文档库 最新最全的文档下载
当前位置:文档库 › 第六节 朱世杰及元代数学

第六节 朱世杰及元代数学

第六节 朱世杰及元代数学
第六节 朱世杰及元代数学

第六节朱世杰及元代数学

一、元初数学成就

1.王恂的数学工作

王恂(1235—1281),元代数学家.字敬甫,唐县(今属河北)人.他“六岁就学,十三岁学九数,辄造其极”.后从刘秉忠学,官至太史令.至元十七年(1280)与天文学家郭守敬(1231—1316)等共同编成《授时历》,其中的数学工作主要是王恂作的.

唐代张遂制订历法时,假定太阳作匀加速运动,所以使用二次内插法.但实际上,太阳运行的加速度是不断变化的.在《授时历》中,王恂把太阳、月亮及五星的视行度当作时间的三次函数,采用三次内插法来求函数值,收到更好效果.但确定天体位置需要使用赤道坐标和黄道坐标,王恂之前是直接通过天文观测来确定这两种坐标的.王恂首先注意到两种坐标的数学关系,提出如下问题:已知太阳的“黄道积度”,求“赤道积度”和“赤道内外度”.如图8.16,设A为春分点,D为夏至点,

其中d为直径,BN⊥OC,CP⊥OE.只要测得黄道坐标,便可利用上述公式及其他有关知识推出相应的赤道坐标,从而使人们经过较少的实测,得到较多的结果.

2.赵友钦的割圆术

赵友钦,元代天文学家、数学家.字子公,号缘督先生,鄱阳(今江西鄱阳)人,生卒年不详.所著《革象新书》是一部天文数学著作.

作圆内接正方形,然后不断倍增边数,依次求得各内接正多边形边长(图8.17).“置第十二次之小弦以第十二次之曲数一万六千三百八十四乘之,得三千一百四十一寸五分九厘二毫有奇,即是千寸径之周围也.”

周率近似值中最准确的一个.赵友钦说:“自一、二次求之以至一十二次,可谓极其精密.若节节求之,虽至千万次,其数终不穷.”可见他不仅认识到圆内接正多边形的极限位置是圆,而且认识到极限是一个不可穷尽的过程,这种思想与现代极限观念相当接近.赵友钦还进一步揭示了方、圆关系,说:“要之方为数之始,圆为数之终.圆始于方,方终于圆.”这种“曲直互通”的思想是很深刻的,他已认识到方可转化为圆,而转化的条件便是取极限.

二、朱世杰生平

朱世杰,元代数学家.字汉卿,号松庭,燕山(今北京附近)人,生卒年不详.

元统一中国后,朱世杰曾以数学家的身份周游各地二十余年,向他求学的人很多,他到广陵(今扬州)时“踵门而学者云集”.朱世杰全面继承前人的数学成果,他吸收了高次方程的数值解法,又吸收了北方的天元术及南方的各种日用算法、数学口诀等,在此基础上进行了创造性研究,写成以总结和普及当时各方面数学知识为宗旨的《算学启蒙》(三卷)和四元术的代表作《四元玉鉴》(三卷),先后于1299年和1303年刊印.

朱世杰是元代最杰出的数学家,清罗士琳(1774—1853)说他“兼包众有,充类尽量,神而明之尤超越乎秦(九韶)李(冶)之上.”《四元玉鉴》的成书则标志着宋元数学达到最高峰.美国科学史家萨顿(G.Sarton)称赞该书“是中国数学著作中最重要的一部,也是中世纪的杰出数学著作之一.”

三、《算学启蒙》

《算学启蒙》的内容由浅入深,次第谨严,从一位数乘法开始,一直讲到当时的最新数学成果——天元术,形成一个完整体系,内容包括多位数乘法、分数四则运算、面积和体积计算、比例问题、垛积术、盈不足术、线性方程组、

高次方程解法等.尤其引人注目的是,卷首“总括”中给出一整套数学概念及运算法则,作为全书的理论基础.其中包括正负数乘法法则及倒数概念.朱世杰明确指出:“同名(号)相乘为正,异名相乘为负.”又指出:“平除长为小长,长除平为小平.……小长平相乘得一步为小积.”这便给出倒数的基本性质

在《算学启蒙》中,朱世杰借助辅助未知数解线性方程组,这在数学史上还是首次.例如卷下“方程正负门”第五题,依术列方程组如下(改用现代符号):

这种方法对于简化运算程序是很有意义的,系数越复杂,设辅助未知数的方法就越有用.另外,书中把天元术广泛用于各种面积和体积问题,导出许多高次方程,这说明天元术在李冶的基础上有了进一步的发展.朱世杰还致力于算法研究,给出一些新的公式,如“开方释锁门”给出根式运算法则

其中n,a,b为自然数,n≥2.

《算学启蒙》为《四元玉鉴》提供了必要的预备知识,正如罗士琳所说,该书“似浅实深”,与《四元玉鉴》“相为表里”.

四、《四元玉鉴》

《四元玉鉴》的主要成就是四元术,即四元高次方程组的建立和求解方法.在他之前,已有李德载《两仪群英集臻》讨论二元术,刘大鉴《乾坤括囊》讨论三元术.在此基础上,朱世杰“演数有年,探三才之赜,索九章之隐,按天、地、人、物立成四元”(《四元玉鉴》后序),创立了举世闻名的四元术.

朱世杰的天、地、人、物,相当于现在的x,y,z,u,其摆法如图8 .18,例如方程-x

2+3xy-2xz+x-y-z=0

(卷下“三才变通”第1题)

2u 4

-u

3

-u

2+3u-8z2+2xz+2xy+6yz=0

(卷下“四象朝元”第6题)

分别摆成图8.19和图8.20的形状.

《四元玉鉴》共24门288问,所有问题都与方程或方程组有关.题目顺序大体是先方程后方程组,先线性方程组后高次方程组.朱世杰创造了一套完整的消未知数方法,称为四元消法.这种方法在世界上长期处于领先地位,直到18世纪,法国数学家贝祖(E.Bezoub,1730—1783)提出一般的高次方程组解法,才超过朱世杰.但朱世杰的消法要点仅见于书首“假令四草”,其他各题均无草.书首还列有“今古开方会要之图”、“四元自乘演段之图”、“五和自乘演段之图”和“五较自乘演段之图”,这些图的作用也是统御全书.朱世杰说:“凡习四元者,以明理为务.必达乘除、升降、进退之理,乃尽性穷神之学也.”卷首各图便是为“明理”而作,他说:“夫算中玄妙,无过演段.如积幽微,莫越认图.其法奥妙,学者鲜能造其微.前明五和,次辨五较,自知优劣也.”

《四元玉鉴》表明,朱世杰在方程领域取得重要成就.以前的方程都是有理方程,朱世杰则突破有理式的限制,开始讨论无理方程.他不

化为有理方程(见“左右逢源”第21题,“拨换截田”第18题,“四象朝元”第1题).四元消法是朱世杰方程理论的核心.他通过方程组中不同方程的配合,依次消掉未知数,化四元式为一元式,即一元高次方程.三元式和四元式的消法称为“剔而消之”,即把全式剔分为二,进行相消.二元式的消法称为“互隐通分相消”.下面以二元三行式

为例说明其消法.其中各系数是关于另一个未知数的多项式(可以是常数).欲消x2项,先以B2乘(1)式中x2项以外各项,再以A2乘(2)式中x2项以外各项,相减,得

C1x+C0=0. (3)

以x乘(3),得

C1x2+C0x=0. (4)

将(4)与(1)或(2)联立,用同样方法消去x2项,得

D1x+D0=0. (5)

(3)与(5)联立,便为二元二行式.朱世杰称C1,D0为外二行,C0,D1为内二行.内二行乘积与外二行乘积相减,得

C1D0-C0D1=0.

这便消去x,得到只含另一个未知数的一元方程了.

《四元玉鉴》含二元问题36个,三元问题13个,四元问题7个.虽然用到四元术的题目不多,但它们却代表了全书,也代表了当时世界范围内方程组理论的最高水平.“四象朝元”第6题所导出的十四次方程是中国古算史上次数最高的方程.

高阶等差级数理论是书中另一成就.沈括的隙积术开了研究高阶等差级数的先河,杨辉给出包括隙积术在内的一系列二阶等差级数求和公式.朱世杰在这一领域作了总结性工作.在中卷“茭草形段”和下卷“果垛叠藏”中,他依次研究了一阶至五阶等差级数求和问题,不仅给出相应的公式,而且发现其规律,掌握了如下的三角垛统一公式

从而奠定了垛积术的理论基础.实际上,等差级数是几阶的,便可把上式中的p换为几.朱世杰给出了p=1,2,…,5的特例.他还发现垛积术与内插法的内在联系,在“如象招数”第5题中利用垛积术导出四次内插公式(四次差为一非零常数,五次差为零):

其中Δ1,Δ2,Δ3,Δ4分别为一次差、二次差、三次差、四次差.由于朱世杰正确指出了公式中各项系数恰好是一系列三角垛的积,他显然能够解决更高次的内插问题,从而把中国古代的内插法推向一个新水平.

在几何方面,朱世杰也有一定的贡献.自《九章算术》以来,中国就有了平面几何与立体几何,但一直到北宋,几何研究离不开勾股和面积、体积.李冶开始注意到圆城图式中各元素的关系,得到一些定理,但未能推广到更一般的情形.朱世杰在李冶思想的基础上,深入研究了勾股形内及圆内各几何元素的数量关系,发现了平面几何中的射影定理和特殊情形的弦幂定理.例如卷上“混积问元”第七题,如图8.21,朱世杰得到公式

易证等号左面等于h2,所以此式与射影定理h2=ef等价.再如卷中“拨换截田”第十四题,如图8.22,AB⊥CD于E,朱世杰给出公式

4CE×ED=AB2

此式显然是弦幂定理

CE×ED=AE×EB

在两弦垂直且有一弦为直径时的特殊情形.

五、宋元数学的外传及衰落

《算学启蒙》出版后不久即传到朝鲜和日本.在朝鲜李朝时期(14—16世纪),《算学启蒙》及《杨辉算法》都被作为朝廷选拔算官的基本书籍.两书的朝鲜庆州府刻本(15世纪)一直保存至今.由于《算学启蒙》在明代失传,清罗士琳幸得朝鲜金始振翻刻本(1660),于1839年在扬州重新出版,成为中国现存各版本的母本.《算学启蒙》对日本的影响也很大,不少日本学者在研究此书的基础上写出专著,比较著名的有星野实宣《新编算学启蒙注解》三卷(1672)、建部贤弘《算学启蒙谚解大全》七卷(1690)等.

宋元数学还曾传到阿拉伯.13世纪旭烈兀①西征时,带走了一批中国天文学家和数学家.他征服波斯后支持纳西尔丁(Na-sirad-Din,1201—1274)在马拉盖(Maraghen,今伊朗境内)建立了一座规模宏大的天文台,并把带去的中国学者留在天文台和纳西尔丁一起工作,这是中国数学传入阿拉伯国家的一个途径.阿拉伯数学家卡西(al-kāsh ī,?—1429)的《算术之钥》(The Key of Arithmetic,1427)中有不少内容与中国数学相同,如贾宪三角形、增乘开方法,以及和“百鸡问题”极为类似的“百禽问题”等.他受到中国数学影响是可以肯定的,当然不排除其独立取得成果的可能性.

在元代,阿拉伯数码曾传入中国,但并未被中国人接受.欧几里得《几何原本》也传到上都(今内蒙古正蓝旗),可惜没有译成中文,所以影响不大,不久便散失了.朱世杰之后,元代数学便开始走下坡路.明代数学理论水平远不及宋元,天元术、四元术成为绝学.直到明末清初,由于西方数学的传入及中国学者的努力,数学才有所回升.

那么,宋元数学衰落的原因是什么呢?

首先,中国传统数学是依靠算筹的,虽然这是一种很有用的计算工具,但具有不可避免的局限性,因为它只适于计算而不适于证明,只能表示具体的量而不能表示抽象的量.这就限制了人们的抽象思维,限制了数学一般化程度的提高.宋元方程理论可以由天元术发展为四元术,但在筹算体系内却无法建立五元术或n元术,因为四个未知数已把“太”的上下左右占满.这个例子便说明了算筹的局限性.更重要的是,人们无法利用算筹进行逻辑推理,也很难在筹算体系内发展数学符号.但这些消极因素的总和,充其量是使数学停滞不前.而事实上,元末数学不仅没前进,反而后退.造成这种状况的原因就不在数学内部,而在于社会了.

当时的政策是不利于科学发展的,尤其是八股取士制.1314年恢复科举考试后,内容以朱熹集注的《四书》为主,将数学内容完全取消.不久,这种考试发展为“以四书五经命题、八股文取士”的制度,引导知识分子远离自然科学,严重束缚了读书人的思想.知识分子们为了功名,纷纷埋头于《四书五经》,只会在儒家经典中寻章摘句,奢谈三纲五常之类的封建伦理,哪里还顾得上数学及其他有实用价值的科学技术呢?正如元末丁巨所说:“时尚浮辞,动言大纲……士类以科举故,未暇笃实.”八股取士制的危害,在明代愈演愈烈,顾炎武曾痛斥说:“开科取士,则天下之人日愚一日.”元末以后的社会思潮也不利于数学发展,成为官方哲学的理学完全摒弃了自然科学.理学家们大谈天理、人伦,认为科学技术乃雕虫小技,为君子所不齿,甚至讥笑研究数学的人是“玩物丧志”.在这种社会环境中,数学由盛而衰就不奇怪了.

高等数学第六版课后全部答案

高等数学第六版课后全 部答案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

习题 101 1. 设在 xOy 面内有一分布着质量的曲线弧 L, 在点(x, y)处它的线 密度为 μ(x, y), 用对弧长的曲线积分分别表达: (1) 这曲线弧对x轴、对y轴的转动惯量Ix, Iy; (2)这曲线弧的重心坐标 x , y . 解在曲线弧 L 上任取一长度很短的小弧段 ds(它的长度也记做 ds), 设(x, y) 曲线 L 对于 x 轴和 y 轴的转动惯量元素分别为dIx=y2μ(x, y)ds, dIy=x2μ(x, y)ds . 曲线 L 对于 x 轴和 y 轴的转动惯量分别为 I x = ∫ y 2μ ( x, y)ds , I y = ∫ x2μ ( x, y)ds . L L ww w. kh d ∫L ∫L 和L2, 则 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L分为两段光滑曲线L1 ∫L f (x, y)ds =∫L n 课

x= M y ∫L xμ ( x, y)ds M ∫ yμ (x, y)ds = , y= x = L . M M μ ( x, y)ds μ(x, y)ds 后 曲线 L 的重心坐标为 1 f ( x, y)ds + ∫ f ( x, y)ds . L2 证明划分L, 使得L1和L2的连接点永远作为一个分点, 则 ∑ f (ξi,ηi )Δsi = ∑ f (ξi,ηi )Δsi + i =1 i =1 n n1 n1 答 dMx=yμ(x, y)ds, dMy=xμ(x, y)ds . 令λ=max{Δsi}→0, 上式两边同时取极限 λ →0 λ →0

高等数学第七章微分方程习题

第七章 微分方程与差分方程 习题7-1(A ) 1. 说出下列微分方程的阶数: ;02)()1(2=+'-'x y y y x ;0)2(2=+'+'''y y x y x .0)32()67()3(=++-dy y x dx y x 2. 下列函数是否为该微分方程的解: x e x y y y y 2; 02)1(==+'-'' )(2; 0)()2(2为任意常数C x x C y xdy dx y x -==++ ),(cos sin ; 0) 3(212122 2为任意常数C C ax C ax C y y a dx y d +==+ )(ln ; 02)()4(2xy y y y y y x y x xy =='-'+'+''+ 3. 在下列各题中,确定函数关系式中所含的参数,写出符合初始条件的函数: ;5, )1(0 22==-=x y C y x ;1,0,)()2(0 221=' =+===x x x y y e x C C y . 0,1, )(sin )3(21='=-===ππx x y y C x C y 4. 写出下列条件确定的曲线所满足的微分方程: 点横坐标的平方。 处的切线的斜率等于该曲线在点),()1(y x 轴平分。被,且线段轴的交点为处的法线与曲线上点y PQ Q x y x P ),()2( 习题7-1(B ) 1.在下列各题中,对各已知曲线族(其中 C 1, C 2, C 3 都是任意常数)求出相应的微分方程: ; 1)()1(22=+-y C x . )2(21x x e C e C xy -+= 2.用微分方程表示下列物理问题: 平方成反比。温度的成正比,与的变化率与气压对于温度某种气体的气压P T P )1( 。 速度成反比(比例系数同时阻力与, 成正比(比例系数与时间用在它上面的一个力的质点作直线运动,作一质量为)))2(11k k t m 习题7-2(A ) 1.求下列微分方程的通解: ;0ln )1(=-'y y y x ;0553)2(2='-+y x x ; )()3(2y y a y x y '+='-'

中国著名数学家

中国有哪些著名的数学家有 张丘建、朱世杰、贾宪、秦九韶、李冶、刘徽、祖冲之、胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱、项武忠、项武义、龚升、王湘浩、伍鸿熙、严志达、陆家羲、苏家驹、王菊珍、谷超豪、王元、潘承洞、魏宝社、高扬芝、徐瑞云、王见定、吕晗等等。1.祖冲之 祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。 祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。 由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。 2.华罗庚 华罗庚(1910.11.12—1985.6.12),出生于江苏常州金坛区,祖籍江苏丹阳。数学家,中国科学院院士,美国国家科学院外籍院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士。中国第一至第六届全国人大常委会委员。 他是中国解析数论、矩阵几何学、典型群、自守函数论与多元复变函数论等多方面研究的创始人和开拓者,并被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一。国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等。 向左转|向右转

高等数学第七章测试题(第7版)

第七章测试题 一、填空(20分) 1、5322x y x y x y x =+'+'''是 阶微分方程; 2、与积分方程?=x x dx y x f y 0),(等价的微分方程初值问题 是 ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2= (填“是”或“不是”)该微分方程的解; 4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解, 21,C C 为任意常数,则2211y C y C y +=一定是该方程的 (填“通解”或“解”); 5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该 方程的通解为: ; 6、方程054=+'-''y y y 的通解为 . 7、微分方程x y y cos 4=+''的特解可设为 ; 8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是: ; 9、微分方程1+=-''x e y y 的特解*y 形式为: ; 10、微分方程044=-'+''-'''y y y y 的通解: 。 二、(10分)求x x y y =+'的通解. 三、(10分)求解初值问题2)0(,0==+'y xy y . 四、(15分)曲线的方程为)(x f y =,已知在曲线上任意点),(y x 处满足x y 6='',且在曲线上的)2,0(-点处的曲线的切线方程为632=-y x ,求此曲线方程。 五、(15分)求齐次方程0)1(2)21(=-++dy y x e dx e y x y x 的通解.

六、(15分)求解初值问题:?????='==+''==0,10 1311 x x y y y y . 七、(15分)求方程x y y y 2344-=+'+''的通解.

《高数(同济六版)》第七章 微分方程--参考答案

第七章 微分方程—练习题参考答案 一、填空题 1. 三阶; 2. 023=+'-''y y y ; 3. 1-=' x y y ; 4. x e 22ln ? ; 5. x x e c e c 221-+; 6. 错误 、错误、错误、正确. 二、选择题 1-5:ACDCB; 6-8: CCB; 三、计算与应用题 1、(1)解:变量分离得, 1 1 2 2 -= +x xdx y ydy , 两边积分得, c x y ln 2 1)1ln(2 1)1ln(2 12 2 +-=+, 从而方程通解为 )1(122-=+x c y . (2)解:整理得, x y x y dx dy ln =,可见该方程是齐次方程, 令 u x y =,即xu y =,则dx du x u dx dy +=,代入方程得,u u dx du x u ln =+, 变量分离得, x dx u u du = -) 1(ln ,积分得,c x u ln ln )1ln(ln +=-, 所以原方程的通解为cx x y =-1ln ,或写为1 +=cx xe y . (3)解:整理得,x e y x y =+ '1,可见该方程是一阶线性方程,利用公式得通解为 )(1)(1)(1 1 c e xe x c dx xe x c dx e e e y x x x dx x x dx x +-= +=+??=??- . (4)解:整理得, x y x x dx dy 1ln 1= +,这是一阶线性方程,利用公式得通解为 )2 ln (ln 1)ln (ln 1)1(2 ln 1 ln 1 c x x c dx x x x c dx e x e y dx x x dx x x +=+=+??=??- , 代入初始条件1==e x y 得2 1= c ,从而所求特解为)ln 1(ln 2 1x x y + = . (5)解:将方程两边逐次积分得,12 arctan 11c x dx x y +=+= '? , 212 1)1ln(2 1arctan )(arctan c x c x x x dx c x y +++-=+= ? ,

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

高等数学第七章测试题答案(第7版)

第七章测试题答案 一、填空(20分) 1、5322x y x y x y x =+'+'''是 3 阶微分方程; 2、与积分方程?=x x dx y x f y 0),(等价的微分方程初值问题是?????=='=0),(0 x x y y x f y ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2=不是 (填“是”或“不是”)该微分方程的解; 4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解, 21,C C 为任意常数,则2211y C y C y +=一定是该方程的 解 (填“通解”或“解”); 5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该 方程的通解为:1)1()1(221+-+-=x C x C y ; 6、方程054=+'-''y y y 的通解为)sin cos (212x C x C e y x +=. 7、微分方程x y y cos 4=+''的特解可设为x B x A y sin cos *+=; 8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是: 044=+'-''y y y ; 9、微分方程1+=-''x e y y 的特解*y 形式为:b axe y x += ; 10、微分方程044=-'+''-'''y y y y 的通解:x C x C C x 2sin 2cos e 221++。 二、(10分)求x x y y =+'的通解. 解:由一阶线性微分方程的求解公式 )(11C xdx e e y x dx x +??=?-, x C x C dx x x +=+=?2231)(1 三、(10分)求解初值问题2)0(,0==+'y xy y .

高等数学二第七章

第一讲 §7. 1 空间直角坐标系 一、空间直角坐标系 空间的点??→←--1 1有序数组),,(z y x 二、空间两点间的距离 ),,(1111z y x M 、),,(2222z y x M 为空间两点 由 勾股定理知 ,22 2 2 12 1NM PN P M M M ++= 距离公式: ()()().2 122 122 122 1z z y y x x M M -+-+-= §7. 2 向量及其运算 一、1.向量的概念 向量:既有大小又有方向的量. 向量表示:a 或 21M M 向量的模:向量的大小||a 单位向量:模为1的向量. 零向量:模长为0的向量. 自由向量:不考虑起点位置的向量. 相等向量:大小相等且方向相同. 负向量:大小相等但方向相反的向量. a - 2、向量的运算 [1] 加法:c b a =+(平行四边形法则) [2] 减法: )(b a b a -+=- 运算规律: (1)交换律:.a b b a +=+ (2)结合律:c b a c b a ++=++)( ).(c b a ++= (3).0)( =-+a a [3] 数乘: 向量a 与数λ的乘积a λ规定为 ,0)1(>λa λ与a 同向,||||a a λλ= ,0)2(=λ0 =a λ ,0)3(<λa λ与a 反向,||||||a a ?=λλ 同方向的单位向量, 表示与非零向量 设a a 按 照向量与数的乘积的规定, 0||a a a =?.| |0a a a = 上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量. . 0a b a b a λλ=?≠,使的实数存在唯一 平行于,设定理 运算规律: (1)结合律:)()(a a λμμλ=a )(λμ= (2)分配律:a a a μλμλ+=+)( b a b a λλλ+=+)( a b b -b - c x

高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

高等数学第七章空间解析几何与向量代数试题[1]

第七章 空间解析几何与向量代数习题 (一)选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 AB 的模是:( A ) A )5 B ) 3 C ) 6 D )9 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B ) A ){-1,1,5}. B ) {-1,-1,5}. C ) {1,-1,5}. D ){-1,-1,6}. 3. 设a ={1,-1,3}, b ={2,-1,2},求用标准基i , j , k 表示向量c ;(???) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:( C ) A )2π B )4π C )3 π D )π 5. 一质点在力F =3i +4j +5k 的作用下,从点A (1,2,0)移动到点B (3, 2,-1),求力F 所作的功是:( ??? ) A )5焦耳 B )10焦耳 C )3焦耳 D )9焦耳 6. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是:( C ) A )2π B )4π C )3 π D )π 7. 求点)10,1,2(-M 到直线L :12213+= -=z y x 的距离是:( ??? ) A )138 B 118 C )158 D )1 8. 设,23,a i k b i j k =-=++ 求a b ? 是:( D ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )3i -3j +3k 9. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( ) A ) 362 B )3 6 4 C )32 D )3 10. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:( ) A )2x+3y=5=0 B )x-y+1=0

【教育资料】数学家的故事:元代数学家朱世杰学习专用

元代数学家朱世杰 朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。 朱世杰“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。朱世杰著作《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法)。 宋元时期,中国数学鼎盛时期中杰出的数学家有“秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱﹝世杰﹞四大家”,朱世杰就是其中之一。朱世杰是一位平民数学家和数学教育家。朱世杰平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家。 生平经历 元统一中国后,朱世杰曾以数学家的身份周游各地20余年,向他求学的人很多,他到广陵(今扬州)时“踵门而学者云集”。他全面继承了前人数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法及通俗歌诀,在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启蒙》(3卷),又写成四元术的代表作--《四元玉鉴》(3卷),先后于:1299年和1303年刊印.《算学启蒙》由浅入深,从一位数乘法开始,一直讲到当时的最新数学成果――天元术,形成一个完整体系。书中明确提出正负数乘法法则,

高等数学第七章定积分的应用

第七章 定积分的应用 一、本章提要 1. 基本概念 微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2. 基本公式 平面曲线弧微元分式. 3. 基本方法 (1) 用定积分的微元法求平面图形的面积, (2) 求平行截面面积已知的立体的体积, (3) 求曲线的弧长, (4) 求变力所作的功, (5) 求液体的侧压力, (6) 求转动惯量, (7) 求连续函数f (x )在[]b a ,区间上的平均值, (8) 求平面薄片的质心,也称重心. 二、要点解析 问题1 什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何? 解析 具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q 必须满足条件: (1)Q 与变量x 和x 的变化区间[]b a ,以及定义在该区间上某一函数f (x )有关;(2) Q 在[]b a ,上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下: (1)选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量(如x ),并确定积分变量的变化区间[]b a ,; (2)取近似找微分:在[]b a ,内任取一代表性区间[]x x x d ,+,当x d 很小时运用“以 直代曲,以不变代变”的辩证思想,获取微元表达式d =()d Q f x x ≈Q ?(Q ?为量Q 在小区间[]x x x d ,+上所分布的部分量的近似值);

(3)对微元进行积分得 =d ()d b b a a Q Q f x x =??. 下面举例说明. 例1 用定积分求半径为R 的圆的面积. 解一 选取如图所示的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间 []R R ,-成若干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元 x x R x x R x R A d 2d ))((d 222222-=----=, 于是 ? ?---==R R R R x x R A A d 2d 22=2πR . 解二 选取如图所示的坐标系, 取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成若干个小区间,其代表性小区 间[]θθθd ,+所对应的面积微元θd 2 1d 2 R A = ,于是 22π 20 2π 20 ππ22 1 d 21d R R R A A =?===? ?θ. 解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成若干个小区间,

离散数学(第五版)清华大学出版社第7章习题解答

离散数学(第五版)清华大学出版社第7章习题解答 7.1 (1),(2),(3),(5)都能构成无向图的度数列,其中除(5)外又都能构成无向简单图的度数列. 分析1°非负整数列d,d ,L,d 能构成无向图的度数列当且仅当n di为 1 2n∑ i=1偶数,即d1,d2,L,dn中的奇数为偶数个.(1),(2),(3),(5)中分别有4个,0个,4个,4 个奇数,所以,它们都能构成无向图的度数列,当然,所对应的无向图很可能是非简 单图.而(4)中有 3 个奇数,因而它不能构成无向图度数列.否则就违背了握手定理的推论. 2°(5) 虽然能构成无向图的度数列,但不能构成无向简单度数列.否则,若存在无向简单图G,以1,3,3,3 为度数列,不妨设G 中顶点为v1,v2,v3,v4,且d(vi)=1,于是d(v2)=d(v3)=d(v4)=3.而v1只能与v2,v3,v4之一相邻,设v1与v2相邻,这样一来,除v2能达到3度外, v3,v4都达不到3度,这是矛盾的. 在图7.5所示的4个图中,(1) 以1为度数列,(2)以2为度数列,(3)以3为度数列,(4)以4为度数列(非简单图). 7.2 设有几简单图D以2,2,3,3为度数列,对应的顶点分别为v1,v2,v3,v4,由于d(v)=d+(v)+d_(v),所示,d+(v)-d-(v)=2-0=2,d+(v )=d(v )-d-(v ) 11222=2-0=2,d+(v)=d(v)-d-(v)=3-2=1,d+(v)=d(v)-d-(v)=3-3=0 333444 81 由此可知,D 的出度列为2,2,1,0,且满足d+(v)= d-(v).请读者画出 ∑i∑i 一个有向图.以2,2,3,3为度数列,且以0,0,2,3为入度列,以2,2,1,0为出度列. 7.3 D 的入度列不可能为1,1,1,1.否则,必有出度列为2,2,2,2(因为d(v)=d+(v)+d-(v)),)此时,入度列元素之和为4,不等于出度列元素之和8,这违背握手定理.类似地讨论可知,1,1,1,1也不能为D的出席列. 7.4 不能. N阶无向简单图的最大度Δ≤n-1.而这里的n个正整数彼此不同,因而这n个数不能构成无向简单图的度数列,否则所得图的最大度大于n,这与最大度应该小于等于n-1矛盾.

数学家简介

高次幂开方的“增乘开方法”——贾宪中国的数学发展到宋元时期,终于走到了它的高峰。在这个数学创新的黄金时期中,各种数学成果层出不穷,令人目不暇接。其中特别引人注目的,当首推北宋数学家贾宪创制的“贾宪三角”了。 贾宪,中国十一世纪上半叶(北宋)的杰出数学家。曾撰《黄帝九章算法细草》(九卷)和《算法古集》(二卷),都已失传。据《宋史》记载,贾宪师从数学家楚衍学天文、历算,着有《黄帝九章算法细草》,《释锁算书》等书。贾宪着作已失,但他对数学的重要贡献,被南宋数学家杨辉引用,得以保存下来。 贾宪的主要贡献是创造了贾宪三角和增乘开方法。增乘开方法即求高次幂的正根法。目前中学数学中的综合除法,其原理和程序都与它相仿。增乘开方法比传统的方法整齐简捷,又更程序化,所以在开高次方时,尤其显出它的优越。增乘开方法的计算程序大致和欧洲数学家霍纳(公元1819年)的方法相同,但比他早770年。在中国数学史上贾宪最早发现贾宪三角形。杨辉在所着《详解九章算法》《开方作法本元》一章中作贾宪开方作法图,并说明“出释锁算书,贾宪用此术”。贾宪开方作法图就是贾宪三角形(即指数为正整数的二项式展开系数表,现称“杨辉三角形”),比帕斯卡三角形早600年。此外,“立成释锁开方法”的给出,“勾股生变十三图”的完善,以及“增乘方求廉法”的创立,都表明贾宪对算法抽象化、程序化、机械化作出了重要贡献。首先,贾宪的“增乘开方法”开创了开高次方的研究课题,后经秦九韶“正负开方术”加以完善,使高次方程求正跟的问题得以解决。加之从李冶的天元术(一元一次或高次方程)到朱世杰的四元术(四元一次或高次方程组)的建立,终于在十四世纪初建立起一套完整的方程学理论,使之成为宋元数学届最有成就的课题。其次,贾宪三角的给出,开创了高阶等差级数求和问题的研究方向,朱世杰从“三角”的每条斜线上发现了“三角垜”、“撒星形垜”等高阶等差级数求和公式。第三,“增乘开方法”事实上简化了筹算程序,并使程序化更加合理,这对后世筹算、捷算乃至于算具的改进是有启迪意义的。第四,“细草”这一着述形式开创了一种数学研究方法,被后世数学家广为借鉴。 在《九章算术》数学理论上有突出贡献的主要是三位数学家----刘徽(理论基础的奠定)、贾宪(理论水平的提高)和杨辉(理论的基本完善),贾宪起着承前启后的作用。另一方面,贾宪的数学方法论又激发了宋元的数学研究热潮,他又起到推波助澜的作用。 虽然有关贾宪的资料保存下来的并不完整,但从杨辉缉录的细草中,我们仍然可以发现他的一些独到的数学思想和方法,主要有两点:⑴抽象分析法。在研究《九章》过程中,贾宪使用了抽象分析法,尤其在解决勾股问题是更为突出;⑵程序化方法。程序化方法主要是指探究问题的思维程序、过程和步骤.适用于同一理论体系下,同一类问题的解决。贾宪的“增乘开方法”和“增乘方求廉法”尤其集中地体现了这一方法。当代学者研究发现,程序化的数学思想方法是中国古代数学的重要特点,而贾宪的工作则使得开方程序系统化、规范化。贾宪的数学方法论,对宋元数学家产生了深远影响,纵观“宋元四大家”,莫不从中汲取精髓。

高等数学 课后习题答案第七章

习题七 1. 在空间直角坐标系中,定出下列各点的位置: A (1,2,3); B (-2,3,4); C (2,-3,-4); D (3,4,0); E (0,4,3); F (3,0,0). 解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限; 点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上. 2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0; 在yOz 面上的点,x =0; 在zOx 面上的点,y =0. 3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0; y 轴上的点,x =z =0; z 轴上的点,x =y =0. 4. 求下列各对点之间的距离: (1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4); (3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3). 解:(1 )s = (2) s == (3) s == (4) s ==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 02 s = x s == y s == 5z s ==. 6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解:设此点为M (0,0,z ),则 222222(4)1(7)35(2)z z -++-=++-- 解得 149z = 即所求点为M (0,0,14 9). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图 7-1 图7-1 9. 设2, 3.u v =-+=-+-a b c a b c 试用a , b , c 表示23.u v -

离散数学-第七章二元关系课后练习习题及答案讲课教案

第七章作业 评分要求: 1. 合计100分 2. 给出每小题得分(注意: 写出扣分理由). 3. 总得分在采分点1处正确设置. 1 设R={|x,y∈N且x+3y=12}.【本题合计10分】 (1) 求R的集合表达式(列元素法); (2) 求domR, ranR; (3) 求R?R; (4) 求R?{2,3,4,6}; (5) 求R[{3}]; 解 (1) R={<0,4>,<3,3>,<6,2>,<9,1>,<12,0>}【2分】 (2) domR={0,3,6,9,12}, ranR={0,1,2,3,4}【2分】 (3) R?R={<3,3>, <0,4>}【2分】 (4) R?{2,3,4,6}={<3,3>, <6,2>}【2分】 (5) R[{3}]={3}【2分】 2 设R,F,G为A上的二元关系. 证明: (1)R?(F∪G)=R?F∪R?G (2)R?(F∩G)?R?F∩R?G (3)R?(F?G)=(R?F)?G. 【本题合计18分:每小题6分,证明格式正确得3分,错一步扣1分】证明 (1)?, ∈R?(F∪G) ??t (xRt∧t(F∪G)y) 复合定义 ??t(xRt∧(tFy∨tGy) ∪定义 ??t((xRt∧tFy)∨(xRt∧tGy)) ∧对∨分配律 ??t(xRt∧tFy)∨?t(xRt∧tGy) ?对∨分配律 ?x(R?F)y∨x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义 得证 (2)?, x(R?(F∩G))y ??t(xRt∧t(F∩G)y) 复合定义 ??t(xRt∧(tFy∧tGy)) ∩定义 ??t((xRt∧tFy)∧(xRt∧tGy)) ∧幂等律, ∧交换律, ∧结合律 ??t(xRt∧tFy)∧?t(xRt∧tGy) 补充的量词推理定律 ?x(R?F)y∧x(R?G)y 复合定义 ?x(R?F∪R?G)y ∪定义

中国数学家的小故事

中国数学家的小故事 我国自古以来数学就领先于世界水平,过程中出现了许许多多的著名人物,yjbys小编为大家分享的中国数学家的小故事,欢迎大家阅读! 朱世杰(公元1300年前后) 字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。 《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。 《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法)。 徐光启

(公元1562-1633年)字子先,号玄扈,吴淞(今属上海)人。他从万历末年起,经过天启、崇祯各朝,曾作到文渊阁大学士的官职(相当于宰相)。他精通天文历法,是明末改历的主要主持人。他对农学也颇有研究,曾根据前人所著各种农书,附以自己的见解,编写了著名的《农政全书》,全书有六十余卷,共六十多万字。明朝末年,满族的统治阶级从东北关外屡次发动战争,徐光启曾屡次上书论军事,并在通州练新兵,主张采用西方火炮。他是一位热爱祖国的科学 家。 1 他没有入京做官之前,曾在上海、广东、广西等地教书。在此期间,他曾博览群书,在广东还接触到一些传教士,对他们传入的西方文化开始有所接触。公元1600年,他在南京和利玛窦相识,以后两人又长期同住在北京,经常来往。他和利玛窦两人共同译《几何原本》一书,1607年译完前六卷。当时徐光启很想全部译完,利玛窦却不愿这样做。直到晚清时代,《几何原本》后九卷的翻译工作才由李善兰(公元1811-1882年)完成。

离散数学 尹宝林版 第7章作业答案

第七章习题答案 2. 试问下列关系中哪个能构成函数: (1){< x1, x2 > | x1, x2∈N, x1 + x2 <10} (2){< x, y > | x, y∈R, y = x2} (3){< x, y > | x, y∈R, y2 = x} 解只有(2)满足单值性,能构成函数。 6. 设X = {0, 1, 2},求出X X中的如下函数: (1)f2(x) = f (x) (2)f2(x) = x (3)f3(x) = x 解(1) 任取y∈ran( f ),则有x∈X使得f (x) = y,因而 f (y) = f2(x) = f (x) = y 若ran( f ) = {0},则f1 = {< 0, 0 >,< 1, 0 >,< 2, 0 >}。 若ran( f ) = {1},则f2 = {< 0, 1 >,< 1, 1 >,< 2, 1 >}。 若ran( f ) = {2},则f3 = {< 0, 2 >,< 1, 2 >,< 2, 2 >}。 若ran( f ) = {0, 1},则有两个函数 f4 = {< 0, 0 >,< 1, 1 >,< 2, 0 >}和 f5 = {< 0, 0 >,< 1, 1 >,< 2, 1 >}。 若ran( f ) = {0, 2},则有两个函数 f6 = {< 0, 0 >,< 1, 0 >,< 2, 2 >}和 f7 = {< 0, 0 >,< 1, 2 >,< 2, 2 >}。 若ran( f ) = {1, 2},则有两个函数 f8 = {< 0, 1 >,< 1, 1 >,< 2, 2 >}和 f9 = {< 0, 2 >,< 1, 1 >,< 2, 2 >}。 若ran( f ) = {0, 1, 2},则f10必为I X 。所以,共有10个函数满足条件。 (2) 若f (x) = y≠x,则f (y) = f2(x) = x。集合 { x | x∈X∧ f (x) ≠x }的元素个数为偶数,可为0或2。若它为0,则f1必为I X 。若它为2,则有三个函数 f2 = {< 0, 0 >,< 1, 2 >,< 2, 1 >} f3 = {< 0, 2 >,< 1, 1 >,< 2, 0 >} f4 = {< 0, 1 >,< 1, 0 >,< 2, 2 >} 所以,共有4个函数满足条件。 (3) 设f (x) = y≠x,f (y) = z。若z = x,则 f3(x) = f2(y) = f (z) = f (x) = y≠x, 矛盾,所以z≠x。若z = y,则 f3(x) = f2(y) = f (z) = f (y) = z≠x,

(完整版)高等数学第七章向量

第七章 空间解析几何与向量代数 §7.1 空间直角坐标系 §7.2 向量及其加减法、向量与数的乘法 一、判断题。 1. 点(-1,-2,-3)是在第八卦限。 ( ) 2. 任何向量都有确定的方向。 ( ) 3. 任二向量, =.则=同向。 ( ) 4. 若二向量, + ,则,同向。 ( ) 5. 若二向量b a ,满足关系b a ??-=a ?+b ? ,则b a ,反向。 ( ) 6. 若 +=+,则 = ( ) 7. 向 量 ,满 足 = ,则 ,同向。 ( ) 二、填空题。 1. 点(2,1,-3)关于坐标原点对称的点是 2. 点(4,3,-5)在 坐标面上的投影点是M (0,3,-5) 3. 点(5,-3,2)关于 的对称点是M (5,-3,-2)。 4. 设向量与有共同的始点,则与,共面且平分与的夹角的向量为 5. 已知向量a 与b 方向相反,且|2|a b =,则b 由a 表示为b = 。 6.设,有共同的始点,则以,为邻边的平行四边形的两条对角线的向量分别为 。 三、选择题。 1.点(4,-3,5)到oy 轴的距离为 (A )2225)3(4+-+ (B ) 225)3(+- (C )22)3(4-+ (D )2254+ 2.已知梯形OABC 、CB // OA 且 2 1 a ,OC = b ,则AB = (A ) 2 1 - (B )21- (C )-21 (D )21- 3.设有非零向量,,若a ⊥ b ,则必有

(A+(B+- (C+<-(D+>- 三、试证明以三点A(4,1,9)、B(10,-1,6)、C(2,4,3)为顶点的三角形为等腰直 角三角形。 四、在yoz平面上求与三个已知点A(3,1,2)、B(4,-2,-2)、C(0,5,1)等距离的 点D。 六、用向量方法证明:三角形两边中点的连线平行与第三边,且长度为第三边的一半。

中世纪数学及其数学家

中世纪的中国数学及其数学家 约公元前6、7世纪 陈子(公元前6-7世纪)对太阳的高和远进行了测量,这就是人们所乐于称道的“陈子测日”。 但是,由陈子受当时科学水平的限制,误把椭球形的地球当作平面。所以,求出的日高与实际距离相差很远。然而,他的测日法所反映的数学及测量水平却是在世界上遥遥领先的,而且他的测量方法(后来叫做重差术)至今仍被使用着。所以,人们称陈子为测量学之祖,毫不为过。 据《周髀算经》记载,有一次荣方和陈子问答,陈子说:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并开方而除之,得邪至日者。”(古汉语“邪”也作“斜”解)就是说,将勾、股各平方后相加,再开方,就得到弦长(图2)。陈子的这段话,不仅解决了日远的计算问题,而且还最早表述了勾股定理。这充分证明,我国至迟在陈子所处年代,已经发现并运用了勾股定理。 三国时期——公元3世纪 赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约生活于公元3世纪初。 用面积的出入相补证明勾股定理,其基本思想是图形经过割补后,面积不变。刘徽在注释《九章算术》时更明确地概括为出入相补原理,这是后世演段术的基础。赵爽在注文中证明了勾股形三边及其和、差关系的24个命题。他还研究了二次方程问题,得出与韦达定理类似的结果,并得到二次方程求根公式之一。此外,使用“齐同术”,在乘除时应用了这一方法,还在‘旧高图论”中给出重差术的证明。 赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定影响。 魏晋南北朝——公元220年到581年 刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。 刘徽的数学成就大致为两方面: 一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系。 二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:①割圆术与圆周率。②他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。③“牟合方盖”说④方程新术在《九章算术?方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。 ⑤重差术在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和 累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。

相关文档