文档库 最新最全的文档下载
当前位置:文档库 › 班杜拉的著名实验

班杜拉的著名实验

班杜拉的著名实验
班杜拉的著名实验

班杜拉的著名实验----波波玩偶实验

原文作者:肯德拉谢丽

儿童在电视上、电影里和游戏里看到的暴力,会不会导致他们形成攻击性行为?这是当今一个热门话题,就是在50年前也是热门话题。那时候,有一位心理学家做了一项实验,以确定孩子们是如何通过观

看暴力影像而学会攻击的。

攻击性根源于很多社会问题,比如从人与人之间的暴力行为到战争,难怪这一话题会成为心理学最热门的研究。社会心理学是研究人际互动和集体行为的一个分支领域,在这一领域工作的科学家提供了大

量人类攻击性行为的证据。

有一个著名的,也是最有影响的实验,叫做“波波玩偶实验”。阿尔伯特.班杜拉和他的同事成功地演示了儿童是如何学会攻击性的方式的。班杜拉的社会学习理论提出,学习是在观察和与其他人交往之中形成的。

班杜拉预言

班杜拉的实验是将儿童置于两组不同的成人模特当中,一组是具有攻击性的模特,另一组是非攻击性的模特。在观察了成人的行为之后,让他们进入一个没有模特的房间,观察他们是否会模仿先前所见到的模特的行为。

班杜拉事前就预言会有几件事情发生:

1、他预言,观察到成人模型攻击性行为的儿童,即便没有成人模特在场,也会出现攻击性行

2、观察到非攻击性行为模特的儿童比要比另一组少得多,观察非攻击性模特的一组也要比对照组的攻击性行为少得多。

3、儿童模仿同性行为比模仿异性行为要多得多。

4、男孩的攻击性要比女孩强。

试验方法

在斯坦福大学幼儿园参与实验的是36位男孩和36位女孩,年龄3—6岁,平均年龄是4岁零4个月。

这些孩子被分为8个实验组。在这些参与实验的孩子中,24位被安排在实验对照组,其他的被分为两组,每组24人。其中的一组去观察攻击性行为成人模特,另外24位儿童观察非攻击性成人模特。

最后这些孩子又被分为男孩和女孩两个组,在每一组中有一半是观察过同性成人模特的,另一半是

观察过异性成人模特的。

在试验之前班杜拉对孩子们的攻击性做了评估,每个组参与实验孩子的攻击性平均是大体相等的。

实验过程

每个儿童在实验过程中都保证不会受到其他儿童的影响。孩子们被带进一个游戏室,在那里模特展示出不同的行为。实验员把一个成人模特带进房间,让他(她)坐在凳子上,然后参与孩子们的活动。10分钟过后,让他们开始玩一套套零件玩具。在非攻击性一组中,在整个过程中只是摆弄玩具,完全忽视了波波玩偶。在攻击性一组,成人模特则猛烈地攻击波波玩偶。

“成人模特把波波玩偶放倒在地上,骑在上面,猛击它的鼻子。模特又把波波玩偶举起来,拿起锤子敲打它的头部。敲完之后,模特猛烈地在空中摔打玩偶,在房间内把它踢来踢去。这一攻击性行为连着重复三次,其间还夹杂着攻击性的语言。”

除了对玩偶的身体的攻击之外,成人模特还有语言的攻击,如“踢死它”,“怂包软蛋”。成人模特也附加有非攻击性词语:“这是个强硬的家伙”,“它还会回来的”。

10分钟之后,孩子们被带进另一个房间,那里摆放着一些吸引人玩具,其中包括一套洋娃娃,消防车模型和飞机模型等。但是孩子们被告知,不允许去玩这些有人的玩具,目的是让儿童产生一种挫折感。

最后,每个儿童都分别被带进最后一个实验室。这间房子里有几样“攻击性”玩具,包括一把锤子,一个用链子吊起来的求,球面涂成脸庞形状,还有标枪,当然还有波波玩偶。房间里也有一些非攻击性玩具,包括蜡笔、纸张、洋娃娃、塑料动物和卡车模型。孩子们被允许在这个房间玩20分钟,实验的评价人从镜子里观察每个孩子的行为,并给出每个孩子攻击性行为的等级。

结果

这一实验证实了班杜拉预言中的三个。

1、成人模特不在场的时候,观察暴力行为一组的孩子们的倾向是模仿他们所看到的行为。

2、班杜拉和他的同事们也预言观察非暴力行为的一组的孩子们会被比对照组的攻击行为弱一些。结果显示无论性别,这一组的孩子们都展现出比对照组孩子的攻击级别低一点。其中观察异性模特的男孩的攻击行为似乎比对照组稍微强一点。

3、无论被观察的模特是同行还是异性,孩子们的性别上的差异是很重要的。

研究者们对语言做出了修改,男孩比女孩的攻击性要强。男孩的攻击行为要比女孩高出一倍他预言,观察到成人模型攻击性行为的儿童,即便没有成人模特在场,也会出现攻击性行为。

探讨

波波玩偶实验的结果和班杜拉的社会学习理论是一致的。班杜拉和同事们认为,他们的试验揭示了特定的行为是如何通过观察和模仿而形成的。实验人员指出“社会行为的模仿可能是在模仿中简化或走捷径,没有按照斯金纳的逐次逼近法则去做。”

按照班杜拉的意见,是成人的暴力行为引导了儿童的暴力行为,这一点是可以采纳的。他还说,实验结果证明,儿童更倾向于对未来的攻击性受到挫败而做出反应。在此后1965年所作的另一个实验中,班杜拉发现,当成人模特对他们的行为表示赞赏时儿童就更喜欢模仿攻击行为,而当他们看到成人模特因他们的疯狂行为受到惩罚或谴责时,儿童的模仿就会少一些。

批评意见

和其他任何实验一样,对波波玩偶实验绝不会只是一片赞扬声。

1、因为这个实验室在实验室进行的,有些评论说在这样的环境中所观察到的或许不能代表真实世界所发生的事。

2、这一研究有可能在安与实验者的选择上出现偏差。参与者是在很小的范围内选择的学生,他们都有共同的民族和社会经济背景,这就使其与不在更大范围内,更多样性的人群中做出的结果有所不同。

3、因为收集到的都是当时的资料,很难知道长期性的影响是怎样的。

4、对洋娃娃的暴力行为同在现实世界中对另外同样的人做出暴力行为是有很大不同的。

5、这一实验所显示的儿童捶打洋娃娃时起动机并不是展示暴力,相反有可能只是在抚慰洋娃娃。

6、有些评论说做这种实验是不道德的。操纵儿童去做攻击性的事情,饰演者实际上只在教给儿童实施暴力。

最后的思考

尽管如此,班达拉的实验仍不失为最著名的心理学实验之一。当今,社会心理学家们在不断研究儿童观察所对其本身行为所产生的影响。在波波玩偶实验之后的半个世纪中,就有数百个实验在研究观察暴力对儿童行为的影响,直到今天研究者们还在不断思考儿童在电视节目和电影中观看暴力行为是否会导致儿童在现实世界中实施暴力行为。

第三节班杜拉的观察学习理论

按照条件作用理论,学习是在个体的行为表现基础上,经由奖励或惩罚等外在控制而产生的,即学习是通过直接经验而获得的。班杜拉(A.Bandura)则认为,这种观点对动物学习来说也许成立,但对人类学习而言则未必成立。因为人的许多知识、技能、社会规范等的学习都来自间接经验。人们可以通过观察他人的行为及行为的后果而间接地产生学习,班杜拉称这种学习为观察学习。

一、班杜拉的经典实验

班杜拉的观察学习理论是建立在他及其合作者所进行的大量实验研究的基础之上的。在早期的一项研究中,他们首先让儿童观察成人榜样对一个充气娃娃拳打脚踢,然后把儿童带到一个放有充气娃娃的实验室,让其自由活动,并观察他们的行为表现。结果发现,儿童在实验室里对充气娃娃也会拳打脚踢。这说明,成人榜样对儿童行为有明显影响,儿童可以通过观察成人榜样的行为而习得新行为。

在稍后的另一项实验中,他们对上述研究作了进一步的延伸,目的是要了解两个问题:(1)榜样攻击行为的奖惩后果是否影响儿童攻击行为的表现;(2)儿童是否能不管榜样攻击行为的奖惩后果而习得攻击行为。在实验中,把儿童分为三组,首先让儿童看到电影中的成年男子的攻击行为。在影片结束后,第一组儿童看到成人榜样被表扬,第二组儿童看到成人榜样受批评,第三组儿童看到成人榜样的行为既不受奖也不受罚。然后,把三组儿童都带到一间游戏室,里面有成人榜样攻击过的对象。结果发现,榜样受奖组儿童的攻击行为最多,榜样受罚组儿童的攻击行为最少,控制组居中。这说明,榜样攻击行为所导致的后果是儿童是否自发模仿这种行为的决定因素。

但这是否意味着榜样受奖组的儿童比榜样受罚组的儿童习得了更多的攻击行为呢?为了回答这个问题,他们在上述三组儿童看完电影回到游戏室时,以提供糖果作为奖励,要求儿童尽可能地回忆榜样行为并付诸行动。结果发现,三组儿童的攻击行为水平几乎一致。这说明,榜样行为所导致的后果只是影响儿童攻击行为的表现,而对攻击行为的学习几乎没有影响。

最美丽的十大物理实验

最美丽的十大物理实验 美国的物理学家最近评出的这些实验共同之处是:它们都“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,最根本、最单纯的科学结论,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 无论在加速器中裂解亚原子粒子,还是测序基因序列,或分析一颗遥远恒星的摆动,这些让世界瞩目的实验常常动辄耗资百万美元,产生出洪水般汹涌的数据,并需要超高速计算机处理几个月。一些实验小组因此成长为一个个的小公司。 罗伯特•;克瑞丝是美国纽约大学石溪分校哲学系的教员、布鲁克海文国家实验室的历史学家,他最近在美国的物理学家中作了一次调查,要求他们提名历史上最美丽的科学实验。9月份出版的《物理学世界》刊登了排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。 所有这些实验共同之处是他们都仅仅“抓”住了物理学家

眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 《物理学世界》对这些实验进行的排名是根据公众对它们的认识程度,排在第一位的是展示物理世界量子特征的实验。但是,科学的发展是一个积累的过程,9月25日的美国《纽约时报》根据时间顺序对这些实验重新排序,并作了简单的解释。 去年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验。1851年法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。

物理历史上的十大经典实验

物理历史上的十大经典实验 2002 年,美国两位学者在全美物理学家中做了一次调查,请他们提名有史以来最出色的十大物理实验,其中多数都是我们耳熟能详的经典之作。令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学家眼中最美丽的科学之魂:由简单的仪器和设备,发现了最根本、最单纯的科学概念。十大经典物理实验犹如十座历史丰碑,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。从十大经典物理实验评选本身,我们也能清楚地看出2000 年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 排名第一:托马斯·杨的双缝演示应用于电子干涉实验 在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的“波粒二象性”。“波动”和“粒子”都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。然而,微观客体的行为与人们的日常经验毕竟相差很远。如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子双缝干涉实验为一典型实例。 杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量子物理学中的基本原理。可是,由于技术的原因,当时它只是一个思想实验。直到1961 年,约恩?孙制作出长为50mm、宽为0.3mm、缝间距为1mm 的双缝,并把一束电子加速到50keV,然后让它们通过双缝。当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。但是,当我们试图决定电子究竟是通

物理与人文试卷

人文物理资料 一、经典物理力学发展的基础 、资本主义萌芽带来的契机 ( )社会物质条件:欧洲社会生产力迅速发展,农耕得到改进,风力水力得到普遍使用。特别是我国的四大发明经蒙古,丝绸之路传入欧洲,更为其发展推波助澜。哥伦布 ?? 年发现美洲,麦哲伦 ?年环游世界,这些都刺激了资产阶级对生产技术的兴趣,科学的发展有了社会物质条件。 ( )社会文化思想方面 出现了以文艺复兴和宗教改革为标志的思想解放运动。但丁的神曲,米开朗基诺的雕塑,莎氏比亚的?罗米欧与朱丽叶?的出现,代表了人们要求思想自由,科学要求摆脱神学附庸地位,反对迷信和权威的心声。 ( )代表人物及其观点 ?培根 ?证明前人说法的唯一方法,只有观察和实践。? ?达 芬奇:?实验在任何情况下都是我的老师。? 二、哥白尼与?天体运行论? 日心说的提出 ??天体运行论?于 ?年写成,它被誉为自然科学的独立宣言。 三、第谷与开普勒对天体的研究成就 四、运动学的奠基人 ?伽利略 主要贡献 之一:论证了哥白尼的日心说的正确性 之二:他发现物体下落的速度与时间成正比以及抛射物体的抛物线规律 之三:他发现了摆的等时性

五、 牛顿的伟大综合和理论飞跃 牛顿的《自然哲学之数学原理》第一次显示了科学理论所具有的知识飞跃和能动作用,它为后来的物理研究开拓了一条传统思路,奠定了经典力学的基础,促进了物理学向前发展。 主要贡献 之一: ??年发现了二项式定理 之二: 微积分的创立是牛顿最卓越的数学成就 之三: 构筑力学大厦、奠定了经典物理学的基础 惯性定律、牛顿第二定律、作用力与反作用力定律、万有引力定律、能量守恒定律、动量守恒定律 之四:光学上的巨大成就 ●进行了著名的色散试验 ,发现了白光是由各种不同颜色的光组成的 ●设计和制造了反射望远镜 ●发现并解释了“牛顿环”的光学干涉现象 ●牛顿还提出了光的“微粒说”,认为光是由微粒形成的,并且走的是最快速的直线运 动路径 、最美丽的十大物理实验 用单电子做的杨氏双缝干涉实验( ? ); ? 伽利略的落体实验( ??左右); 密立根油滴实验( ); 牛顿用棱镜将日光分解为七色的实验( ??? ??); ? 杨氏用光做的干涉实验( ? ); ? 卡文迪许用扭杆测定万有引力常数的实验( ???);

十大最美物理实验

“最美丽”的十大物理实验 最简单的仪器和设备,发现了最根本、最单纯的科学概念,这些“抓”住了物理学家眼中“最美的”科学之魂的实验,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 罗伯特·克瑞丝是美国纽约大学石溪分校哲学系的教员、布鲁克海文国家实验室的历史学家,他最近在美国的物理学家中作了一次调查,要求他们提名历史上最美丽的科学实验。9月份出版的《物理学世界》刊登了排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。 从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 《物理学世界》对这些实验进行的排名是根据公众对它们的认识程度,排在第一位的是展示物理世界量子特征的实验。但是,科学的发展是一个积累的过程,9月25日的美国《纽约时报》根据时间顺序对这些实验重新排序,并作了简单的解释 1、托马斯·杨的双缝演示应用于电子干涉实验 牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确。光既不是简单 的由微粒构成,也不是一种单纯的波。20世纪初,麦克斯·普克朗和阿尔伯特· 爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其他实验还是证 明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理: 光子和亚原子微粒(如电子、 光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。 将托马斯·杨的双缝演示改造一下可以很好地说明这一点。科学们用电子 流代替光束来解释这个实验。根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,它们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。这说明微粒也有波的效应。 《物理学世界》编辑彼特·罗格斯推测,直到1961年,某一位科学家才 在真实的世界里做出了这一实验。(排名第一) 2、伽利略的自由落体实验 在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的 亚里士多德已经这么说了。伽利略,当时在比萨大学数学系任职,他大胆地向 公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔 上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里 士多德的代价也许使他失去了工作,但他展示的是自然界的本质,而不是人类 的权威,科学做出了最后的裁决。(排名第二) 3、罗伯特·米利肯的油滴实验 很早以前,科学家就在研究电。人们知道这种无形的物质可以 从上的闪电中得到,也可以通过摩擦头发得到。1897年,英 国物理学家J·J·托马斯已经确立电流是由带负电粒子即电子组 成的。1909年美国科学家罗伯特·米利肯开始测量电流的电荷。 米利肯用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒 子的顶部和底部分别连接一个电池,让一边成为正电板,另一边 成为负电板。当小油滴通过空气时,就会吸一些静电,油滴下落的速度可以通过改变电板间的电压来控制。 米利肯不断改变电压,仔细观察每一颗油滴的运动。经过反复试,米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。(排名第三)

世界十大经典物理实验

世界十大经典物理实验 这些经典实验的共通之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。从十大经典科学试验本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。让我们从第十名开始,回顾这些经典的实验。 第十名米歇尔·傅科钟摆实验1851年法国科学家傅科当众做了一个实验,用一根长220英尺的钢丝吊着一个重62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它的摆动轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅柯的演示说明地球是在围绕地轴旋转。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。目前在人大附中中,还有一个傅科钟摆的模型。第九名卢瑟福的阿尔法粒子散射实验1911年卢瑟福还在 曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的阿尔

法微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作原子核,电子在它周围环绕。 第八名伽利略的加速度实验伽利略进行他的物体移动研究。他做了一个6米多长,3米多宽的光滑直木板槽。再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下。然后测量铜球每次下滑的时间和距离,研究它们之间的关系。亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离。因为存在重力加速度。 第七名埃拉托色尼测量地球圆周 在公元前3世纪,埃及的一个名叫阿斯瓦的小镇上,夏至正午的阳光悬在头顶。物体没有影子,太阳直接照入井中。埃拉托色尼意识到这可以帮助他测量地球的圆周。在几年后的同一天的同一时间,他记录了同一地点的物体的影子。发现太阳光线有稍稍偏离,与垂直方向大约成7度角。剩下的就是几何问题了。假设地球是球状,那么它的圆周应是360度。如果两座城市成7度角,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球圆周应该是25万个希腊运动场。今天我们知道埃拉托色尼的测量误差仅仅在5%以内。

高中物理解题常用经典套路与实验总结

高中物理解题常用经典套路与实验总结 为了便于进行高中物理解题,我们应该为自己总结出高中物理解题时常用经典套路,如何才能学好物理呢?小编在这里整理了相关资料,快来学习学习吧! 高中物理解题常用经典套路总结 1、' 皮带' 模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. 2、' 斜面' 模型:运动规律.三大定律.数理问题. 3、' 运动关联' 模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. 4、' 人船' 模型:动量守恒定律.能量守恒定律.数理问题. 5、' 子弹打木块' 模型:三大定律.摩擦生热.临界问题.数理问题. 6、' 爆炸' 模型:动量守恒定律.能量守恒定律. 7、' 单摆' 模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. 8.电磁场中的' 双电源' 模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 10、' 平抛' 模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). 11、' 行星' 模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). 12、' 全过程' 模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. 13、' 质心' 模型:质心(多种体育运动).集中典型运动规律.力能角度. 14、' 绳件.弹簧.杆件' 三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. 15、' 挂件' 模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. 16、' 追碰' 模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守 恒法)等. 17.' 能级' 模型:能级图.跃迁规律.光电效应等光的本质综合问题. 18.远距离输电升压降压的变压器模型. 19、' 限流与分压器' 模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. 20、' 电路的动态变化' 模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. 21、' 磁流发电机' 模型:平衡与偏转.力和能问题. 22、' 回旋加速器' 模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. 23、' 对称' 模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. 24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 闻名世界的十大经典物理实验 . 一、伽利略的自由落体试验 伽利略的自由落体试验是十大经典物理实验之一,在16世纪末,人人都认为重量大的物体比重量小的物体下落的快因为伟大的亚里士多德是这么说的。伽利略,当时在比萨大学

物理学的实验美

物理学的实验美 1.前言 2005年9月份出版的《物理学世界》刊登了选出的排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。 所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 本研究性学习探究其中的5篇实验。 一.双缝实验 1.起源 托马斯?杨(Thomas Young,1773—1829) 于1801年进行了一次光的干涉实验,即著名的杨氏双孔干涉实验,并首次肯定了光的波动性。随后在他的论文中以干涉原理为基础,建立了新的波动理论,并成功解释了牛顿环,精确测定了波长。 1803年,杨把干涉原理用以解释衍射现象。 1807年,杨发表了《自然哲学与机械学讲义》(A course of Lectures on Natural Philosophy and the Mechanical Arts),书中综合整理了他在光学方面的理论与实验方面的研究,

并描述了双缝干涉实验,后来的历史证明,这个实验完全可以跻身于物理学史上最经典的前五个实验之列。但是他认为光是在以太媒质中传播的纵波。这与光的偏振现象产生了矛盾,然而杨并未放弃光的波动说。 杨的著作点燃了革命的导火索,光的波动说在经过了百年的沉寂之后,终于又回到了历史舞台上来。但是它当时的日子并不好过,在微粒说仍然一统天下的年代,杨的论文开始受尽了权威们的嘲笑和讽刺,被攻击为“荒唐”和“不合逻辑”。在近20年间竟然无人问津,杨为了反驳专门撰写了论文,但是却无处发表,只好印成小册子。但是据说发行后“只卖出了一本”。 1818年菲涅耳(Augustan Fresnel,1788—1827)在巴黎科学院举行的一次以解释衍射现象为内容的科学竞赛中以光的干涉原理补充了惠更斯原理,提出了惠更斯-菲涅耳原理,完善了光的衍射理论并获得优胜。早于1817年在面对波动说与光的偏振现象的矛盾时,杨觉察到如果光是横波或许问题可以得到解决,并把这一想法写信告诉了阿拉果(D.F.Arago,1786—1853),阿拉果立即把这一思想转告给了菲涅耳。于是当时已独自领悟到这一点的菲涅耳立即用这一假设解释了偏振现象,证明了光的横波特性,使得光的波动说进入一个新的时期。 2.实验方法 做本实验用的全部装置如图所示,在可旋转式光具座导轨1的一端用滑块固定光源2,光源灯泡由J1201型低压电源的交流输出供电,3是光源用单缝,缝宽0.11mm,光具架4 装在另一滑块上,4中间安装双缝5,缝宽0.016~0.020mm,缝距0.080mm,导轨另一端用长滑块固定。 6是观察筒。各光具的光轴要和导轨平行并大致共轴.光源灯泡是“12V 50W”卤钨灯,为了延长它的寿命,开始先用6V点亮,避免很大的冲击电流,然后根据实验所需的亮度逐渐升高电压,但不得超过12V 实验前的调整:只装上光源2,在导轨另一端装毛玻璃屏,转动光源,使射出的光束在屏的中央形成光斑.再装上光源单缝、光具架和双缝,单缝取竖直方向,双缝外环上的指示线对准光具架上的零刻线,双缝距离单缝5~10cm.此时顺着光的传播方向看,通过单缝的

最出色的十大物理实验

最近,美国两位学者在全美物理学家中做了一份调查,请他们提名有史以来最出色的十大物理试验,结果刊登在了9月份的美国《物理世界》杂志上。其中多数都是我们在中学课本中耳熟能详的经典之作。 令人惊奇的是十大经典试验几乎都是由一个人独立完成,或者最多有一两个助手协助。试验中没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。 所有这些实验的另外共通之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。 从十大经典科学试验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。9月24日的《纽约时报》(按时间先后顺序)对此做了专门介绍。 米歇尔·傅科钟摆试验 排名第十。1851年法国科学家傅科当众做了一个实验,用一根长220英尺的钢丝吊着一个重62磅重的头上带有铁笔的铁球悬挂在屋顶下,观测记录它的摆动轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实际上这是因为房屋在缓缓移动。傅柯的演示说明地球是在围绕地轴旋转。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。 卢瑟福发现核子 排名第九。1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中就好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的阿尔法微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕。 伽利略的加速度试验

物理学史上十大最美丽的实验

专题简介 物理是来自于实验的自然科学,实验对于物理学的前进与发展起着至关重要的作用。可能很多人认为物理实验是枯燥、繁琐、无聊的,但事实上,真正优秀的实验必须首先是美丽的。下面就是世界知名物理学家们联合评选出的物理学史上十大最美丽的实验。 这十大实验中的绝大多数是科学家独立完成的,最多有一两个助手。所有的实验都“抓”住了物理学家眼中“最漂亮”的科学之魂,这种漂亮是一种经典概念:使用最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 第10名: 傅科钟摆实验 2001年,科学家们在南极安置一个摆钟,并观察它的摆动。 他们是在重复1851年巴黎的一个著名实验。1851年,法国 科学家傅科在公众面前做了一个实验,用一根长220英尺的 钢丝将一个62磅的头上带有铁笔的铁球悬挂在屋顶下,观测 记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍 稍偏离原轨迹并发生旋转时,无不惊讶。实验上这是因为房 屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。 在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。 在南极,转动周期是24小时。

第9名: 卢瑟福发现核子实验 1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的α微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕。 第8名: 伽利略的加速度实验 伽利略提炼他有关物体移动的观点。他做了一个6m多长、3m多宽的光滑直木板槽,再把这个木板槽倾斜固定,让钢球从木槽顶端沿斜面滑下,并用水钟测量钢球每次下滑的时间,研究它们之间的关系。亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明钢球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动了4倍的距离,因为存在恒定的重力加速度。

物理学 最漂亮的十大物理实验

物理学史上最漂亮的十大物理实验 2002年9月出版的《物理学世界》刊登了排名前10位的2000多年来最漂亮的物理实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是,这十大实验中的绝大多数是科学家独立完成的,最多有一两个助手。所有的实验都“抓”住了物理学家眼中“最漂亮”的科学之魂,这种漂亮是一种经典概念:使用最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 为了能清楚地看出2000年来科学家们最重大的发现轨迹,下面我们根据时间顺序对这些实验作一简单介绍。 第7名:埃拉托色尼测量地球圆周长 古埃及有一个现名为阿斯旺的小镇。在这个小镇上,夏至日正午的阳光悬在头顶,物体没有影子,阳光直接射入深水井中。埃拉托色尼是公元前3世纪亚历山大图书馆的馆长,他意识到这一信息可以帮助他估计地球的周长。在以后几年里的同一天、同一时间,他在亚历山大测量了同一地点的物体的影子。发现太阳光线有轻微的倾斜,在垂直方向偏离了大约7°。假设地球是球状,那么它的圆周应跨越360°。如果两座城市成7°,就是7/360的圆周,就是当时5000个希腊运动场的距离。因此地球周长应该是25万个希腊运动场。今天,通过航迹测算,我们知道埃拉托色尼的测量误差仅仅在5%以内。 第2名:伽利略的自由落体实验 在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的亚里士多德已经这么说了。伽利略,当时在比萨大学任职,他大胆地向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家

历史上的十大经典物理实验

历史上的十大经典物理实验 导读:我根据大家的需要整理了一份关于《历史上的十大经典物理实验》的内容,具体内容:2002 年,美国两位学者在全美物理学家中做了一次调查,请他们提名有史以来最出色的十大物理实验,其中多数都是我们耳熟能详的经典之作。令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学... 2002 年,美国两位学者在全美物理学家中做了一次调查,请他们提名有史以来最出色的十大物理实验,其中多数都是我们耳熟能详的经典之作。令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学家眼中最美丽的科学之魂:由简单的仪器和设备,发现了最根本、最单纯的科学概念。十大经典物理实验犹如十座历史丰碑,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。从十大经典物理实验评选本身,我们也能清楚地看出 2000 年来科学家们最重大的发现轨迹,就像我们"鸟瞰"历史一样。 十大经典物理实验 排名第一:托马斯杨的双缝演示应用于电子干涉实验 在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的"波粒二象性"。"波动"和"粒子"都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。然而,微观客体的行为与人们的日常经验毕竟相差很远。如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子

双缝干涉实验为一典型实例。 杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量子物理学中的基本原理。可是,由于技术的原因,当时它只是一个思想实验。直到 1961 年,约恩孙制作出长为 50mm、宽为 0.3mm、缝间距为 1mm 的双缝,并把一束电子加速到 50keV,然后让它们通过双缝。当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。但是,当我们试图决定电子究竟是通过哪个缝的,不论用何手段,图样都立即消失,这实际告诉我们,在观察粒子波动性的过程中,任何试图研究粒子的努力都将破坏波动的特性,我们无法同时观察两个方面。要设计出一种仪器,它既能判断电子通过哪个缝,又不干扰图样的出现是绝对做不到的。这是微观世界的规律,并非实验手段的不足。 排名第二:伽利略的自由落体实验 伽利略(1564—1642)是近代自然科学的奠基者,是科学史上第一位现代意义上的科学家。他首先为自然科学创立了两个研究法则:观察实验和量化方法,创立了实验和数学相结合、真实实验和理想实验相结合的方法,从而创造了和以往不同的近代科学研究方法,使近代物理学从此走上了以实验精确观测为基础的道路。爱因斯坦高度评价道:"伽利略的发现以及他所应用的科学推理方法是人类思想史上最伟大的成就之一"。 16 世纪以前,希腊最著名的思想家和哲学家亚里斯多德是第一个研究

高中物理解题常用经典套路与实验总结

高中物理解题常用经典套路与实验总结 高中物理解题常用经典套路总结 1、'皮带'模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. 2、'斜面'模型:运动规律.三大定律.数理问题. 3、'运动关联'模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. 4、'人船'模型:动量守恒定律.能量守恒定律.数理问题. 5、'子弹打木块'模型:三大定律.摩擦生热.临界问题.数理问题. 6、'爆炸'模型:动量守恒定律.能量守恒定律. 7、'单摆'模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. 8.电磁场中的'双电源'模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 10、'平抛'模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). 11、'行星'模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). 12、'全过程'模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. 13、'质心'模型:质心(多种体育运动).集中典型运动规律.力能角度. 14、'绳件.弹簧.杆件'三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. 15、'挂件'模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. 16、'追碰'模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守 恒法)等. 17.'能级'模型:能级图.跃迁规律.光电效应等光的本质综合问题. 18.远距离输电升压降压的变压器模型.

世界十大经典物理试验

世界十大经典物理试验 2002年美国两位学者在全美物理学家中做了一份调查,请他们提名有史以来最出色的十大物理试验,结果刊登在了02年9月份的美国《物理世界》杂志上。其中多数都是我们在中学课本中耳熟能详的经典之作。 令人惊奇的是十大经典试验几乎都是由一个人独立完成,或者最多有一两个助手协助。试验中没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。 所有这些实验的另外共通之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。 从十大经典科学试验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 埃拉托色尼测量地球圆周 排名第七。在公元前3世纪,埃及的一个名叫阿斯瓦的小镇上,夏至正午的阳光悬在头顶。物体没有影子,太阳直接照入井中。埃拉托色尼意识到这可以帮助他测量地球的圆周。在几年后的同一天的同一时间,他记录了同一地点的物体的影子。发现太阳光线有稍稍偏离,与垂直方向大约成7度角。剩下的就是几何问题了。假设地球是球状,那么它的圆周应是360度。如果两座城市成7度角,就是7/360的

圆周,就是当时5000个希腊运动场的距离。因此地球圆周应该是25万个希腊运动场。今天我们知道埃拉托色尼的测量误差仅仅在5%以内。 伽利略的自由落体试验 排名第二。在16世纪末人人都认为重量大的物体比重量小的物体下落的快 萨大学数学系任职,他大胆的向公众的观点挑战,他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。他向世人展示尊重科学而不畏权威的可贵精神。 伽利略的加速度试验 排名第八。伽利略继续他的物体移动研究。他做了一个6米多长,3米多宽的光滑直木板槽。再把这个木板槽倾斜固定,让铜球从木槽顶端沿斜面滑下。然后测量铜球每次下滑的时间和距离,研究它们之间的关系。亚里士多德曾预言滚动球的速度是均匀不变的:铜球滚动两倍的时间就走出两倍的路程。伽利略却证明铜球滚动的路程和时间的平方成比例:两倍的时间里,铜球滚动4倍的距离。因为存在重力加速度。 牛顿的棱镜分解太阳光 排名第四。艾萨克·牛顿出生那年,伽利略与世长辞。牛顿1665年毕业于剑桥大学的三一学院。当时大家都认为白光是一种纯的没有其它颜色的光,而有色光是一种不知何故发生变化的光(又是亚利斯多德的理论)。

物理学史上最经典的10个实验

物理学史上最经典的10个实验 《物理学世界》刊登了排名前十的最美丽的物理实验,其中大多数都是我们耳熟能详的经典之作。这十大实验中的绝大多数是科学家独立完成,所有实验都是在实验桌上进行的。所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学灵魂,这种美丽是一种经典:最简单的仪器和设备,发现最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。从十大经典科学实验的评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。《物理学世界》对这些实验进行的排名是根据公众对它们的认识程度,按照时间的顺序,这些实验是: 排名第一:托马斯·杨的双缝干涉应用于电子干涉的实验牛顿和托马斯·杨对光的性质的研究得出的结论都不完全的正确。光既不是简单由粒子构成,也不是一种单纯的波。20世纪初,麦克斯·普朗克和阿尔伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其他实验还证明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。将托马斯·杨的双缝演示改造一下可以很好的说明这一点。科学家们用电子流代替光束来解释这个试验。根据量子力学,电粒子流被分成两股,被分的更小的粒子流产生波效应,它们互相影响,以致产生象托马斯·杨的双缝实验中出现的加强光和阴影。这说明微粒也有波的效应。《物理学世界》编辑比特·洛戈斯推测,直到1961年,有一位科学家才在真实的世界里做出了这一实验。 排名第二:伽利略的自由落体实验在16世纪末,人人都认为重量大的物体比重量小的物体下落的快,因为伟大的亚里士多德已经这么说了。伽利略,当时在比萨大学数学系任职,他大胆的向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里士多德的代价也许是他失去工作,但他展示的是自然界的本质,而不是人类的权威,科学作出了最后的裁决。 排名第三:罗伯特·密立根的油滴实验很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中获得,也可以通过摩擦头发得到。1897年,英国物理学家

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a(l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

必看!物理学十大著名经典实验,不看后悔系列!

必看!物理学十大著名经典实验,不看后悔系列! 科学实验是物理学发展的基础,又是检验物理学理论的惟一手段,特别是现代物理学的发展,更和实验有着密切的联系。 现代实验技术的发展,不断地揭示和发现各种新的物理现象,日益加深人们对客观世界规律的正确认识,从而推动物理学的向前发展。 令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学家眼中最美丽的科学之魂:由简单的仪器和设备,发现了最根本、最单纯的科学概念。 十大经典物理实验犹如十座历史丰碑,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。从十大经典物理实验评选本身,我们也能清楚地看出2000 年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。

排名第一:托马斯·杨的双缝演示应用于电子干涉实验 在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的“波粒二象性”。 “波动”和“粒子”都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。然而,微观客体的行为与人们的日常经验毕竟相差很远。如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子双缝干涉实验为一典型实例。 杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量

子物理学中的基本原理。可是,由于技术的原因,当时它只是一个思想实验。 直到1961 年,约恩?孙制作出长为50mm、宽为0.3mm、缝间距为1mm 的双缝,并把一束电子加速到50keV,然后让它们通过双缝。 当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。 但是,当我们试图决定电子究竟是通过哪个缝的,不论用何手段,图样都立即消失,这实际告诉我们,在观察粒子波动性的过程中,任何试图研究粒子的努力都将破坏波动的特性,我们无法同时观察两个方面。 要设计出一种仪器,它既能判断电子通过哪个缝,又不干扰图样的出现是绝对做不到的。这是微观世界的规律,并非实验手段的不足。 排名第二:伽利略的自由落体实验

物理学史上十大最美丽的实验 图文

物理学史上十大最美丽的实验【图文】物理学史上十大最美丽的实验 物理是来自于实验的自然科学,实验对于物理学的前进与发展起着 至关重要的作用。可能很多人认为物理实验是枯燥、繁琐、无聊的,但事 实上,真正优秀的实验必须首先是美丽的。下面就是世界知名物理学家们 联合评选出的物理学史上十大最美丽的实验。这十大实验中的绝大多数是 科学家独立完成的,最多有一两个助手。所有的实验都“抓”住了物理学家 眼中“最漂亮”的科学之魂,这种漂亮是一种经典概念:使用最简单的仪器 和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样, 人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 第10名:傅科钟摆实验

2001年,科学家们在南极安置一个摆钟,并观察它的摆动。他们是在重复1851年巴黎的一个著名实验。1851年,法国科学家傅科在公众面前做了一个实验,用一根长220英尺的钢丝将一个62磅的头上带有铁笔的铁球悬挂在屋顶下,观测记录它前后摆动的轨迹。周围观众发现钟摆每次摆动都会稍稍偏离原轨迹并发生旋转时,无不惊讶。实验上这是因为房屋在缓缓移动。傅科的演示说明地球是在围绕地轴自转的。在巴黎的纬度上,钟摆的轨迹是顺时针方向,30小时一周期。在南半球,钟摆应是逆时针转动,而在赤道上将不会转动。在南极,转动周期是24小时。 第9名:卢瑟福α粒子散射实验 1911年卢瑟福还在曼彻斯特大学做放射能实验时,原子在人们的印象中好像是“葡萄干布丁”,大量正电荷聚集的糊状物质,中间包含着电子微粒。但是他和他的助手发现向金箔发射带正电的α微粒时有少量被弹回,这使他们非常吃惊。卢瑟福计算出原子并不是一团糊状物质,大部分物质集中在一个中心小核上,现在叫作核子,电子在它周围环绕。

推荐-世界上十大最美物理实验(附图) 精品

世界上十大最美物理实验(附图) 2005年9月份出版的《物理学世界》刊登了选出的排名前10位的最美丽实验,其中的大多数都是我们耳熟能详的经典之作。令人惊奇的是这十大实验中的绝大多数是科学家独立完成,最多有一两个助手。所有的实验都是在实验桌上进行的,没有用到什么大型计算工具比如电脑一类,最多不过是把直尺或者是计算器。所有这些实验共同之处是他们都仅仅“抓”住了物理学家眼中“最美丽”的科学之魂,这种美丽是一种经典概念:最简单的仪器和设备,发现了最根本、最单纯的科学概念,就像是一座座历史丰碑一样,人们长久的困惑和含糊顷刻间一扫而空,对自然界的认识更加清晰。 从十大经典科学实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。 1.托马斯·杨的双缝演示应用于电子干涉实验 牛顿和托马斯·杨对光的性质研究得出的结论都不完全正确。光既不是简单的由微粒构成,也不是一种单纯的波。20世纪初,麦克斯·普克朗和阿尔伯特·爱因斯坦分别指出一种叫光子的东西发出光和吸收光。但是其他实验还是证明光是一种波状物。经过几十年发展的量子学说最终总结了两个矛盾的真理:光子和亚原子微粒(如电子、光子等等)是同时具有两种性质的微粒,物理上称它们:波粒二象性。 将托马斯·杨的双缝演示改造一下可以很好地说明这一点。科学家们用电子流代替光束来解释这个实验。根据量子力学,电粒子流被分为两股,被分得更小的粒子流产生波的效应,它们相互影响,以至产生像托马斯·杨的双缝演示中出现的加强光和阴影。这说明微粒也有波的效应。 2.伽利略的自由落体实验

在16世纪末,人人都认为重量大的物体比重量小的物体下落得快,因为伟大的亚里士多德已经这么说了。伽利略,当时在比萨大学数学系任职,他大胆地向公众的观点挑战。著名的比萨斜塔实验已经成为科学中的一个故事:他从斜塔上同时扔下一轻一重的物体,让大家看到两个物体同时落地。伽利略挑战亚里士多德的代价也许是他失去了工作,但他展示的是自然界的本质,而不是人类的权威,科学作出了最后的裁决。 3.罗伯特·米利肯的油滴实验 很早以前,科学家就在研究电。人们知道这种无形的物质可以从天上的闪电中得到,也可以通过摩擦头发得到。1897年,英国物理学家J·J·托马斯已经确立电流是由带负电粒子即电子组成的。1918年美国科学家罗伯特·米利肯开始测量电流的电荷。 米利肯用一个香水瓶的喷头向一个透明的小盒子里喷油滴。小盒子的顶部和底部分别连接一个电池,让一边成为正电板,另一边成为负电板。当小油滴通过空气时,就会吸一些静电,油滴下落的速度可以通过改变电板间的电压来控制。 米利肯不断改变电压,仔细观察每一颗油滴的运动。经过反复试验,米利肯得出结论:电荷的值是某个固定的常量,最小单位就是单个电子的带电量。 4.牛顿的棱镜分解太阳光 艾萨克·牛顿出生那年,伽利略与世长辞。牛顿1665年毕业于剑桥大学的三一学院,后来因躲避鼠疫在家里呆了两年,后来顺利地得到了工作。 当时大家都认为白光是一种纯的没有其它颜色的光(亚里士多德就是这样认为的),而彩色光是一种不知何故发生变化的光。 为了验证这个假设,牛顿把一面三棱镜放在阳光下,透过三棱镜,光在墙上被分解为不同颜色,后来我们称作为光谱。人们知道彩虹的五颜六色,但是他们认为那是因为不正常。牛顿的结论是:正是这些红、橙、黄、绿、青、蓝、紫基础色有不同的色谱才形成了表面上颜色单一的白色光,如果你深入地看看,会发现白光是非常美丽的。

相关文档
相关文档 最新文档