文档库 最新最全的文档下载
当前位置:文档库 › AO生化地硝化与反硝化原理

AO生化地硝化与反硝化原理

AO生化地硝化与反硝化原理
AO生化地硝化与反硝化原理

2.5 A/0生化处理

2.5.1基本原理

本系统生化处理段采用缺氧/好氧(A/O)工艺,A/0工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,好氧微生物氧化分解污水中的B0D5,同时进行硝化反应,

有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。这里着重介绍生物脱氮原理。

1)生物脱氮的基本原理

传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。

①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;

②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为N02和NO 3的过程;

③反硝化(Denitrification):废水中的NO 2和NO 3在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。

其中硝化反应分为两步进行:亚硝化和硝化。硝化反应过程方程式如下所示:

①亚硝化反应:NH4++ 1.5O2T NO 2-+H 2O+2H +

②硝化反应:NO2-+0.5O 2—NO3-

③总的硝化反应:NH4++2O2—NO3-+H 2O+2H +

反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电子供体为例):

第一步:3NO 3-+CH 3OH —3NO 2-+2H 2O+CO 2

第二步:2H ++2NO 2-+CH 3OH —N2+3H 2O+CO 2

第三步:6H + +6NO 3-+5CH 3OH —3N2 + 13H 2O+5CO 2

2)本系统脱氮原理

针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在0池中未被完全硝化生成N0 3-,而是生成了大量的N0 2--N,但在A池N0 2-同样被作为受氢体而进行脱氮

(上述第二步可知);再者在A池N02-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++N0 2-—N2+2H 20。

因此针对本系统而言,A/0工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。

2.5.2工艺特征

A/0脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的N0 3-在脱

氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中B0D5/N0 3-过高,从而是反硝化菌无足够的N03-

或N02-作电子受体而影响反硝化速率,如内回流比过高,则将导致

BOD5/NO3-或BOD5/NO3-等过低,同样将因反硝化菌得不到足够的碳源作电子供体而抑制反硝化菌的生长。

A/O工艺中因只有一个污泥回流系统,因而使好氧异养菌、反硝化菌和硝化菌都处于缺氧/好氧交替的环境中,这样构成的一种混合菌群系统,可使不同菌属在不同的条件下充分发挥它们的优势。将反硝化过程前置的另一个优点是可以借助于反硝化过程中产生的碱度来实现对硝化过程中对碱度消耗的内部补充作用。图 2.3所示为

A/O脱氮工艺的特性曲线。由图可见,在脱氮反应池(A段)中,进入脱氮池的废水中的COD、BOD5和氨氮的浓度在反硝化菌的作用下均有所下降(COD和BOD5的下降是由反硝化菌在反硝化反过程中对碳源的利用所致),而氨氮的下降则是由反硝化菌的微生物细胞合成作用以及短程硝化-厌氧氨氧化所致),NO3-的浓度则因反硝化作用而有大幅度下降;在硝化反应池(O段)中,随硝化作用的进行,NO3- 的浓度快速上升,而通过内循环大比例的回流,反硝化段的NO 3-N

含量通过反硝化菌的作用明显下降,COD和BOD5则在异养菌的作用下不断下降。氨氮浓度的下降速率并不与NO 3-浓度的上升相适应,这主要是由于异养菌对有机物的氨化而产生的补偿作用造成的。

原污水

浓度

图2.3 A/O脱氮工艺

反硝化BOD降解、硝化的特性曲线

与传统的生物脱氮工艺相比,A/O系统不必投加外碳源,可充分利用原污水中的有机物作碳源进行反硝化,同时达到降低BOD5和脱氮的目的;A/O系统中缺氧反硝化段设在好氧硝化段之前,因而当原水中碱度不足时,可利用反硝化过程中产生的碱度来补充硝化过程中对碱度的消耗。此外,A/O工艺中只有一个污泥回流系统,混合菌群交替处于缺氧和好氧状态及有机物浓度高和低的条件,有利于改善污泥的沉降性能及控制污泥的膨胀。生物脱氮反应过程各项生物反应特征见表2.2所示。

表2.2生物脱氮反应过程中各项生物反应特征(参考值)

根据废水的脱氮水质、处理目标、出水要求,选择A/0脱氮工艺时,其参数一般也有所不同。通常情况下,可以按照表 2.3选用各参数。

表2.3 A/O法工艺参数(参考值)

2.5.3影响因素与控制条件

1)硝化反应主要影响因素与控制要求

①好氧条件,并保持一定的碱度。氧是硝化反应的电子受体,硝

化池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L 时,氨的硝态反应将受到抑制。

硝化菌对pH值的变化十分敏感,为保持适宜pH值,废水应保持足够的碱度以调节pH值的变化,对硝化菌的适宜pH值为8.0~8.4

②混合液中有机物含量不宜过高,否则硝化菌难成为优势菌种。

相关文档