,其方程为x 2+y 2=1.

5.[答案] C

[解析] 由题意知a =10,b =8,设椭圆上的点M (x 0,y 0),

由椭圆的范围知,|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =

x 20+y 2

0.

又因为x 20100+y 2064=1,所以y 2

0=64(1-x 20100)=64-1624x 20

,则d =

x 20+64-1625x 2

0=925x 2

+64,因为0≤x 20≤100,所以64≤925

x 2

0+64≤100,所以8≤d ≤10. 6. [答案] B

[解析] 依题意知椭圆C 2的焦点在y 轴上,对于椭圆C 1:焦距=225-9=8,对于椭圆C 2:焦距=

2

(25-k )-(9-k )=8,故答案为B. 7.[答案] A

[解析] 由题意知b =c ,∴a =2c ,∴e =c a =2

2.

8.[答案] C

[解析] ∵长轴长2a =12,∴a =6,又e =1

3∴c =2,

∴b 2=a 2-c 2=32,∵焦点不定,

∴方程为x2

36+y

2

32

=1或x

2

32

+y

2

36

=1.

9. [答案] C

[解析]∵点(3,2)在椭圆x2

a2+y2

b2=1上,∴由椭圆的对称性知,点(-3,2)、(3,-2)、(-3,-2)都在椭

圆上,故选C.

10. [答案] D

[解析]椭圆x2

a2+y2

b2=1和x2

a2+y2

b2=k(k>0)中,不妨设a>b,椭圆

x2

a2+

y2

b2=1的离心率e1

a2-b2

a

,椭圆

x2 a2k +y

2

b2k

=1(k>0)的离心率e2=

k a2-b2

ka

a2-b2

a.

二、填空题

11. [答案]

x2

36+

y2

9=1

[解析]设椭圆G的标准方程为

x2

a2+

y2

b2=1(a>b>0),半焦距为c,则

??

?

??2a=12

c

a

=3

2

,∴

??

?

??a=6

c=33

∴b2=a2-c2=36-27=9,∴椭圆G的方程为

x2

36

+y

2

9

=1.

12. [答案]2120°

[解析]依题知a=3,b=2,c=7,由椭圆定义得|PF1|+|PF2|=6,∵|PF1|=4,∴|PF2|=2. 又|PF1|=4,|PF2|=2,|F1F2|=27.

在△F1PF2中,由余弦定理可得cos∠F1PF2=-1

2

,∴∠F1PF2=120°.

13. [答案]

1

2

[解析]由题意得4c=d1+d2=2a,∴e=

c

a

=1

2.

14. [答案]

2b2

a

[解析]∵垂直于椭圆长轴的弦所在直线为x=±c,

??

?

??x=±c

x2

a2+

y2

b2=1

,得y2=b

4

a2,∴|y|=

b2

a

,故弦长为2b

2

a.

三、解答题

15. [解析] 椭圆方程可化为x 2m +y 2

m

m +3=1,

∵m -m m +3=m (m +2)m +3>0, ∴m >m

m +3.

即a 2

=m ,b 2

=m m +3

,c =

a 2

-b 2

m (m +2)

m +3

. 由e =3

2

得,

m +2m +3=3

2

,∴m =1. ∴椭圆的标准方程为x 2

+y 214=1, ∴a =1,b =12,c =3

2.

∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1(-32,0),F 2(3

2

,0);四个顶点分别为A 1(-1,0),A 2(1,0),B 1(0,-12),B 2(0,1

2

).

16. [解析] 由于椭圆中心在原点,焦点在x 轴上,可设其方程为x 2a 2+y 2

b

2=1(a >b >0).

由椭圆的对称性知,|B 1F |=|B 2F |,又B 1F ⊥B 2F ,因此△B 1FB 2为等腰直角三角形,于是|OB 2|=|OF |,即b =c .

又|F A |=10-5即a -c =10-5,且a 2+b 2=c 2. 将以上三式联立,得方程组, ????

?

b =

c a -c =10-5

a 2

=b 2

+c

2

解得?????

a =10

b =5

所求椭圆方程是x 210+y 2

5

=1.

17. [解析] 由e =c a =3

2,得3a 2=4c 2,再由c 2=a 2-b 2,得a =2b .

由题意可知1

2

×2a ×2b =4,即ab =2.

解方程组?????

a =2

b ,ab =2,

得a =2,b =1, 所以椭圆的方程为x 24

+y 2

=1.

第12讲(椭圆的定义、标准方程及简单性质)

第12讲 解析几何初步(1) 模块一、椭圆的定义及标准方程 考点1椭圆的定义 1.平面内到两个定点的距离的和等于常数2a (大于12F F )的点的轨迹叫椭圆.定点1F ,2F 叫做椭圆的焦点,两焦点之间的距离叫做焦距(2c ). 2.已知B ,C 是两个定点,6BC =,且ABC ?的周长等于16,则顶点A 在 上运动. A.椭圆 B.直线 C.线段 D.圆 3.设M 是圆2F :22(1)16x y -+=上的任意一点,点1F (1,0)-是一定点,作1MF 的垂直平分线,交2MF 于P ,则点P 的轨迹为 . 4.设圆22(1)16x y -+=的圆心为A ,直线l 过点(1,0)B -且与x 轴不重合,交圆A 于C 、D 两点,过B 作AC 的平行线交AD 于M ,则点M 的轨迹为 . 考点2椭圆的标准方程 考法1焦点在x 轴上的椭圆的标准方程:122 22=+b y a x (0a b >>),(222c a b =-). 1.椭圆C :164 1002 2=+y x 的焦点在 轴上,焦点坐标为 , ,焦距为 . 2.已知4a =,3b =,焦点在x 轴上,则椭圆的标准方程为 . 3.已知4a =,3c =,焦点在x 轴上,则椭圆的标准方程为 . 4.(2015·广东卷·文科)已知椭圆22 2125x y m +=(0m >)的左焦点为1(4,0)F -, 则m = A .9 B .4 C .3 D .2 5.(2015·广东卷·文科)已知椭圆22 2125x y m +=(0m >)的左焦点为1(4,0)F -,

则m = A .9 B .4 C .3 D .2 6.(2020·北京卷)已知椭圆C :22 221x y a b +=过点(2,1)A --,且2a b =.则椭圆 C 的方程为 . 考法2焦点在y 轴上的椭圆的标准方程:方程为22 221y x a b +=(0a b >>). 1.椭圆C :125 92 2=+y x 的焦点在 轴上,焦点坐标为 , ,焦距为 . 2.(2002·全国卷)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k . 3.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,)+∞ B.(0,2) C.(1,)+∞ D.(0,1) 4.(2009·陕西卷·文理科)“0m n >>”是“方程221mx ny +=表示焦点在y 轴上的椭圆”的 A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件 考点3 椭圆定义的应用 1.椭圆C : 136 1002 2=+y x 上一点P 到焦点1F 的距离等于6,则点P 到另一焦点2F 的距离是 . 2.已知椭圆C :22 16410 x y + =的焦点为1F 、2F ,直线l 过椭圆的焦点1F ,且与椭圆交于A B 、两点,则2ABF ?的周长为 . 3.已知椭圆C :22 192 x y + =的焦点分别为1F 、2F ,点M 在椭圆上,若14MF =,则2MF = ,21F MF ∠= . 6.(2009·上海卷)已知椭圆C :22 221x y a b +=(0a b >>)的焦点为1F 、2F ,P 是椭圆上的一点,且120PF PF ?=,若三角形12PF F ?的面积为9,则b = A.3 B.6 C.9 D.12 模块二、椭圆的简单性质

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

2021年椭圆的标准方程及其几何性质

椭圆的标准方程及其几何性质 欧阳光明(2021.03.07) 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数 |)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的 焦点. 当21212F F a PF PF >=+时,P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时,P 的轨迹不存在; 当2 12 12F F a PF PF ==+时,P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系:

当12222 >+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当1 2 2 22=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离 0

椭圆的标准方程及其几何性质(供参考)

椭圆的标准方程及其几何性质 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x 的位置关系: 当12222>+b y a x 时,点P 在椭圆外; 当12222>+b y a x 时,点P 在椭圆内; 当12222=+b y a x 时,点P 在椭圆上; 4.直线与椭圆的位置关系 直线与椭圆相交0>??;直线与椭圆相切0=??;直线与椭圆相离0

椭圆及其标准方程教案

椭圆及其标准方程 一、教学目标 (一)知识目标 1、使学生理解椭圆的定义,掌握椭圆的标准方程及推导; 2、掌握焦点、焦点位置与方程关系、焦距; (二)能力目标 通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力; (三)学科渗透目标 通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. (解决办法:用模型演示椭圆,再给出椭圆的定义,最后加以强调;对椭圆的标准方程单独列出加以比较.) 2.难点:椭圆的标准方程的推导. (解决办法:推导分4步完成,每步讲解,关键步骤加以补充说明.) 3.疑点:椭圆的定义中常数加以限制的原因. (解决办法:分三种情况说明动点的轨迹.) 三、教学过程 (一)创设情境,引入概念 1、动画演示,描绘出椭圆轨迹图形。 2、实验演示。 思考:椭圆是满足什么条件的点的轨迹呢? (二)实验探究,形成概念 1、动手实验:学生分组动手画出椭圆。 实验探究: 保持绳长不变,改变两个图钉之间的距离,画出的椭圆有什么变化? 思考:根据上面探究实践回答,椭圆是满足什么条件的点的轨迹? 2、概括椭圆定义 引导学生概括椭圆定义 椭圆定义:平面内与两个定点21,F F 距离的和等于常数(大于21F F )的点的轨迹叫椭圆。 教师指出:这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距。 思考:焦点为21,F F 的椭圆上任一点M ,有什么性质? 令椭圆上任一点M ,则有)22(22121F F c a a MF MF =>=+ (三)研讨探究,推导方程 1、知识回顾:利用坐标法求曲线方程的一般方法和步骤是什么? M 2 F 1F

(完整版)《椭圆及其标准方程》(第一课时)教学设计

《椭圆及其标准方程》(第一课时)教学设计 一、教学内容分析 教材选自人教A版《普通高中课程标准实验教科书》数学选修2-1.《椭圆及其标准方程》是继学习圆以后运用“曲线与方程”思想解决二次曲线问题的又一实例。椭圆的标准方程是圆锥曲线方程研究的基础,它的学习方法对整个这一章具有导向和引领作用。一方面,它是对前面所学的运用“代数方法研究几何问题”的又一次实际演练,同时它也是进一步研究椭圆几何性质和双曲线、抛物线的基础;另一方面,教科书以椭圆作为学习圆锥曲线的开始和重点,并依此来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,为我们后面研究双曲线、抛物线这两种圆锥曲线提供了基本模式和方法。因此本节课有承前启后的作用,是本章和本节的重点内容。 椭圆是通过描述椭圆形成过程进行定义的,作为椭圆本质属性的揭示和椭圆方 程建立的基石,这是本节课的一个教学重点;而坐标法是解析几何中的重要数学方法,椭圆方程的推导是利用坐标法求曲线方程的很好应用实例,让学生亲身经历椭圆概念形成的数学化过程,并通过探究得到椭圆的标准方程,有利于培养学生观察分析、抽象概括的能力。 学生对“曲线与方程”的内在联系仅在“圆的方程”一节中有过一次感性认识,并未真正有所感受。通过本节学习,学生一方面认识到椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础。 根据以上分析,确定本课时的教学难点和教学重点分别是: 教学重点:掌握椭圆的定义及标准方程,体会坐标法的应用。 教学难点:椭圆概念的深入理解及选择不同的坐标系推导椭圆的标准方程。 二、学生学情分析 在学习本节课前,学生已经学习了直线与圆的方程,对曲线和方程的思想方法有了一些了解和运用的经验,对坐标法研究几何问题也有了初步的认识。因此,学生已经具备探究有关点的轨迹问题的知识基础和学习能力。而本节课要求学生通过自己动手亲自作出椭圆并且还要

椭圆定义、标准方程及性质(一)

椭圆的定义、标准方程及性质(一) 一、选择题(本大题共8小题,每小题5分,共40分.) 1、椭圆的焦距() A.2 B. C. D. 2、是定点,,动点M满足,则点M的轨迹是() A.椭圆 B.圆 C.线段 D.直线 3、若椭圆的两个焦点分别为,且椭圆过点则椭圆的方程为()A. B. C. D. 4、方程表示焦点在y轴上的椭圆,则k的取值范围是() A. B. C. D.(0,1) 5、过椭圆的一个焦点的直线与椭圆交于A、B两点,则A、B与椭圆的另一焦点构成的周长是() A. B.2 C. D.1 6、已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为() A.或 B. C.或 D. 7、已知,则曲线有() A.相同的短轴 B.相同的焦点 C.相同的离心率 D.相同的长轴 8、椭圆的焦点,P为椭圆上的一点,已知,则的面积为() A.9 B.12 C.10 D.8 二、填空题(本大题共4小题,每小题5分,共20分.) 9、椭圆的离心率为,则= . 10、设是椭圆上的一点,是椭圆的两个焦点,则*的最大值为 . 11、椭圆的焦点分别是,点在椭圆上.如果线段的中点在轴上,那么是倍. 12、已知圆及点,为圆上一点,的垂直平分线交于于,则点的轨迹方程为 . 三、解答题(本大题共4小题,共40分.解答应写出文字说明、证明过程或演算步骤) 13、如果点在运动的过程中,总满足关系式,点的轨迹是什么曲线?写出它的方程.

14、点到定点的距离和它到定直线的距离的比是,求点的轨迹方程,并指出轨迹是什么图形. 15、已知点是椭圆上的一点,且以点及焦点为顶点的三角形的面积等于1,求点的坐标.

椭圆及其标准方程教学设计(精)

椭圆及其标准方程教学设计 课题椭圆及其标准方程 一、学情分析 学生在必修Ⅱ中学过圆锥曲线之一,圆。掌握了圆的定义及圆的标准方程的推导,学生可以用类比的方法来研究中一种圆锥曲线椭圆。学生基础差,计算分析问题能力低。地处少数民族区竟争意识淡动手能力差。 二、教学目标 知识技能: 〈1〉掌握随圆的定义,掌握椭圆标准方程的两种形式及其推导过程 〈2〉能根据条件确定椭圆的标准方程,掌握运用定义法,待定系统法求随圆的标准方程。 过程方法: 〈1〉通过对椭圆概念的引入教学,培养学生的观察能力和探索能力。 〈2〉通过对椭圆标准方程的推导,是学生进一步掌握求曲线方程的一般方法,并渗透数结合和等价转化的思想方法,提高运用坐标解决几何问题的能力,情感态度和价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。

三、教学重点,难点分析 重点:椭圆的定义及椭圆标准方程的两种形式。 难点:椭圆标准方程的建立和推导。 关键:掌握建立坐标系统与根式化简的方法。 椭圆及其标准方程这一节教材整体来看是两大块内容,一是椭圆定义,二是椭圆的标准方程,椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中,先要学习的内容,所以教材把对椭圆的研究放在了重点,对双曲线和抛物线的教学中巩固和应用,先讲椭圆也与圆的知识衔接自然,学好椭圆对学生学习圆锥曲线是非常重要的。 四、教法建议 〈1〉安排学生提前预习,动手切割圆锥形的事物,使学习了解圆锥曲线名称的来历及圆锥曲线的样子。 〈2〉对椭圆定义的引入,要注重于借助直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,进而形成正确的概念。 〈3〉将课本提出的问题分解成若干小问题,通过学生、教师动手演示,来体现椭圆定义的实质。 〈4〉注意椭圆的定义与椭圆的标准方程的联系。 〈5〉推导椭圆的标准方程时,教师要注重化解难点,实施的补充根式化简方法。 〈6〉讲解完焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程。然后,鼓励学生探索椭圆的两种标准方程的异同点,进一步加深对椭圆的认识。 〈7〉在学习新知识的基础上要巩固旧知识。

最新椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大 (一)椭圆的定义及椭圆的标准方程: ?椭圆定义:平面内一个动点P 到两个定点F 1、 F 2的距离之和等于常数 (二)椭圆的简单几何性: ?标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 2 2 x 2 y 2 =1 (a b O) a b (PF 1 + PF 2 =2a ■ F1F 2),这个动点P 的轨迹叫椭圆?这两个定点叫椭圆的 焦 点,两焦点的距离叫作椭圆的 焦距. 注意:①若(PF 1 + |PF 2 |=F I F 2),则动点P 的轨迹为线段F 1F 2 ; ②若(PF 1 + PF ^<|F 1F 2 ),则动点P 的轨迹无图形 2 2 y 2 X 2 =1 (a ■ b ■ O) a b 图形 性质 焦占 八焦距 范围 F i (-c,O),F 2(C ,0) F I (O,-C ),F 2(0,C ) F 1F 2 =2C F 1 F 2 = 2c x^b, | y| 对称性 关于x 轴、y 轴和原点对称 标准方程 (_a,0) , (0,-b) (0,-a), (_b,0) 顶点

?椭圆标准方程为 =1 (a b - 0),椭圆焦点三角形: 设P 为椭圆上任意一点, F i ,F 2为焦点且/ F 1PF 2 ?,则△ F i PF 2为焦点三角形,其面积为 轴长 长轴长 AA 2, AAj =2a ,短轴长 BB 2, EB 2 =2b 离心率 ① e = C (0cec1),② e =』1—(b )2 ③ c 2 = a 2_b 2 a V a (离心率越大,椭圆越扁) 【说明】: 1?方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点 F i ,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数 a ,b ,c 都大于零,其中 a 最大且 a 2 = b 2+ c 2. 2 2 2.方程Ax By 二C 表示椭圆的充要条件是:ABC 工0,且A ,B ,C 同号,A 2 2 S PF I F 2 = b 2 tan 。 2 (四)通径:如图:通径长 2 2 ?椭圆标准方程:笃? — =1 a 2 b 2 (五)点与椭圆的位置关系: C 1) 点 P(x o ,y o )在椭圆外= a b a b x =1;

椭圆标准方程及其性质知识点大全(供参考)

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ , 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2 离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2.

2. 方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离:0?>b a 相交于两点 11(,)A x y 、22(,)B x y , 把AB 所在直线方程y=kx+b ,代入椭圆方程122 22=+b y a x 整理得:Ax 2+Bx+C=0。 ●弦长公式: ① 212212 212 4)(11x x x x k x x k AB -++=-+=a k ? +=2 1(含M N F x y

人教版高中数学《椭圆及其标准方程》教案设计

椭圆及其标准方程(第1课时) 一、内容和内容解析 内容:椭圆的定义及其标准方程的推导. 内容解析:本节是高中数学人教A版选修2-1第二章第2节《椭圆》第1课时内容.在此之前学习了曲线与方程以及圆的方程,初步具备了解析几何的思想和用坐标法研究曲线问题的经验.另外,椭圆的学习为后面研究双曲线、抛物线提供了基本模式,是本节和本章的重点内容.故本节课的学习有着示范性的作用.教学中应当引起充分重视.椭圆的定义,较为抽象,用细绳画椭圆的方法将椭圆定义具体化.这对学生提出了较高的思维能力要求,这也是新课程标准中的数学核心素养要求之一.教学中应当引起充分重视.二、目标和目标解析 目标: (1)用细绳画椭圆的方法将椭圆的定义具体化,加强对椭圆定义与图形的理解,在这过程中培养学生的思维能力. (2)在椭圆方程的推导过程中,会根据椭圆的图形特征,选择合理建系方法,理解椭圆标准方程之“标准”所在;会根据式子的结构特征,选择合适的化简方法,提高运算能力.(3)理解椭圆标准方程的特征及参数a,b,c的几何意义,能根据条件利用椭圆定义法或方程的待定系数法,求出椭圆的标准方程. 目标解析: (1)对椭圆的认识,先从直观感受再到理性认识,这与历史上对椭圆的研究历程是一致的.但椭圆的定义是发生式定义,较为抽象,故借助细绳画椭圆的方法可以将定义具体化,所画图像确实与印象中的椭圆是一致的.细绳画椭圆的方法既有利于对椭圆定义的理解,还有助于对椭圆对称性的理解与分析,在这过程中培养学生的思维能力. (2)通过类比圆方程最简洁形式时,圆与坐标系的对称关系,可以找到怎样根据椭圆的图形特征建立坐标系,使得椭圆方程更简洁,并能找到各参数对应的几何意义,从而也就能更好地说明椭圆标准方程之“标准”所在.另外,在化简过程中,到底是直接两边平方还是移项后再平方,可以通过分析得到初步判断,移项后两边平方只剩下一个根号和一次式,形式更简单.但直接两边平方,利用式子对称的结构特征进行运算的话,其实也不难.所以可以借此机会与学生强调,化简方程时利用式子的结构特征可以简化运算,提高运算能力.提

高中数学 2.5第11课时 椭圆标准方程与几何性质复习小结学案 理 新人教A版选修2-1

课题:椭圆标准方程与几何性质复习(1) 课时:11 课型:复习课 一.复习目标:熟练掌握椭圆的定义、标准方程、简单的几何性质及重要结论.二.知识要点: 1、椭圆及标准方程:标准方程有两种,注意焦点在坐标轴上位置的确定;有时标准 方程可以改写为=1;标准方程有时可以用待定系数法求得。 2、椭圆中的四线:两对坐标轴,两对准线;六点:两个焦点,四个顶点; 3、弦长公式:|AB|= 4、椭圆中的点对焦点的张角的变化情况: 5、点代作差结论: 6、焦点三角形的面积:tan 7、特殊的焦点弦:通径= 8、椭圆中的最值问题: (1)、椭圆上的点到椭圆外的直线距离有最大值和最小值;

(2)、椭圆上的点到椭圆内的点及椭圆的焦点的距离之和有最大值和最小值; (3)、A为椭圆内的点,F为椭圆的一个焦点,M是椭圆上动点,则存在M,使得|MA|+|MF|有最小值; (4)、A为椭圆内的点,F为椭圆的一个焦点,M是椭圆上动点,则存在M,使得|MA|-|MF|最大; 9、椭圆的焦半径 左:= a+e = a-e 10、有关椭圆中向量的最值问题P是椭圆上的点,则 (1)、||||=(a+e)( a-e)=. (2)、| |:(| |==++2=+ +2||||()=+4-2()=4+. (3)、+(或+). (4)、=||||()=-()=-+. 三、椭圆精典题型: 1、已知椭圆=1上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为 A.2 B.3 C.4 D.5

2、 椭圆22 12516 x y +=的一个焦点为F,O 是坐标原点,点P 在椭圆上,且||4PF =,M 是线段PF 的中点,则||OM =___________; 3、 在平面直角坐标系中,已知顶点和,顶点在椭圆上,则____. 4、 椭圆22 14 x y m +=的焦距为2,则m 的值等于( ) A.5或 5、 已知方程22 212x y m m +=+表示焦点在x 轴上的椭圆,则m 的取值范围是 ( ) A.2m >或1m <- B. 2m >- C.12m -<< D. 2m >或21m -<<- 6、 “0m n >>”是“方程22 1mx ny +=表示焦点在y 轴上的椭圆”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件 (D) 既不充分也不必要条件 7、 椭圆122 22=+n y m x )0,0(>>n m 的一个焦点坐标是(2,0), 且椭圆的离心率2 1=e , 则椭圆的标准方程为 ( ) A.1161222=+y x B.1121622=+y x C.164482 2=+y x D.148 6422=+y x 8、已知椭圆22 221x y a b +=有两个顶点在直线22x y +=上,则此椭圆的焦点坐标是( ) A.(0) B.(0, C.(0) D.(0,

椭圆的标准方程与几何性质

椭圆的标准方程与几何性质 高考频度:★★★★☆ 难易程度:★★★☆☆ 典例在线 (1)已知椭圆24x +2 2 y =1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则12PF F △的面积是 A B .2 C . D (2)已知F 1,F 2分别是椭圆E :22x a +221y b =(0a b >>)的左、右焦点,点(1)在椭圆 上,且点(1-,0)到直线PF 2P (1-,4-),则椭圆的标准方程为 A .x 2 +2 4 y =1 B .24x +y 2 =1 C .x 2 +2 2 y =1 D .22 x +y 2 =1 (3)已知椭圆22x a +2 2y b =1(0a b >>)的左、右焦点分别为F 1(c -,0),F 2(c ,0),若椭圆上 存在点P ,使1221 sin sin a c PF F PF F ∠∠=,则该椭圆离心率的取值范围为 A .(01-) B .,1) C .(0) D .1-,1) 【参考答案】(1)A ;(2)D ;(3)D . 【试题解析】(1)由椭圆的方程可知a =2,c ,且|PF 1|+|PF 2|=2a =4,又|PF 1|-|PF 2|=2, 所以|PF 1|=3,|PF 2|=1.又|F 1F 2|=2c =|PF 1|2=|PF 2|2+|F 1F 2|2 ,即12PF F △为直

角三角形,所以12122||11 12 |2|PF F S F F PF = =?=△.故选A . (3)根据正弦定理得 2112 21 sin sin PF PF PF F PF F ∠∠= ,又 1221 sin sin a c PF F PF F ∠∠=可得 21 a c PF PF =,即12 PF c PF a = =e , 所 以 |PF 1|=e|PF 2| . 又 |PF 1|+|PF 2|=e|PF 2|+|PF 2|=|PF 2|·(e+1)=2a ,所以|PF 2|= 21 a e +.因为a -c <|PF 2|往往是解决计算问题的关键,椭圆上的一点与两焦点所构成的三角形称为焦点三角形.解决焦点三角形问题常利用椭圆的定义和正弦定理、余弦定理. (2)求椭圆的方程有两种方法:①定义法;②待定系数法.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,可进行分类讨论或把椭圆的方程设为 221mx ny =+(0,0m n >>且)m n ≠. (3)与几何性质有关的问题要结合图形进行分析,即使不画出图形,思考时也要联想到图形.理解顶点、焦点、长轴、短轴等椭圆的基本量之间的关系,深挖出它们之间的联系,求解自然就不难了. (4)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围)有两

椭圆的定义及其标准方程教学设计

课题:§椭圆的定义及其标准方程 鹿城中学田光海 一、教案背景: 1.面向对象:高中二年级学生 2.学科:数学 3.课时:2课时 4.教学内容:高中新课程标准教科书《数学》北师大版选修1-1第二章圆锥曲线与方程§椭圆及其标准方程 二. 教材分析 本节课是圆锥曲线的第一课时,它是继学生学习了直线和圆的方程,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步认识的基础上,进一步学习用坐标法研究曲线。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章的重点内容之一。 1. 教法分析 结合生活经验观察发现、启发引导、探究合作。在学生的生活体验、直观感知、知识储备的基础上,引导学生逐步建构概念,为学生数学思想方法的形成打下基础。利用多媒体课件,精心构建学生自主探究的教学平台,启发引导学生观察,想象,思考,实践,从而发现规律、突破学生认知上的困难,让学生体验问题解决的思维过程,获得知识,体验成功。主要采用探究实践、启发与讲练相结合。 2. 学法分析

从知识上看,学生已掌握了一些椭圆图形的实物与实例,对曲线和方程的概念有了一些了解,对用坐标法研究几何问题有了初步的认识。 从学生现有的学习能力看,通过一年多的学习,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。 从学生的学习心理上看,学生头脑中虽有一些椭圆的实物实例,但并没有上升为“概念”的水平,如何给椭圆以数学描述? 如何“定性”“定量”地描述椭圆是学生关注的问题,也是学习的重点问题。他们渴望将感性认识理性化,渴望通过自己动手作图、观察来辨析和完善概念,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。 3.教学目标 知识与技能:掌握椭圆的定义;理解椭圆标准方程的推导过程,掌握椭圆标准方程的两种形式,会运用待定系数法求椭圆的标准方程。 过程与方法:经历从具体情境中抽象出椭圆模型的过程,逐步提高学生的观察、分析、归纳、类比、概括能力;通过椭圆标准方程的推导,进一步掌握求曲线方程的一般方法——坐标法,并渗透数形结合、等价转化的数学思想方法。 情感、态度与价值观:通过课堂活动参与,激发学生学习数学的兴趣,提高学生审美情趣,培养学生勇于探索的精神。

公开课椭圆的标准方程教案教学设计

椭圆的标准方程 一、教材分析 1、地位及作用 圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。 推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,为学习双曲线、抛物线内容提供了基本模式和理论基础。因此本节课具有承前启后的作用,是本章的重点内容。 2、教学内容与教材处理 椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我将以课堂教学的组织者、引导者、合作者的身份,组织学生动手实验、归纳猜想、推理验证,引导学生逐个突破难点,自主完成问题,使学生通过各种数学活动,掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。 3、教学目标 根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下: 1.知识目标 ①建立直角坐标系,根据椭圆的定义建立椭圆的标准方程, ②能根据已知条件求椭圆的标准方程, ③进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的数学思想。 2.能力目标 ①让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力, ②培养学生的观察能力、归纳能力、探索发现能力, ③提高运用坐标法解决几何问题的能力及运算能力。 3.情感目标 ①亲身经历椭圆标准方程的获得过程,感受数学美的熏陶, ②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨, ③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。 4、重点难点 基于以上分析,我将本课的教学重点、难点确定为: ①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法, ②难点:椭圆的标准方程的推导。 二、教法设计 在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。 三、学法设计 1

椭圆及其标准方程练习题

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 椭圆及其标准方程练习题 【基础知识】 一.椭圆的基本概念 1.椭圆的定义:我们把平面内与两个定点 的距离的和等于常数 ( )的点的轨迹叫做椭圆,用符号表示为这两个定点叫椭圆的 ,两个焦点之间的距离叫做椭圆的 。 椭圆的图象和性质 数学定义式 |MF 1|+|MF 2|=2a 焦点位置 x 轴 y 轴 图形 标准方程 焦点坐标 焦距 顶点坐标 a , b , c 的关系式 长、短轴 长轴长=2a , 短轴长=2b 对称轴 两坐标轴 离心率 a c e = ( 0 < e < 1) y x o y x o

椭圆方程的总形式为 [经典例题]: 例1. 根据定义推导椭圆标准方程. 已知B ,C 是两个定点,|BC |=6,且ABC ?的周长等于16,求顶点A 的轨迹方程 创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 例2.写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离之和等于10; ⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,2 5) 例3 求适合下列条件的椭圆的标准方程: (1)两个焦点坐标分别是(-3,0),(3,0),椭圆经过点(5,0). (2)两个焦点坐标分别是(0,5),(0,-5),椭圆上一点P 到两焦点的距离和为26. 例4 已知椭圆经过两点()5,3()2 5 ,23与-,求椭圆的标准方程 例5 1.椭圆短轴长是2,长轴是短轴的2倍,则椭圆离心率是 ;

椭圆、双曲线、抛物线的标准方程与几何性质

g3.1079 椭圆

1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准方程: (1))0(122 22>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(122 22>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中c=22b a -. 3.椭圆的参数方程:???==θ θ sin cos b y a x ,(参数θ是椭圆上任意一点的离心率). 4.椭圆的几何性质:以标准方程)0(122 22>>=+b a b y a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A ′ (-a,0),B(0,b),B ′(0,-b);长轴|AA ′|=2a,短轴|BB ′|=2b;④离心率:e=a c ,0

椭圆的标准方程教学设计

椭圆的标准方程教学设计 【教学内容】 新课标人教版选修2-1第二章第二节第一课时内容:2.2.1椭圆及其标准方程 【教材分析】 教材的地位与作用: ⑴从知识上说,它是运用坐标法研究曲线的几何性质的又一次实际演练; ⑵从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础。 所以说,无论从教材内容,还是从教学方法上都起着承上启下的作用.本小节安排两课时: : 第一课时:椭圆的定义及标准方程的推导; 第二课时:运用椭圆的定义求曲线的轨迹方程。 【学生情况分析】 在学习椭圆之前,学生对曲线与方程有了一定的了解;基本能运用求曲线方程的一般方法求曲线的方程。椭圆是常见的图形,学生对椭圆已有一定的感性认识,例如:行星的运动轨迹等等。 【教学目标】 1. 知识目标: A识记:①掌握椭圆的定义及其标准方程;②区分椭圆的两种类

型的标准方程及其对应的图形;③能根据a、b、c的值写出椭圆的标准方程。 B理解:①理解椭圆的焦点、焦距的意义;②会推导椭圆的标准方程;③能掌握a、b、c之间的关系,会由其中的两个求出第三个。 》 C掌握:学会运用定义法、待定系数法和数形结合等方法解题。 2. 能力目标:①培养学生建立适当坐标系的解析法解题能力。 ②巩固与发展学生的定义法解题、待定系数法解题和数形结合的解题能力。③引导学生探究、操作、运用数学思想(待定系数法)等,从而提高学生实际动手、合作学习以及运用知识解决实际问题的能力。 3. 情感目标:①培养学生勇于探索的精神和渗透辩证唯物主义的方法论和认识论。②通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法。③在教学中充分揭示“数”与“形”的内在联系,体会形数美的统一,激发学生学习数学的兴趣,培养学生勇于探索、开拓创新的精神.。 【教学重点和难点】 重点:椭圆的定义及椭圆的标准方程; 难点:椭圆标准方程的建立和推导. 【教学方法】体验式、多媒体演示 【教学过程设计】 ~ (一)复习

高中数学 椭圆及其标准方程教学案例

椭圆及其标准方程 教学目标:理解椭圆的定义,掌握椭圆的标准方程,以及a,b,c三者的关系 教学重点:椭圆的定义及标准方程 教学难点:标准方程的推导 教学过程: 一、引入 我们上两节课学习了方程与曲线的关系,一条曲线满足某个方程,我们就知道满足这个方程的点一定在这条曲线上,这条曲线上的点一定能满足这个方程,我们同时还学习了求一条曲线的方程一般步骤:建系,写出点的坐标的集合,建立方程,化简方程,检验。曲线在我们是生活中到处可见,其中有不少都是非常有规则的,具有一些特殊性质的曲线,今天我们将要学习一种特殊的曲线,在学习之前我们先来看一段小视频。 这个是我们神六飞行的一些片段,通过这个视频同学们可以看到神六绕地飞行的轨迹是一个椭圆,我们知道除了神六,我们太阳系里的行星绕太阳飞行的轨迹也是椭圆,椭圆在我们的生活中也是随处可见。 既然椭圆在生活中是如此的常见,人们是怎么准确的画出椭圆的呢?在画椭圆之前同学们回忆一下我们是怎样画圆的?定出圆心,半径长,绕着圆心画一圈就可以了,对比圆,椭圆会不会有相似的画法呢? 把细绳两端拉开一段距离,固定,拉紧绳子,移动笔尖,同学们想想,在这个过程中什么是不变的?(绳子长) 椭圆定义: 平面内到两个定点的F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。 问:为什么这个常数要大于|F1F2|?如果没有这个限制会出现什么样的情况呢? 然后让学生来演示,我们可以看到当等于|F1F2|是轨迹是线段F1F2,当小于|F1F2|时,这样的M点不存在。 F1,F2两个点叫做椭圆的焦点,而这两点的距离叫做是椭圆的焦距。为了书写方便我们规定|F1F2|=2c,MF1+MF2=2a, 椭圆也是一条曲线,他有没有方程呢?再回忆一下求曲线方程的一般步骤。 请学生回答求曲线方程的步骤 现在我们要求椭圆的方程,第一步就是要建系,我们应该怎样来建立坐标系呢? 让同学们讨论,最后得出

相关文档 最新文档