文档库 最新最全的文档下载
当前位置:文档库 › 萨澳(SAUER DANFOSS)进口泵中文样本--25

萨澳(SAUER DANFOSS)进口泵中文样本--25

萨澳(SAUER DANFOSS)进口泵中文样本--25
萨澳(SAUER DANFOSS)进口泵中文样本--25

D a t a S h e e

t

联系地址:

萨澳行走液压(上海)有限公司

中国 上海 桂平路418号

兴园科技广场309室 邮政编码:200233

电话:86-21-64950505 传真:86-21-64952622

S20+TMM 混凝土搅拌车系统解决方案

S20+TMM

混凝土搅拌车驱动系统

简介

萨澳-丹佛斯公司已经推出混凝土搅拌车S20+TMM驱动系统,它的开发源于本公司产品在全球混凝土搅拌车市场中三十余年的应用经验。易于操控,运行稳定,紧凑的外形尺寸是此系统的主要特点。

系统成套供应商萨澳-丹佛斯公司提供全系列的6-12m 3搅拌车滚筒驱动系统。

S20+TMM系统由S20变量柱塞泵,TMM 柱塞定量马达,TMG减速器组成。

特 点

·S20变量柱塞泵

–被验证了的最优的9柱塞缸体 旋转组件

–更小的外形尺寸,更高的效率 –系统A,B口全部为SAE标准法兰 油口

–采用高效率的圆锥滚子轴承, 使泵能承受高的径向负载 –手动控制,并具备恒速控制 和电控选项

·TMM柱塞定量马达

–被验证了的最优的9柱塞缸体 旋转组件

–马达的排量与泵的一致 –系统A,B口全部为全部为SAE 标准法兰油口

–更小的外形尺寸,更高的效率 –集成高压溢流阀和回路冲洗阀

·TMG减速器

–被多年使用验证了的设计 –更低的噪音

–更加适用于复杂路面的工况 –有更强的抗振动和冲击的能力

S20+TMM系统技术规格

系统性能参数

系统原理图

M1 M2

L1

L1A

M

A

L2

L2S B

B M3M2

N

M1

Z 视图

P000 022E

* 最大及最小角度 α,(见视图 伺服排量控制)

** 花键轴数据:渐开线花键 标准: SAE,1963,等级1 圆弧齿根,齿侧定心

S2O变量柱塞泵SPV2/070外形图纸

Y 视图

补油泵安装位置顺时针旋转时(R )

L ) "A"

"L2":P005 107E

X 视图( SPV 2/070

时)

控制手柄花键轴数据:Z

补油泵吸油口最大拧紧力矩 (7/8 -14 UNF - 2B) is 22 - 28 Nm [195 - 248 lbf?in]

Z 视图

P000 022E

* 最大及最小角度 α, (见视图 伺服排量控制)

** 花键轴数据:渐开线花键 标准: SAE,1963,等级1 圆弧齿根,齿侧定心

S2O变量柱塞泵SPV2/089外形图纸

Y 视图

补油泵安装位置顺时针旋转时(R )

L ) "A"

"L2":油口P005 107E

X 视图 (SPV 2/089 时)

64Z

补油泵吸油口最大拧紧力矩 (7/8 -14 UNF - 2B) is 22 - 28 Nm [195 - 248 lbf?in]

马达输出轴旋向

E

420500T 顺时针(CW)逆时针(CCW)

出出

入油口A

油口B P005 006E

7/8-14 UNF-2B

95190,3

P005 007E

低压口:M2低压口:M1可选项:M121,59/16-18 UNF B 系统压力油口

系统压力油口可选项:M121,59/16-18 UNF

A 可选项:高压流溢阀“B”

可选项:高压流溢阀“A”回路冲洗阀

辅助堵头

M121,5

深度:12.7 min.

164[6,456]

TMM定量马达外形图纸

萨澳-丹佛斯(上海)有限公司售后服务中心

中国 上海 浦东新区 金桥出口加工区 榕桥路626号邮政编码:201206电话:86-21-58345876 传真:86-21-5834 5748萨澳行走液压(上海)有限公司

中国 上海 桂平路418号兴园科技广场309室邮政编码:200233电话:86-21-64950505 传真:86-21-64952622

萨澳-丹佛斯全球服务网络链接

https://www.wendangku.net/doc/e611011719.html,/ContactUs/index.htm

产品系列

开式回路轴向柱塞泵及马达齿轮泵及马达风扇驱动系统

闭式回路轴向柱塞泵及马达斜轴柱塞变量马达静液压传动搅拌车驱动系统静液压传动桥电液控制装置成套系统微控制器及软件PLUS+1TM GUIDE

(图形化用户集成开发环境)

图形显示终端操纵手柄传感器摆线马达逆变器电动力转向装置液压动力转向装置液压集成块插装阀方向阀比例阀

萨澳-丹佛斯公司

-全球液压传动市场的领导者

萨澳-丹佛斯作为多元化的跨国公司,为全球行走机械市场提供功能完备的成套设备。

萨澳-丹佛斯服务于:农业,建筑,道路建设,物料输送,市政建设,林业,草坪护理机械及其他领域市场。

萨澳-丹佛斯为客户量身定制最优的系统解决方案,并致力在新产品及新系统的开发中,与客户建立常期紧密的合作伙伴关系。

萨澳-丹佛斯专业于全方位元件系统集成,为行走机械设计者提 供最先进全面的系统解决方案。

萨澳-丹佛斯通过遍布全球的授权服务网络,为客户提供全球化 售前及售后服务。

齿轮泵的使用方法及注意事项

电动机知识 齿轮泵的使用方法及注意事项 齿轮泵的使用方法如下: 1、齿轮泵使用前必须检查泵和电动机的情况。例如,有无卡住和不灵活;填料是否严密;各部件连接是否牢固可靠;润滑油(脂)是否适量等。尤其十分重要的是,启动前必须打开排出阀和排出管路上的有关阀门。 2、齿轮油泵在运转中禁止关闭排出阀门。其享因是液体几乎是不可压缩的。启动和运转中关闭排出阀门,会使泵或管路憋坏,还可能烧坏电动机。 在运转中应当用“听声音、看仪表、模温度”的办法随时掌握二怍情况,同时要保证各部润滑良好。 3、齿轮泵的流量调节主要是采用旁通阀门开启主进行调节。 4、禁止关闭排出阀门。齿轮泵在启动和停泵时,关闭排出阀门会将憋坏或烧坏电动机。为了安全,除了泵装有安全阀门外,在泵管路上还安装有回流管,启动时可打开回流管上的阀门,以减少电动机的负荷。 匿名 随着起重机的不断发展,传统控制技术难以满足起重机越来越高的调速和控制要求。在电子技术飞速发展的今天,起重机与电子技术的结合越来越紧密,如采用PLC取代继电器进行逻辑控制,交流变频调速装置取代传统的电动机转子串电阻的调速方式等。在选型对比基础上,本项目电动机调速装置采用了先进的变频调速方案,变频器最终选型为ABB变频器ACS800,电动机选用专用鼠笼变频电动机。在众多交流变频调速装置中,ABB变频器以其性能的稳定性,选件扩展功能的丰

富性,编程环境的灵活性,力矩特性的优良性和在不同场合使用的适应性,使其在变频器高端市场中占有相当重要的地位。ACC800变频器是ACS800系列中具有提升机应用程序的重要一员, 它在全功率范围内统一使用了相同的控制技术,例如起动向导,自定义编程,DTC控制等,非常适合作为起重机主起升变频器使用。本文结合南京梅山冶金发展有限公司设备分公司所负责维修管理的宝钢集团梅钢冷轧厂27台桥式起重机变频调速控制系统,详细介绍ACC800变频器在起重机主起升中的应用。 1DTC控制技术 DTC(直接转矩控制,DirectTorqueControl)技术是ACS800变频器的核心技术,是交流传动系统的高性能控制方法之一,它具有控制算法简单,易于数字化实现和鲁棒性强的特点。其实质是利用空间矢量坐标的概念,在定子坐标系下建立异步电动机空间矢量数学模型,通过测量三相定子电压和电流(或中间直流电压)直接计算电动机转矩和磁链的实际值,并与给定转矩和磁链进行比较,开关逻辑单元根据磁链比较器和转矩比较器的输出选择合适的逆变器电压矢量(开关状态)。定子给定磁链和对应的电磁转矩的实际值,可以用定子电压和电流测量值直接计算得到。在计算中,只需要一个电动机参数―――定子电阻,这一点和几乎需要全部电动机参数的直接转子磁链定向控制(矢量控制)形成了鲜明对比,极大地减轻了微处理器的计算负担,提高了运算速度 。直接转矩控制结构较为简单,可以实现快速的转矩响应(不大于5ms)。 2防止溜钩控制

齿轮泵简介和修理

齿轮泵的简介和修理 关键词:齿轮泵工作原理流量公式间隙检修内容 前言:因齿轮泵结构简单,经久耐用,故已取代柱塞泵,但在修理时若稍微不注意就会出现打量变差的现象,希望此文能对此类泵检修有所帮助。 齿轮泵的工作原理,它的结构很简单,其基本形式就是两个尺寸相同的齿轮在一个紧密配合的壳体内相互啮合旋转,这个壳体的内部类似“8”字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合。来自于管道或容器的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。 齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。如果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将保持恒定的流量,直至达到装置中最弱的部件的机械极限。 齿轮泵的流量公式为: Q=2qZnηv 式中 Z——齿数; n——转数,转/分; ηv——容积效率,对一般的齿轮泵,其值可取为0.70~0.90; q——两齿之间坑的容积,米3。 当齿轮转动时,被吸进来的液体充满了齿与齿之间的齿坑,并随着齿轮沿外壳壁被输送到压力空间中去。在这里,由于两齿轮的相互啮合,使齿坑内的液体挤出,排向压力管。液体受挤压时,压力作用在齿轮上,给轴施加了一个径向负荷。挤压后封闭空间逐渐增大,形成负压区,外界的液体就在大气压力的作用之下流进齿轮泵吸入口。另外,在负压区由于封闭空间容积的增大,会使液体中的空气和水蒸气析出,发生与汽蚀现象类似的冲蚀作用,使齿轮表面受到破坏。正因为如此,有的齿轮泵上开有平衡孔或平衡槽。然而在大多数情况下,是采用斜齿轮;因为斜齿轮在啮合时封闭空间的容积几乎是不变的,即在其中一段容积增大时,另一段容积却在缩小。所以上述现象并不严重。 齿轮泵的特点是具有良好的自吸性能,且构造简单、工作可靠。 从上面的公式中可以看出,对一确定的齿轮泵(尺寸D、d、b和n都是定值),其排油量也亦确定,是一个不变的定值。因而它的特性曲线是一条垂直线(即不管外界压力如何变化,它的排油量都是固定不变的)。又因为齿轮泵的出口和入口是隔绝的,所以在外界需用油量减少时,会引起出口管道的压力急剧升

齿轮泵工作原理及结构

齿轮泵工作原理及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿轮 泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,

这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对齿轮的齿向啮合线之间形成了一个封闭容积,一部分油液也就被困在这一封闭容积 中〔见图3-5(a)〕,齿轮连续旋转时,这一封闭容积便逐渐减小,到两啮合点处于节点两侧的对称位置时〔见图 3-5(b) 〕,封闭容积为最小,齿轮再继续转动时,封闭容积又 逐渐增大,直到图3-5(c)所示位置时,容积又变为最大。在封闭容积减小时,被困油液受到挤压,压力急剧上升,使轴承上突然受到很大的冲击载荷,使泵剧烈振动,这时高压油从一切可能泄漏的缝隙中挤出,造成功率损失,使油液发热等。当封闭容积增大时,由 于没有油液补充,因此形成局部真空,使原来溶解于油液中的空气分离出来,形成了气 泡,油液中产生气泡后,会引起噪声、气蚀等一系列恶果。以上情况就是齿轮泵的困油现象。这种困油现象极为严重地影响着泵的工作平稳性和使用寿命。

变量齿轮泵

变量齿轮泵 业升级已经变得必要。劳动密集和低附加值制造业将移往中西部地区。这也正在发生,而经济增长由此在这些地区加速。当然,由于这些原因,一些制造业将离开中国到其他发展中国家。 最后,技术创新和升级是至关紧要的。在过去的十年间,中国实施了“市场换技术”政策。然而,这被看做是一个失败,因为很少有真正的技术转让。与此同时,诸多行业市场已经被外国企业占据。面对改变的压力,在国际并购方面政府变得更加谨慎和有保护倾向,特别是在重型机械制造和装备制造产业。相对于自然资源,中国对技术更加饥渴,并最终意识到技术领先,需要依靠其自身的科技。 那么,工业化究竟意味着什么?怎样理解中国的工业化过程? 工业化通常从劳动密集型部门开始,然后转向资本密集部门,比如重化工部门,然后转向技术密集部门,比如机械和电子工业。工业化发展的顺序,伴随着经济体中工业领导部门的变化。 一个正处于工业化过程的国家,通常会经历四个阶段,最终成为一个成熟的工业化经济。 第一,发展中国家阶段,工业制造业基于初级和农业产品,作为其核心的竞争力。初级商品,比其他制造业和机械业拥有更大的竞争力。 第二,年轻的新工业化经济(NIE)阶段,其他制造业比初级商品变得更加富有竞争力,但初级商品依然超过机械业处于领导地位。第三,成熟的新工业化经济阶段,其他制造业赶上初级产品业,且获得了总体的领导地位。 第四, 【KCB/2CY型齿轮油泵】产品: 【KCB/2CY型齿轮油泵】产品简介: 2CY、KCB齿轮式输油泵: 1、本泵适用于输送各种有润滑性的液体,温度不高于70℃,如需高温200℃,同本单位联系可配用耐高温材料即可,粘度为5×10-5~1.5×10-3m2/s。 2、本泵不适用于输送腐蚀性的、含硬质颗粒或纤维的、高度挥发或闪点低的液体,如汽油、笨等。 【KCB/2CY型齿轮油泵】型号意义:

齿轮泵工作原理和结构

齿轮泵工作原理以及结构 齿轮泵 齿轮泵是液压系统中广泛采用的一种液压泵,它一般做成定量泵,按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面以外啮合齿轮泵为例来剖析齿轮泵。 液压齿轮泵主要包括:高压定量齿轮泵,高压双联齿轮泵,润滑泵,化工泵,双向齿轮马达,齿轮泵附调压阀,齿轮泵附升降阀。 齿轮泵的工作原理和结构 齿轮泵的工作原理如图3-3所示,它是分离三片式结构,三片是指泵盖4,8和泵体7,泵体7内装有一对齿数相同、宽度和泵体接近而又互相啮合的齿轮6,这对齿轮与两端盖和泵体形成一密封腔,并由齿轮的齿顶和啮合线把密封腔划分为两部分,即吸油腔和压油腔。两齿轮分别用键固定在由滚针轴承支承的主动轴12和从动轴15上,主动轴由电动机带动旋转。 图3-3 外啮合型齿 轮泵工作原理 CB—B齿轮泵的结构如图3-4所示,当泵的主动齿轮按图示箭头方向旋转时,齿轮泵右侧(吸油腔)齿轮脱开啮合,齿轮的轮齿退出齿间,使密封容积增大,形成局部真空,油箱中的油液在外界大气压的作用下,经吸油管路、吸油腔进入齿间。随着齿轮的旋转,吸入齿间的油液被带到另一侧,进入压油腔。这时轮齿

进入啮合,使密封容积逐渐减小,齿轮间部分的油液被挤出,形成了齿轮泵的压油过程。齿轮啮合时齿向接触线把吸油腔和压油腔分开,起配油作用。当齿轮泵的主动齿轮由电动机带动不断旋转时,轮齿脱开啮合的一侧,由于密封容积变大则不断从油箱中吸油,轮齿进入啮合的一侧,由于密封容积减小则不断地排油,这就是齿轮泵的工作原理。泵的前后盖和泵体由两个定位销17定位,用6只螺钉固紧如图3-3。为了保证齿轮能灵活地转动,同时又要保证泄露最小,在齿轮端面和泵盖之间应有适当间隙(轴向间隙),对小流量泵轴向间隙为 0.025~0.04mm,大流量泵为0.04~0.06mm。齿顶和泵体内表面间的间隙(径向间隙),由于密封带长,同时齿顶线速度形成的剪切流动又和油液泄露方向相反,故对泄露的影响较小,这里要考虑的问题是:当齿轮受到不平衡的径向力后,应避免齿顶和泵体内壁相碰,所以径向间隙就可稍大,一般取0.13~0.16mm。 为了防止压力油从泵体和泵盖间泄露到泵外,并减小压紧螺钉的拉力,在泵体两侧的端面上开有油封卸荷槽16,使渗入泵体和泵盖间的压力油引入吸油腔。在泵盖和从动轴上的小孔,其作用将泄露到轴承端部的压力油也引到泵的吸油腔去,防止油液外溢,同时也润滑了滚针轴承。 图3-4 CB—B齿轮泵的结构 1-轴承外环 2-堵头 3-滚子 4-后泵盖 5-键 6-齿轮 7-泵体8-前泵盖 9-螺钉 10-压环 11-密封环 12-主动轴 13-键 14-泻油孔15-从动轴 16-泻油槽 17-定位销 齿轮泵存在的问题 1、齿轮泵的困油问题 齿轮泵要能连续地供油,就要求齿轮啮合的重叠系数ε大于1,也就是当一对齿轮尚未脱开啮合时,另一对齿轮已进入啮合,这样,就出现同时有两对齿轮啮合的瞬间,在两对

齿轮泵结构原理介绍

CB-B10低压齿轮油泵是将机械能转换为液压能的转换装置。 CB-B10齿轮泵应用范围:用于机床、工程机械的液压系统,作为液压系统的动力源,也可作润滑泵,输油泵使用。 CB-B10齿轮泵型号 CB-B10齿轮泵外形图 CB-B10齿轮泵技术参数 型号 额定流量 h/min 额定压力 Pa 额定转速 min 容积效率 ηv% 总效率 ηbdt% 压力脉动 Pa 噪声值 分贝 电机功率 w 重量 g CB-B2.5 2.5 2.5 1450 ≤70 ≤63 ±0.20 62~65 0.37 2.4 CB-B4 4 ≤80 ≤72 2.8 CB-B6 6 0.55 3.2 CB-B10 10 ≤90 ≤81 3.5 CB-B16 16 67~70 1.1 5.2 CB-B20 20 5.4 CB-B25 25 1.5 5.5 CB-B32 32 ≤94 ≤85 6.0 CB-B40 40 74~77 2.2 10.5 CB-B50 50 11.0 CB-B63 63 3 11.8 CB-B80 80 78~80 4 17.6 CB-B100 100 ≤95 ≤86 18.7 CB-B125 125 5.5 19.5

CB-B10齿轮泵技术规格 型号 C E H C 1 C 2 D D 1 d E 1 T b M K 1 K 2 CB-B2.5 79 66 96 25 30 a35 a50 a12 35 30 4 M6 Z 3 /8" Z 3 /8" CB-B4 82 CB-B6 86 CB-B10 94 CB-B16 107 90 132 30 35 a50 a65 a6 50 42 5 M8 Z 3 /4" Z 3 /4" CB-B20 111 CB-B25 115 CB-B32 121 CB-B40 132 102 154 35 40 a55 a80 a22 55 52 6 M8 Z1" Z 3 /4" CB-B50 138 CB-B63 144 CB-B80 158 121 186 45 50 a70 a95 a30 65 65 8 M8 Z 1 /4" Z1" CB-B100 165 CB-B125 174 CB-B10低压齿轮油泵是将机械能转换为液压能的转换装置。 CB-B10齿轮泵应用范围:用于机床、工程机械的液压系统,作为液压系统的动力源,也可作润滑泵,输油泵使用。 CB-B10齿轮油泵,CB-B16齿轮油泵,CB-B25齿轮油泵,CB-B32齿轮油泵,CB-B40齿轮油泵,CB-B50齿轮油泵,CB-B63齿轮油泵,CB-B80齿轮油泵,CB-B100齿轮油泵,CB-B125齿轮油泵是将机械能转换为液压能的转换装置。 CB-B10齿轮泵,CB-B16齿轮泵,CB-B25齿轮泵,CB-B32齿轮泵,CB-B40齿轮泵,CB-B50齿轮泵,CB-B63齿轮泵,CB-B80齿轮泵,CB-B100齿轮泵,CB-B125齿轮泵应用范围:用于机床、工程机械的液压系统,作为液压系统的动力源,也可作润滑泵,输油泵使用。 XCB-B10齿轮油泵,XCB-B16齿轮油泵,XCB-B25齿轮油泵,XCB-B32齿轮油泵,XCB-B40齿轮油 泵,XCB-B50齿轮油泵,XCB-B63齿轮油泵,XCB-B80齿轮油泵,XCB-B100齿轮油泵,XCB-B125齿轮油泵 齿轮泵工作原理是通过齿轮啮合产生的空间将油从油箱挤压到润滑部位 在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。如果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将保持恒定的流量,直至达到装置中最弱的部件的机械极限(通常装有一个扭矩限制器)。 对于一台泵的转速,实际上是有限制的,这主要取决于工艺流体,如果传送的是油类,泵则能以很高的速度转动,但当流体是一种高粘度的聚合物熔体时,这种限制就会大幅度降低。推动高粘流体进入吸入口一侧的两齿空间是非常重要的,如果这一空间没有填充满,则泵就不能排出准确的流量,所以PV 值(压力×

齿轮泵常见问题分析报告

遇事询问:班次、何人、数量、那几台机床、目前状况。 齿轮泵提高容积效率的方法 增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。 方法有两方面。1 增大流量 2减小内泄。 具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。 液压齿轮泵扭矩大是哪的原因? 齿轮中心距偏小,或者配合面粗糙度不高,配合尺寸偏紧。 齿轮泵容积效率 增加容积效率对于齿轮泵而言就是增大供油量与内泄的比例。方法有两方面。1 增大流量 2减小内泄。具体方法有 1增大模数、减少齿数、增加转速、使卸荷槽适当偏向排油一侧。 2压力较高时用间隙补偿结构就是加浮动侧板、提高加工精度主要是减小齿轮端面跳动。 工艺改进齿轮泵效率容积和性能的讨论 文章热度:105 齿轮泵容积效率较低,主要是端面泄漏较大,约占总泄漏量的70~80%.所以,提高齿轮泵的端盖和壳体之间的配合精度,提高泵的容积效率和性能是技术人员努力的方向。齿轮泵端面和壳体的加工基本上是定位销来保证其加工和配合精度。但是由于定位销孔的孔径尺寸较小,仅为φ8mm,而且加工精度、内表面粗糙度等要求较高,我们以前经过多方努力,

采用各种加工方法,质量仍难以保证,对此,我们进行了一定的研究,改进了加工和装配工艺,取得了一定的效果。 齿轮泵端盖与壳体配合误差对泵的性能和效率的影响 主动齿轮回转轴线与前盖定位止口同轴度误差大,齿轮旋转阻力大,甚至卡死,造成泵的机械性能大大下降。零件的动配合不好,磨损加快,缩短了齿轮泵的使用寿命,并且浮动轴套轴向移动阻力较大,使齿轮泵端面与轴套之间的间隙不能及时消除,甚至不能移动,导致齿轮泵容积效率下降。另外,由于主动轮轴与传动轴受其自身同轴度的影响,加大了泵的振动和噪声。 定位销孔加工工艺比较及试验 一、定位销加工工艺比较 (1)采用钻、铰(钻模)工艺,虽然保证了2-φ8mm孔径尺寸精度和内径表面粗糙度,但销孔孔距误差大,而且不太稳定。 (2)采用钻、成型(模具挤压)工艺,虽然保证了两销孔加工精度、孔径精度,并且稳定可靠,但是又带来销孔表面粗糙、部分孔径不圆度增大的问题。 (3)在两个+13mm紧固螺钉孔口部添置套管销,去掉原来2-φ8mm销孔,采用钻、铰、镗工艺,保证了各方面的精度,但是工艺复杂,成本较高。针对以上情况,我们进行了分析研究,认为解决定位销问题是关键所在,改进加工工艺是解决问题的路子。 二、对比试验分析 我们采用一个定位销和主动轮轴作为定位加工、装配,去掉另一个定位销,然后再随机抽取六台齿轮泵分三组按不同的组装方式在齿轮泵全性能试验台上做性能试验,检测它们在试验前和试验后主动轮轴线与前盖定位止口同轴度的误差变化,从而选取最佳方案。具体情况如表1。 从表1上对比情况可见,第三种方法径向跳动变化最小,证明采用这种工艺方案是成功可行的。为了提高齿轮泵的装配精度,我们又专门设计制造了以主动齿轮轴为基准的定位夹具,在装配时利用该夹具将前盖位置精确地控制后,再拧紧四只紧固螺钉。 4结束语 实践证明,采用新的工艺以后,较好地解决齿轮泵的端盖和壳体之间的配合及加工问题,保证了泵的各项技术指标,提高了泵的容积效率和机械性能,取得了较为满意的效果,并且较为经济实用。 油泵常见故障排除方法

齿轮泵说明书

目录 1.绪论 (2) 1.1大型工程软件CATIA介绍。 (2) 1.2 本次课程设计的主要内容及目的 (3) 2. 齿轮泵各部分零件的建模过程 (3) 2.1垫片的建模 (3) 2.2压盖的建模 (5) 2.3轴的建模过程 (5) 2.4填料的建模 (8) 2.5泵盖的建模 (11) 2.6带轮的建模 (14) 2.7被动轴的建模 (18) 2.8泵体的建模 (19) 2.9齿轮的建模 (28) 3齿轮泵的装配 (35) 3.1 将各部件的导入CATIA装配模块并利用约束命令确定位置关系 (35) 4. 齿轮泵总成及部分零件的工程图绘制 (39) 4.1泵体工程图绘制 (39) 4.2齿轮泵工程图绘制 (39) 结束语 (40) 1 课程设计的主要工作 (40) 2 课程设计中存在的不足 (41) 参考文献 (41)

1.绪论 1.1大型工程软件CATIA介绍。 CA TIA的全称为Computer Aided Three Dimensional Interaction Application System(计算机辅助三维/二维交互式应用系统),是由法国达索系统公司(Dassault Systemes,DS)开发的集成了CAD、CAM和CAE的大型软件,凭借其突出的技术优势在制造业的各个领域得到了广泛的应用,成为全球制造业的主流设计软件。利用CATIA中的机械设计中零部件设计模块进行三维建模,所画图形一目了然;用线框与线条模块进行曲面设计;所做图形清晰流畅。 CA TIA已经成了汽车工业CAD/CAM的事实标准,欧洲、北美和亚洲的顶尖汽车制造商纷纷采用其作为核心系统。在航空工业领域,空中客车公司、Pratt&Whimey、EADS、洛克西德马丁、美国联合航空公司、达索航空等都选用CA TIA进行新产品设计。著名的丰田汽车公司、VOLVO卡车、TODA 赛车等都从其他系统转到CA TIA进行新产品的设计。电子家电行业的索尼、三洋、松下、先锋、伊莱克斯、香港亚伦,船舶行业的IHl、NKK、烟台莱福士造船厂,机车行业的阿尔斯通、邦巴迪、西门子,消费品行业的可口可乐、Evian、Swatch,轮胎行业的固特异、米其林以及机械各行业等,CA TIA的客户遍及世界各地。 国内的哈尔滨、沈阳、西安、成都、景德镇、上海、贵阳等航空飞机设计制造厂也都无一例外地都选用CATIA作为其核心设计和加工软件。包括一汽大众、东风集团、沈阳金杯、上海大众、南汽集团、北京吉普、武汉神龙、西安长安、哈飞松花江等在内的许多汽车公司都选用CA TIA开发其最新车型。随着中国制造业的发展,特别是汽车工业的发展,越来越多的国际厂商把生产和开发工作引

齿轮泵简介(中英对照)

Gear pump Chinese Name: gear pump Name: gear pump Definition: rely sealed in a housing of two or more gears, the work space is generated in the process of mutual engagement volume change to liquid delivery pump. Applied disciplines: mechanical engineering (a subject); drive (two subjects); hydraulic transmission (two subjects) The gear pump is to rely on the change and moving of the working volume of the pump cylinder and the ring gear formed between rotary pumps for conveying liquid or so pressurized. Form two closed space by two gears, pump, front and rear cover, when the gear is rotated, the gear is disengaged from the side of the space volume grew larger, forming a vacuum, the liquid suction, the gear meshing side of the volume of the space from large small, while the liquid squeeze into the pipeline to go. The suction chamber and the discharge chamber is spaced by two gears meshing line to. The outlet pressure of the gear pump is entirely dependent on the size of the pump source resistance. The concept of the working principle of the gear pump is very simple, i.e. in its most basic form is the same as the two dimensions of the gear in a close fit within the housing. The engagement rotation, the interior of the housing is similar to the "8" shape, the two gears are mounted on the inside, the outside diameter of the gear, and both sides of the housing close fit. From the extruder, the material in the suction port into the middle of the two gears, and to fill this space, the rotation direction of the housing with the teeth movement, and finally discharged in the two toothing. Speaking in terminology, gear pump, also called a positive displacement device, i.e. as a cylinder bore of the piston, when one tooth into the fluid space of another tooth, the liquid is mechanically squeezed row out. Because the liquid is incompressible, so the liquid and the tooth at the same time can not occupy the same space, so that the liquid has been excluded. This phenomenon continuously occurs due to the continuous engagement of the teeth, and, therefore, at the outlet of the pump provides a continuous excluded volume pump per revolution, the same amount of discharged. With the uninterrupted rotation of the drive shaft, the pump also continuously discharged fluid. The pump flow is directly related to the speed of the pump. In fact, in a pump with a small amount of fluid loss, which makes the efficiency of the operation of the pump can not reach 100%, because these fluids are used to lubricate bearings and gears on both sides, and the pump body can never be a clearance fit, so can not make 100% of fluid from the outlet, so a

齿轮泵的介绍

齿轮泵的介绍 齿轮泵是依靠泵缸与啮合齿轮间所形成的工作容积变化和移动来输送液体或使之增压的回转泵。由两个齿轮、泵体与前后盖组成两个封闭空间,当齿轮转动时,齿轮脱开侧的空间的体积从小变大,形成真空,将液体吸入,齿轮啮合侧的空间的体积从大变小,而将液体挤入管路中去。吸入腔与排出腔是靠两个齿轮的啮合线来隔开的。齿轮泵的排出口的压力完全取决于泵出处阻力的大小。 齿轮泵的基本概念:齿轮泵的概念是很简单的,即它的最基本形式就是两个尺寸相同的齿轮在一个紧密配合的壳体内相互啮合旋转,这个壳体的内部类似“8”字形,两个齿轮装在里面,齿轮的外径及两侧与壳体紧密配合。来自于挤出机的物料在吸入口进入两个齿轮中间,并充满这一空间,随着齿的旋转沿壳体运动,最后在两齿啮合时排出。 在术语上讲,齿轮泵也叫正排量装置,即像一个缸筒内的活塞,当一个齿进入另一个齿的流体空间时,液体就被机械性地挤排出来。因为液体是不可压缩的,所以液体和齿就不能在同一时间占据同一空间,这样,液体就被排除了。由于齿的不断啮合,这一现象就连续在发生,因而也就在泵的出口提供了一个连续排除量,泵每转一转,排出的量是一样的。随着驱动轴的不间断地旋转,泵也就不间断地排出流体。泵的流量直接与泵的转速有关。 实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。 对于粘度或密度在工艺中有变化的流体,这种泵不会受到太多影响。如果有一个阻尼器,比如在排出口侧放一个滤网或一个限制器,泵则会推动流体通过它们。如果这个阻尼器在工作中变化,亦即如果滤网变脏、堵塞了,或限制器的背压升高了,则泵仍将保持恒定的流量,直至达到装置中最弱的部件的机械极限(通常装有一个扭矩限制器)。对于一台泵的转速,实际上是有限制的,这主要取决于工艺流体,如果传送的是油类,泵则能以很高的速度转动,但当流体是一种高粘度的聚合物熔体时,这种限制就会大幅度降低。 齿轮泵的驱动装置:齿轮泵由一个独立的电机驱动,可有效地阻断上游的压力脉动及流量波动。在齿轮泵出口处的压力脉动可以控制在1%以内。在挤出生产线上采用一台齿轮泵,

齿轮泵有关知识

齿轮泵学习资料

一.概述 齿轮泵是机器润滑、供油(或其它液体)系统中的一个部件。其体积小,要求传动平稳,保证供油,不能有渗漏。它也是液压系统中广泛采用的一种液压泵,一般做成定量泵。 二.齿轮泵的工作原理 当一对齿轮在泵体内做啮合传动时,啮合区前边空间的压力降低而产生局部真空,油池内的油在大气压作用下进入油泵低压区内的进油口,随着齿轮的传动,齿槽中的油不断被带至后边的出油口把油压出,从而提高油的压力,送至机器中需要润滑的部位。主动齿轮通过轴端的皮带轮与动力(如电动机)相连接,为了防止油沿主动齿轮轴外渗,用密封填料、填料压盖、螺钉组成一套密封装置。一般齿轮泵有两条装配线,一条是传动装配线,一条是从动装配线。装配线上是一对啮合齿轮,为标准直齿圆柱齿轮,其齿根圆直径与轴径相差较小,因此和轴均做成一体,叫齿轮轴。泵体与泵盖间采用毛毡纸垫密封,两零件之间采用两销钉定位,以便安装。 泵的流量直接与泵的转速有关。实际上,在泵内有很少量的流体损失,这使泵的运行效率不能达到100%,因为这些流体被用来润滑轴承及齿轮两侧,而泵体也绝不可能无间隙配合,故不能使流体100%地从出口排出,所以少量的流体损失是必然的。然而泵还是可以良好地运行,对大多数挤出物料来说,仍可以达到93%~98%的效率。 三.齿轮泵的分类 按结构不同,齿轮泵分为外啮合齿轮泵和内啮合齿轮泵,而以外啮合齿轮泵应用最广。下面分别以内、外啮合齿轮泵为例来剖析齿轮泵。 1.外啮合齿轮泵 齿轮泵工作原理很简单,外齿轮泵就是一个主动轮一个从动轮,两个齿轮参数相同,在一个泵体内做旋转运动。在这个壳体内部形成类似一个“8”字形的工作区,齿轮的外径和两侧都与壳体紧密配合,传送介质从进油口进入,随着齿轮的旋转沿壳体运动,最后从出油口排出,最后将介质的压力转化成机械能进行做功。以下是四张为外啮合齿轮泵工作原理图:

内外啮合齿轮泵的简单介绍

内外啮合齿轮泵的简单介绍 内啮合齿轮泵的工作原理及优缺点 内啮合齿轮泵的工作原理也是利用齿间密封容积的变化来实现吸油压 油的。它是由配油盘(前、后盖)、外转子(从动轮)和偏心安置在泵体内的内转子(主动轮)等组成。内、外转子相差一齿,图中内转子为六齿,外转子为七齿,由于内外转子是多齿啮合,这就形成了若干密封容积。 内啮合齿轮泵有许多优点,如结构紧凑,体积小,零件少,转速可高达10000r/mim,运动平稳,噪声低,容积效率较高等。缺点是流量脉动大,转子的制造工艺复杂等,目前已采用粉末冶金压制成型。随着工业技术的发展,摆线齿轮泵的应用将会愈来愈广泛。内啮合齿轮泵可正、反转,可作液压马达用。 当内转子围绕中心O1旋转时,带动外转子绕外转子中心O2作同向旋转。这时,由内转子齿顶A1和外转子齿谷A2间形成的密封容积C(图中阴线部分),随着转子的转动密封容积就逐渐扩大,于是就形成局部真空,油液从配油窗口b被 吸入密封腔,至A1′、A2′位置时封闭容积最大,这时吸油完毕。 当转子继续旋转时,充满油液的密封容积便逐渐减小,油液受挤压,于是通过另一配油窗口a将油排出,至内转子的另一齿全部和外转子的齿凹A2全部啮合时,压油完毕,内转子每转一周,由内转子齿顶和外转子齿谷所构成的每个密封

容积,完成吸、压油各一次,当内转子连续转动时,即完成了液压泵的吸排油工作。内啮合齿轮泵的外转子齿形是圆弧,内转子齿形为短幅外摆线的等距线,故又称 为内啮合摆线齿轮泵,也叫转子泵。 外啮合齿轮泵的结构及工作原理 它由装在壳体内的一对齿轮所组成,齿轮两侧有端盖壳体、端盖和齿轮的各个齿间槽组成了许多密封工作腔。当齿轮按图示方向旋转时,右侧吸油腔由于相互啮合的轮齿逐渐脱开,密封工作容积逐渐增大,形成部分真空,因此油箱中的油液在外界大气压力的作用下,经吸油管进入吸油腔,将齿间槽充满,并随着齿轮旋转,把油液带到左侧压油腔内。 在压油区一侧,由于轮齿在这里逐渐进入啮合,密封工作腔容积不断减小,油液便被挤出去,从压油腔输送到压力管路中去。在齿轮泵的工作过程中,只要两齿轮的旋转方向不变,其吸、排油腔的位置也就确定不变。这里啮合点处的齿面接触线一直分隔高、低压两腔起着配油作用,因此在齿轮泵中不需要设置专门的配流机构,这是它和其它类型容积式液压泵的不同之处。 相关链接:https://www.wendangku.net/doc/e611011719.html,/news/sybz/1080.shtml

相关文档