文档库 最新最全的文档下载
当前位置:文档库 › 复变函数课后习题答案(全)

复变函数课后习题答案(全)

复变函数课后习题答案(全)
复变函数课后习题答案(全)

精心整理

页脚内容

习题一答案

1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:

(1)

1

32i

+(2)(1)(2)i i i --

(3)131i i i

--(4)821

4i i i -+-

132i

-

(((2(((2)1-+23

222(cos sin )233

i i e πππ=+=

(3)(sin cos )r i θθ+()2

[cos()sin()]22i

r i re

π

θππ

θθ=-+-=

(4)(cos sin )r i θ

θ-[cos()sin()]i r i re θθθ-=-+-=

(5)2

1cos sin 2sin 2sin cos 222

i i θ

θθ

θθ-+=+

..

..

3. 求下列各式的值: (1

)5)i -(2)100100(1)(1)i i ++-

(3

)(1)(cos sin )

(1)(cos sin )

i i i θθθθ-+--(4)

23(cos5sin 5)(cos3sin 3)i i ????+-

(5

(6

解:(1

)5)i -5[2(cos()sin())]66

i ππ

=-+- (2)100

100(1)

(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-

(3

)(1)(cos sin )

(1)(cos sin )i i i θθθθ-+--

(4)2

3

(cos5sin 5)(cos3sin 3)

i i ????+- (5

=

(6

=

4.

设12 ,z z i =

=-试用三角形式表示12z z 与12z z 解:1

2cos

sin

, 2[cos()sin()]4

466

z i z i π

π

ππ

=+=-+-,所以

12z z 2[cos()sin()]2(cos sin )46461212

i i ππππππ

=-+-=+,

5. 解下列方程: (1)5

()

1z i +=(2)440 (0)z a a +=>

解:(1

)z i +=由此

25

k i z i e

i π=-=-,(0,1,2,3,4)k =

(2

)z

==

精心整理

页脚内容

11

[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的

4

个根分别为:

), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,z

x iy =+

z x y

≤≤+

证明:首先,显然有z x y =≤+;

(=(证明:方程两端取共轭,注意到系数皆为实数,并且根据复数的乘法运算规则,()n z ,

1n a z -+

++(4)若

1,a =则,b a ?≠皆有

1a b

a ab

-=-

证明:根据已知条件,有1aa =,因此:

1

1()a b a b a b a ab aa ab a a b a ---====---,证毕。

(5)若1, 1a b <<,则有

11a b

ab

-<-

..

..

证明:

222

()()a b a b a b a b ab ab -=--=+--,

2

2

2

1(1)(1)1ab ab ab a b ab ab -=--=+--,

因为

1, 1a b <<,所以,

2

2

2

2

2

2

1(1)(1)0a b a b a b +--=--<,

因而2

2

1a b ab -<-,即

11a b

ab

-<-,结论得证。 7.设

1,z ≤试写出使n z a +达到最大的z 的表达式,其中n 为正整数,a 为复数。

解:首先,由复数的三角不等式有1n n z a z a a +≤+≤+,

在上面两个不等式都取等号时

n z a +达到最大,为此,需要取n z 与a 同向且1n z =,即n

z 应为a 的单位化向量,由此,n

a z a

=

, 8.试用123,,z z z 来表述使这三个点共线的条件。 解:要使三点共线,那么用向量表示时,2

1z z -与31z z -应平行,因而二者应同向或反向,

即幅角应相差0或π的整数倍,再由复数的除法运算规则知21

31

z z Arg z z --应为0或π的整数

倍,至此得到:

123,,z z z 三个点共线的条件是

21

31

z z z z --为实数。 9.写出过121

2, ()z z z z ≠两点的直线的复参数方程。

解:过两点的直线的实参数方程为:

121121()

()

x x t x x y y t y y =+-??

=+-?, 因而,复参数方程为: 其中t 为实参数。

10.下列参数方程表示什么曲线?(其中t 为实参数) (1)(1)z

i t =+(2)cos sin z a t ib t =+(3)i

z t t

=+

精心整理

页脚内容

解:只需化为实参数方程即可。 (1),x t y

t ==,因而表示直线y x =

(2)cos ,sin x a t y b t ==,因而表示椭圆22

221x y a b

+=

(3)1

,x t y t

==,因而表示双曲线1xy =

11.证明复平面上的圆周方程可表示为0zz az az c +++=, 其中a 为复常数,c 为实常数

z 由

13.函数1w z

=把z 平面上的曲线1x =和22

4x y +=分别映成w 平面中的什么曲线?

解:对于1x =,其方程可表示为1z yi =+,代入映射函数中,得 2

11111iy

w u iv z iy y

-=+===++, 因而映成的像曲线的方程为22

1, 11y

u v y y

-==++,消去参数y ,得

..

..

2

2

2

1,1u v u y +==+即222

11()(),22

u v -+=表示一个圆周。 对于2

24x

y +=,其方程可表示为2cos 2sin z x iy i θθ=+=+

代入映射函数中,得

因而映成的像曲线的方程为11cos , sin 22u v θθ==-,消去参数θ,得22

14

u v +=,表

示一半径为1

2

的圆周。 14.指出下列各题中点z 的轨迹或所表示的点集,并做图:

解:(1)

0 (0)z z r r -=>,说明动点到0z 的距离为一常数,因而表示圆心为0z ,半

径为r 的圆周。 (2)

0,z z r -≥是由到0z 的距离大于或等于r 的点构成的集合,即圆心为0z 半径为r 的圆周及圆周外部的点集。 (3)

138,z z -+-=说明动点到两个固定点1和3的距离之和为一常数,因而表示一个

椭圆。代入,z x iy ==化为实方程得

(4),z i z i +=-说明动点到i 和i -的距离相等,因而是i 和i -连线的垂直平分线,即x

轴。

(5)arg()4

z i π

-=

,幅角为一常数,因而表示以i 为顶点的与x 轴正向夹角为

4

π

的射线。 15.做出下列不等式所确定的区域的图形,并指出是有界还是无界,单连通还是多连通。 (1)23z <<,以原点为心,内、外圆半径分别为2、3的圆环区域,有界,多连通

(2)arg (02)z α

βαβπ<<<<<,顶点在原点,两条边的倾角分别为,αβ的角形

区域,无界,单连通

(3)

3

12

z z ->-,显然2z ≠,并且原不等式等价于32z z ->-,说明z 到3的距离比到2的距离大,因此原不等式表示2与3连线的垂直平分线即x =2.5左边部分除掉x =2后的点构成的集合,是一无界,多连通区域。 (4)

221z z --+>,

精心整理

页脚内容

显然该区域的边界为双曲线

221z z --+=,化为实方程为2

2

44115

x y -=,

再注意到z 到2与z 到-2的距离之差大于1,因而不等式表示的应为上述双曲线左边一支的左侧部分,是一无界单连通区域。 (5)

141z z -<+,代入z x iy =+,化为实不等式,得

所以表示圆心为17(,0)15-

半径为8

15

的圆周外部,是一无界多连通区域。 习题二答案

1

(0),

((((2(((x u 因此,函数在0z =点可导,0

(0)0x x

z f u iv ='=+=,

函数处处不解析。 (2)22, u x v y =

=,

四个一阶偏导数皆连续,因而,u v 处处可微,再由柯西—黎曼方程

, x y y x u v u v ==-解得:x y =, 因此,函数在直线y x =上可导, ()2x x y x f x ix u iv x ='+=+=,

因可导点集为直线,构不成区域,因而函数处处不解析。 (3)32233, 3u x xy v x y y =

-=-,

..

..

四个一阶偏导数皆连续,因而,u v 处处可微,并且,u v 处处满足柯西—黎曼方程

, x y y x u v u v ==-

因此,函数处处可导,处处解析,且导数为

(4)

2211()x iy f z x iy x y

z +=

==-+,2222

, x y

u v x y x y ==++, 2222

222222

, ()()x y y x x y u v x y x y --==++, 222222

22, ()()

y x xy xy

u v x y x y --==++, 因函数的定义域为0z ≠,故此,,u v 处处不满足柯西—黎曼方程,因而函数处处不可导,

处处不解析。

3.当,,l m n 取何值时

3232()()f z my nx y i x lxy =+++在复平面上处处解析?

解:3232

, u my nx y v x lxy =+=+

22222, 2, 3, 3x y y x u nxy v lxy u my nx v x ly ===+=+,

由柯西—黎曼方程得:

由(1)得n l =,由(2)得3, 3n m l =-=-,因而,最终有

4.证明:若()f z 解析,则有222

(

())(())()f z f z f z x y

??'+=?? 证

西

2

2

=+

22

2222()()x x x x uu vv uu vv uu vv uv vu u v ++++-=+=+ 2

()f z '==右端,证毕。

5.证明:若()f z u iv =+在区域D 内解析,且满足下列条件之一,则()f z 在D 内一定为

常数。

(1)

()f z 在D 内解析,(2)u 在D 内为常数,

(3)()f z 在D 内为常数,(4)2

v u =(5)231u v += 证明:关键证明,u v 的一阶偏导数皆为0!

(1)()f z u iv =-,因其解析,故此由柯西—黎曼方程得 , x y y x u v u v =-=------------------------(1)

而由()f z 的解析性,又有, x y y x u v u v ==-------------------------(2) 由(1)、(2)知,0x y x y u u v v ===≡,因此12, ,u c v c ≡≡即 12()f z c ic ≡+为常数

(2)设1u c ≡,那么由柯西—黎曼方程得 0, 0x y y x v u v u =-≡=≡,

精心整理

页脚内容

说明v 与,x y 无关,因而2v c ≡,从而12()f z c ic ≡+为常数。

(3)由已知,

2

220()f z u v c =+≡为常数,等式两端分别对,x y 求偏导数,得

220

220

x x y y uu vv uu vv +=+=----------------------------(1)

因()f z 解析,所以又有, x y y x u v u v ==--------------------------(2)

求解方程组(1)、(2),得0x y x y u u v v ===≡,说明,u v 皆与,x y 无关,因而为常数,从而()f z 也为常数。

(4)同理,2

v u =两端分别对,x y 求偏导数,得

(x u 6((

(k (=(4)..1

sin 22

i i i i e e e e i i i ----=

= (5)(2)

2(1)4

4

(1)

i i k i k i

iLn i i e e

e

π

π

ππ

++--++===

24

(cosln sin k e

i π

π-=+,k 为任意整数

(6)22

2

24427(272)273

3

3

33

3

279Ln ln k i k i i e e e

e e

πππ+====,

当k 分别取0,1,2时得到3个值:

..

..

9

,43

99(1)2i e π=-+

,83

99(1)2i e π=-+

7.求2

z e 和2z Arge

解:2

222z x y xyi

e

e

-+=,因此根据指数函数的定义,有

2

z e

22

x y e

-=,2

22z Arge xy k π=+,(k 为任意整数)

8.设i z re θ=,求Re[(1)]Ln z -

解:(1)ln 1[arg(1)2]Ln z z i z k i π-=-+-+,因此

9.解下列方程: (1

)1z

e

=+(2)ln 2

z i π

=

(3)sin cos 0z z +=(4)shz i =

解:(1

)方程两端取对数得:1

(1)ln 2(2)3

z Ln k i π=+=++

(k 为任意整数)

(2)根据对数与指数的关系,应有

(3)由三角函数公式(同实三角函数一样),方程可变形为 因此,4

z k π

π+

=即4

z k π

π=-

,k 为任意整数

(4)由双曲函数的定义得2

z z

e e shz i --==,解得

2()210z z e ie --=,即z e i =,所以

(2)2

z Lni k i π

π==+,k 为任意整数

10.证明罗比塔法则:若()f z 及()g z 在0z 点解析,且000()()0, ()0f z g z g z '==≠,

则000()()lim ()()z z f z f z g z g z →'=',并由此求极限00sin 1

lim ; lim z z z z e z z

→→-

证明:由商的极限运算法则及导数定义知

000000000000

()()()()

lim ()

lim lim ()()()()()lim z z z z z z z z f z f z f z f z z z z z f z g z g z g z g z g z z z z z →→→→----==----00()()

f z

g z '=',

由此,00sin cos lim lim 11

z z z z

z →→==

11.用对数计算公式直接验证:

(1)2

2Lnz Lnz ≠(2

)1

2

Lnz =

解:记i z re θ

=,则

精心整理

页脚内容

(1)左端22()2ln (22)i Ln r

e r k i θ

θπ==++,

右端2[ln (2)]2ln (24)r m i r m i θπθπ=++=++, 其中的,k m 为任意整数。

显然,左端所包含的元素比右端的要多(如左端在1k =时的值为 2ln (22)r i θπ++,而右端却取不到这一值),因此两端不相等。

(2)左端22

1]ln (2)22

m i

Ln re

r m k i θπ

θ

ππ+=

=+++

右端11[ln (2)]ln ()222r n i r n i θ

θππ=++=++

其中,k n 为任意整数,而0,1m = n ,k sin sin 2

y y e e

z y --≥≥,左端不等式得到证明。

14.设z R ≤,证明sin , cos z chR z chR ≤≤

证明:由复数的三角不等式,有

sin 22

2

2

iz iz

y

y

iz iz

y y e e e e

e e e e z ch y i

----+-++=

==

=,

由已知,

y z R ≤≤,再主要到0x ≥时chx 单调增加,因此有

sin z ch y chR ≤≤,

..

..

同理,

cos 2

2

2

2

iz iz

y

y

iz iz

y y e e e e

e e e e z ch y chR ----++++=

==

=≤证毕。

15.已知平面流场的复势()f z 为

(1)2

()z i +(2)2z (3)211

z +

试求流动的速度及流线和等势线方程。

解:只需注意,若记()(,)(,)f z x y i x y ?ψ=+,则

流场的流速为()v f z '=,

流线为1(,)x y c ψ≡, 等势线为2(,)x y c ?≡,

因此,有 (1)2

222()[(1)](1)2(1)z i x y i x y x y i +=++=-+++

流速为()2()2()v f z z i z i '=

=+=-,

流线为1(1)x y c +≡,等势线为22

2(1)x y c -+≡

(2)333223

()3(3)z x iy x xy x y y i =+=-+- 流速为22()33()v f z z z '=

==, 流线为2313x y y c -≡,等势线为32

23x xy c -≡

(3)2222

111

1()112z x iy x y xyi

==+++-++ 流速为222222()(1)(1)

z z

v f z z z --'===++, 流线为12

2222

(1)4xy

c x y x y

≡-++, 等势线为22222222

1

(1)4x y c x y x y

-+≡-++ 习题三答案

1.计算积分2

()c

x y ix dz -+?,其中c 为从原点到1i +的直线段

解:积分曲线的方程为, x t y t ==,即

z x iy t ti =+=+,:01t →,代入原积分表达式中,得

2.计算积分

z c e dz ?,其中c 为 (1)从0到1再到1i +的折线(2)从0到1i +的直线

解:(1)从0到1的线段1c 方程为:, :01z x iy x x =+=→, 从1到1i +的线段2c 方程为:1, :01z

x iy iy y =+=+→,

精心整理

页脚内容

代入积分表达式中,得

11(sin1cos1)(cos1sin1)11i e ei i i e i e +=-+-+=+-=-; (2)从0到1i +的直线段的方程为z x iy t ti =+=+,:01t →,

代入积分表达式中,得

1

1

()(1)(cos sin )z

t ti

t c

e dz e

t ti dt i e t i t dt +'=+=++???,

对上述积分应用分步积分法,得 3.积分

2()c

x iy dz +?,其中c 为 (1)沿y x =从0到1i +(2)沿2y x =从0到1i +

45c 6=因1n >,因此上式两端令R →+∞取极限,由夹比定理,得

()

lim 0R

n R c f z dz z →+∞=?,证毕。 7.通过分析被积函数的奇点分布情况说明下列积分为0的原因,其中积分曲线c 皆为

1z =。

(1)

2(2)c dz z +?(2)224c dz z z ++?(3)22c

dz

z +? (4)cos c dz z ?(5)z

c

ze dz ?

..

..

解:各积分的被积函数的奇点为:(1)2z =-,(2)2

(1)30z ++=

即1z

=-±,(3

)z =(4), 2

z k k π

π=+

为任意整数,

(5)被积函数处处解析,无奇点

不难看出,上述奇点的模皆大于1,即皆在积分曲线之外,从而在积分曲线内被积函数解析,因此根据柯西基本定理,以上积分值都为0。 8.计算下列积分:

(1)

240

i

z

e dz π

?

(2)2

sin i

i

zdz ππ-?(3)1

sin z zdz ?

解:以上积分皆与路径无关,因此用求原函数的方法:

(1)

4220240

111

()(1)222

i

i i

z

z e dz e

e e i π

π

π

==-=-?

(2)21cos 2sin 2sin []224i

i

i

i

i i

z z z

zdz dz ππππ

ππ----==-??

(3)

1

1

1

1

0000sin cos cos cos z zdz zd z z z zdz =-=-+???

9.计算22c

dz

z a -?,其中c 为不经过a ±的任一简单正向闭曲线。 解:被积函数的奇点为a ±,根据其与c 的位置分四种情况讨论: (1)a ±皆在c 外,则在c 内被积函数解析,因而由柯西基本定理

(2)a 在c 内,a -在c 外,则1

z a +在c 内解析,因而由柯西积分

公式:221

12z a c c

dz z a dz i i z a z a a z a ππ=+===-+-?? (3)同理,当a -在c 内,a 在c 外时, (4)a ±皆在c 内

此时,在c 内围绕,a a -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:

注:此题若分解22

1111

()2a z a z a z a

=--+-,则更简单! 10.

计算下列各积分

解:(1)

11

()(2)2z dz i z z =-+?

,由柯西积分公式

(2)

2

322

1

iz

z i e dz z -=

+?

, 在积分曲线内被积函数只有一个奇点i ,故此同上题一样: ‘;

精心整理

页脚内容

(3)

2232

(1)(4)z dz

z z =

++?

在积分曲线内被积函数有两个奇点i ±,围绕,i i -分别做两条相互外离的小闭合曲线12,c c ,则由复合闭路原理得:

(4)4

221z z

dz z -=-?,在积分曲线内被积函数只有一个奇点1,故此 (5)22

1sin 41z zdz z π

=-?,

12,c ,

2

, (1)n

z dz n z =-?计算积分32(1)c dz i z z π-?,其中12z =(2)1

12

z -)由柯西积分公式

)同理,由高阶导数公式 =

1

1

2z dz z =+?的值是什么?并由此证明1

02z dz z ==+?,因为被积函数的奇点在积分曲线外。 (cos sin )r i θθ+考察上述积分的被积函数的虚部,便得到

20

12cos 054cos d π

θ

θθ

+==+?

,再由cos θ的周期性,得

012cos 054cos d π

θ

θθ+=+?,证毕。

13. 设(),()f z g z 都在简单闭曲线c 上及c 内解析,且在c 上 ()()f z g z =,证明在c 内也有()()f z g z =。 证明:由柯西积分公式,对于c 内任意点0z ,

..

..

0000

1

()1()

(), ()22c

c f z g z f z dz g z dz i

z z i z z ππ=

=--??, 由已知,在积分曲线c 上,()()f z g z =,故此有

再由0z 的任意性知,在c 内恒有()()f z g z =,证毕。

14. 设()f z 在单连通区域D 内解析,且()11f z -<,证明 (1)在D 内()0f z ≠;

(2)对于D 内任一简单闭曲线c ,皆有()

0()c

f z dz f z '=? 证明:(1)显然,因为若在某点处()0,f z =则由已知 011-<,矛盾!

(也可直接证明:

()1()11f z f z -<-<,因此

1()11f z -<-<,即0()2f z <<,说明()0f z ≠)

(3)既然()0f z ≠,再注意到()f z 解析,()f z '也解析,因此由函数的解析性法则知

()

()

f z f z '也在区域D 内解析,这样,根据柯西基本定理,对于D 内任一简单闭曲线c ,皆有()

0()c f z dz f z '=?,证毕。 15.求双曲线2

2y

x c -=(0c ≠为常数)的正交(即垂直)曲线族。 解:22

u y x =-为调和函数,因此只需求出其共轭调和函数(,)v x y ,则 (,)v x y c =便是所要求的曲线族。为此,由柯西—黎曼方程

2x y v u y =-=-,因此(2)2()v y dx xy g y =-=-+?,再由 2y x v u x ==-知,()0g y '≡,即0()g y c =为常数,因此 02v xy c =-+,从而所求的正交曲线族为xy c ≡

(注:实际上,本题的答案也可观察出,因极易想到

222()2f z z y x xyi =-=--解析)

16.设sin px

v e y =,求p 的值使得v 为调和函数。

解:由调和函数的定义

2sin (sin )0px px xx yy v v p e y e y +=+-=,

因此要使v 为某个区域内的调和函数,即在某区域内上述等式成立,必须 210p -=,即1p =±。

17.已知22

255u v x y xy x y +=-+--,试确定解析函数 解:首先,等式两端分别对,x y 求偏导数,得

225x x u v x y +=+-----------------------------------(1) 225y y u v y x +=-+--------------------------------(2)

再联立上柯西—黎曼方程

精心整理

页脚内容

x y u v =------------------------------------------------------(3) y x u v =-----------------------------------------------------(4) 从上述方程组中解出,x y u u ,得

这样,对x u 积分,得25(),u x x c y =-+再代入y u 中,得

至此得到:2205,u x x y c =

--+由二者之和又可解出

025v xy y c =--,因此

200()5f z u iv z z c c i =+=-+-,其中0c 为任意实常数。

注:此题还有一种方法:由定理知 由此也可很方便的求出()f z 。 18

y v v (c 'v 因f (此类问题,除了上题采用的方法外,也可这样:

22222222222

2()1

()()()

x y xy z i x y x y z zz -=-==++,所以 1

()f z c z

=-+,

其中c 为复常数。代入(2)0f =得,1

2

c =,故此

(3)arctan , (0)y

v x x

=>

..

..

同上题一样,

()x x y x f z u iv v iv '=+=+

2222

1

x y z i z x y x y zz -=

+==++, 因此0()ln f z z c =+,

其中的ln z 为对数主值,0c 为任意实常数。

(4)(cos sin )x

u e x y y y =-,(0)0f =

(sin sin cos )x x y v u e x y y y y =-=++,对x 积分,得

再由y x v u =得()0c x '=,所以0()c x c =为常数,由(0)0f =知, 0x y ==时0v =,由此确定出00c =,至此得到:

()f z u iv =+=(cos sin )x e x y y y -(sin cos )x ie x y y y ++,

整理后可得()z

f z ze =

19.设在1z ≤上()f z 解析,且()1f z ≤,证明(0)1f '≤ 证明:由高阶导数公式及积分估计式,得

1

112122z ds ππ

π=≤==?,证毕。 20.若

()f z 在闭圆盘0z z R -≤上解析,且()f z M ≤,试证明柯西不等式

()0!

()n n n f z M R

≤,并由此证明刘维尔定理:在整个复平面上有界且处处解析的函数一定

为常数。

证明:由高阶导数公式及积分估计式,得

1

1

11

1

!!!!()2222n n n n

z z n n M n M n M f z ds ds R R R R R ππππ+++===

==??,

柯西不等式证毕;下证刘维尔定理: 因为函数有界,不妨设()f z M ≤,那么由柯西不等式,对任意0z 都有0()M f z R

'≤

,又

()f z 处处解析,因此R 可任意大,这样,令

R →+∞,得0()0f z '≤,从而0()0f z '=,即0()0f z '=,再由0z 的任意性知()0f z '≡,因而()f z 为常数,证毕。

习题四答案

1.

考察下列数列是否收敛,如果收敛,求出其极限.

(1)1

n n z i n

=+

解:因为lim n n i →∞

不存在,所以lim n n z →∞

不存在,由定理4.1知,数列{}n z 不收敛.

(2)(1)2n n i

z -=+

解:1(cos sin )22i i θθ+=

+,其中1

arctan 2

θ=,则

精心整理

页脚内容

()(cos sin )cos sin 2n

n

n z i n i n θθθθ-?=+=-?

??

因为lim 0n

n →∞=,cos sin 1n i n θθ-=

,所以()lim cos sin 0n

n n i n θθ→∞

-= 由定义4.1知,数列{}n z 收敛,极限为0.

(3)2

1n i n z e n

π-=

解:因为2

1n i e

π-

=,1

lim 0n n

→∞=,所以21lim 0n i n e

n π-→∞= 由定义4.1知,数列{}

z 收敛,极限为0.

2n θ都

2

2n ∞

=也收敛,故级数2ln n

n i n

=∑是收敛的.

又2

2111

ln ln ln 1n n n i n n n n ∞

∞===>-∑

∑,因为211n n ∞=-∑发散,故级数2

1ln n n ∞

=∑发散,从而级数2ln n n i n ∞=∑条件

收敛.

(3)0

cos 2n n in ∞

=∑

解:1110000cos 2222n n n n n n n n n n n n in e e e e --∞

∞∞∞+++====+==+∑∑∑∑,因级数102n n n e ∞+=∑发散,故0

cos 2n n in

∞=∑发散.

..

..

(4)()

035!

n

n i n ∞

=+∑

解:(

)0

035!!n

n n i n n ∞

∞==+=∑

∑,由正项正项级数比值判别法知该级数收敛,故级数()0

35!n

n i n ∞

=+∑收

敛,且为绝对收敛.

3. 试确定下列幂级数的收敛半径. (1)()01n

n n i z ∞

=+∑

解:1lim

1n n n c i c +→∞

=+=

R =

. (2)0!n n

n n z n

=∑

解:11(1)!11

lim lim lim 1(1)!(1)

n n n n n n n n c n n c n n e n

++→∞→∞→∞+=?==++,故此幂级数的收敛半径R e =.

(3)1

i

n n

n e z π∞

=∑

解:1

1lim

lim 1i

n n n n i n

n

c e

c e π

π++→∞

→∞==,故此幂级数的收敛半径1R =. (4)22

1

212n n

n n z ∞

-=-∑

解:令2

z Z =,则221

11

212122n n n n n n n n z

Z ∞

∞--==--=∑∑ 1121

12lim lim 2122n n n n n

n

n c n c ++→∞→∞+==-,故幂级数11212n n n n Z ∞-=-∑的收敛域为2Z <,即22z <,从而幂级数

22

1

212n n

n n z ∞

-=-∑

的收敛域为z <

R = 4. 设级数0

n n α∞=∑收敛,而0

n n α∞=∑发散,证明0

n n n z α∞

=∑的收敛半径为1.

证明:在点1z =处,0

n

n n n n z αα∞∞===∑∑,因为0

n n α∞=∑收敛,所以0

n n n z α∞

=∑收敛,故由阿贝尔定理知,

1z <时,0

n

n n z α∞=∑收敛,且为绝对收敛,即0n n n z α∞

=∑收敛.

1z >时,0

n

n n n n z αα∞∞

==>∑∑,因为0

n n α∞

=∑发散,根据正项级数的比较准则可知,

n

n

n z α

=∑发散,从而0

n

n n z α∞=∑的收敛半径为1,由定理4.6,0

n n n z α∞

=∑的收敛半径也为1.

5. 如果级数0

n n n c z ∞

=∑在它的收敛圆的圆周上一点0z 处绝对收敛,证明它在收敛圆所围的闭区

域上绝对收敛.

复变函数试题及答案

1、复数i 212--的指数形式是 2、函数w = z 1将Z S 上的曲线()1122 =+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 22 22= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11--的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得 z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续 B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数

4、根式31-的值之一是( ) A i 2321- B 2 23i - C 223i +- D i 2321+- 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =-12 3z z dz B ? =-1 2 1z z dz C ?=++1242z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-02121n n n n z (z <1) B ()∑∞ =+-0 1221n n n n z (z <1) C ()∑∞ =++-012121n n n n z (z <1) D ()∑∞=-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1w 的分式线性变换是( ) A )1(1>--=a z a a z e w i β B )1(1<--=a z a a z e w i β C )1(>--=a a z a z e w i β D )1(<--=a a z a z e w i β 三、判断题(每小题2分)

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数课后习题答案(全)69272

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=-- (3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=-- 2.将下列复数化为三角表达式和指数表达式: (1)i(2 )1-+(3)(sin cos) r i θθ + (4)(cos sin) r i θθ -(5)1cos sin (02) i θθθπ -+≤≤

解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22 i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin )i i i θθθθ-+-- 2[cos()sin()](cos sin ) 33)sin()][cos()sin()]44 i i i i ππ θθππ θθ-+-+= -+--+-

复变函数经典习题及答案

练习题 一、选择、填空题 1、下列正确的是( A ); A 1212()Arg z z Argz Argz =+; B 1212()arg z z argz argz =+; C 1212()ln z z lnz lnz =+; D 10z Ln Ln Lnz Lnz z ==-=. 2、下列说法不正确的是( B ); A 0()w f z z =函数在处连续是0()f z z 在可导的必要非充分条件; B lim 0n n z →∞=是级数1 n n z ∞=∑收敛的充分非必要条件; C 函数()f z 在点0z 处解析是函数()f z 在点0z 处可导的充分非必要条件; D 函数()f z 在区域D 内处处解析是函数()f z 在D 内可导的充要条件. 3、(34)Ln i -+=( 45[(21)arctan ],0,1,2,3ln i k k π++-=±± ), 主值为( 4 5(arctan )3 ln i π+- ). 4、2|2|1 cos z i z dz z -=? =( 0 ). 5、若幂级数0n n n c z ∞=∑ 在1(1)2z = +处收敛,那么该级数在45 z i =处的敛散性为( 绝对收敛 ). 6、 311z -的幂级数展开式为( 30n n z ∞=∑ ),收敛域为( 1z < ); 7、 sin z z -在0z =处是( 3 )阶的零点; 8、函数221 (1)z z e -在0z =处是( 4 )阶的极点; 二、计算下列各值 1.3i e π+; 2.tan()4i π -; 3.(23)Ln i -+; 4 . 5.1i 。 解:(略)见教科书中45页例2.11 - 2.13

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

复变函数试题及标准答案样本

二.判断题(每题3分,共30分) 1.n z z (在0=z解析。【】 f= z )

2.)(z f 在0z 点可微,则)(z f 在0z 解析。【 】 3.z e z f =)(是周期函数。【 】 4. 每一种幂函数在它收敛圆周上处处收敛。【 】 5. 设级数∑∞=0n n c 收敛,而||0∑∞=n n c 发散,则∑∞ =0n n n z c 收敛半径为1。【 】 6. 1tan()z 能在圆环域)0(||0+∞<<<

复变函数与积分变换(A)参照答案与评分原则 (.7.5) 一.填空(各3分) 1.3ln 2i k e +-π; 2. 三级极点 ; 3. 23z ; 4. 0 ; 5. 0 ; 6. e 1 ;7. 322)1(26+-s s ;8. 0; 9. 0 ;10. )]2()2()2(1)2(1[ 21++-+++-ωπδωπδωωj j 。 二.判断1.错;2.错;3.对的; 4. 错 ;5.对的 ;6.错; 7.错 ; 8. 错 ;9. 对的 ;10. 错 。 三(8分) 解:1)在2||1<

复变函数试题与答案

复变函数试题与答案 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2 321+- (D )i 2 1 23+- 3.复数)2 (tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ) )]2 3sin()23[cos( sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小

5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i -- 4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无 界闭区域 10.方程232=-+i z 所代表的曲线是( )

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ( ()()()3 3331 02 3 02 302 33 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??? ???==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 02 10 2 / 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

第一章复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3k k +=±±;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 1.2 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1) (2)(/62/3) i n e ππ+ 1.4 已知x 的实部和虚部.

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 22 1,(p q pq p x q x ?-=??=??=±==±+ 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1() ()1||||| |||||||1()az b az b az b z az b az b z bz a bz a z z bzz az b az b az +++++=====+++++ 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端取共轭得 ()( ) 00i i =≡+=+b a P b a P 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值.

复变函数及积分变换试题及答案

第一套 第一套 一、选择题(每小题3分,共21分) 1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。 A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。 2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。 A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C + 3. 2|2|1(2)z dz z -==-?( ) 。 A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。 A. 1 01 ()2()n n f d c i z ξξ πξ+= -? B. 0()!n n f z c n = C. 2 01()2n k f d c i z ξξπξ= -? D. 210! ()2()n n k n f d c i z ξξ πξ+= -? 5. z=0是函数z z sin 2 的( )。 A.本性奇点 B.极点 C. 连续点 D.可去奇点 6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。 A.1 z z w -= B. z 1z w -= C. z z 1w -= D. z 11 w -= 7. sin kt =()L ( ),(()Re 0s >)。 A. 22k s k +; B.22k s s +; C. k s -1; D. k s 1 . 二、填空题(每小题3分,共18分) 1. 23 (1)i += [1] ; ---------------------------------------- 装 --------------------------------------订 ------------------------------------- 线 ----------------------------------------------------

复变函数试题及答案

一、填空题(每小题2分) 1、复数i 212-- 的指数形式是 2、函数w =z 1将Z S 上的曲线()1122=+-y x 变成W S (iv u w +=)上 的曲线是 3.若01=+z e ,则z = 4、()i i +1= 5、积分()?+--+i dz z 2222= 6、积分 ?==1sin 21z dz z z i π 7、幂级数()∑∞ =+0 1n n n z i 的收敛半径R= 8、0=z 是函数 z e z 1 11- -的 奇点 9、=??? ? ??-=1Re 21z e s z z 10、将点∞,i,0分别变成0,i,∞的分式线性变换=w 二、单选题(每小题2分) 1、设α为任意实数,则α1=( ) A 无意义 B 等于1 C 是复数其实部等于1 D 是复数其模等于1 2、下列命题正确的是( ) A i i 2< B 零的辐角是零 C 仅存在一个数z,使得z z -=1 D iz z i =1 3、下列命题正确的是( ) A 函数()z z f =在z 平面上处处连续

B 如果()a f '存在,那么()z f '在a 解析 C 每一个幂级数在它的收敛圆周上处处收敛 D 如果v 是u 的共轭调和函数,则u 也是v 的共轭调和函数 4、根式31-的值之一是( ) A i 232 1- B 2 23i - C 223i +- D i 2 3 21+ - 5、下列函数在0=z 的去心邻域内可展成洛朗级数的是( ) A z 1sin 1 B z 1 cos C z ctg e 1 D Lnz 6、下列积分之值不等于0的是( ) A ? =- 1 2 3 z z dz B ?=- 1 2 1 z z dz C ?=++12 42z z z dz D ?=1 cos z z dz 7、函数()z z f arctan =在0=z 处的泰勒展式为( ) A ()∑∞ =+-0 2121n n n n z (z <1) B () ∑∞ =+-0 1 221n n n n z (z <1) C ()∑∞ =++-0 1 2121n n n n z (z <1) D () ∑∞ =-0 221n n n n z (z <1) 8、幂级数n n n z 20 1)1(∑∞ =+-在1

复变函数与积分变换试题及答案(2)

复变函数与积分变换试题与答案 1.(5)复数z与点(,) x y对应,请依次写出z的代数、几何、三角、指数表达式和z的3次方根。 2.(6)请指出指数函数z e w=、对数函数z w ln =、正切函数=的解析域,并说明它们的解析域是哪类点集。 z w tan 3.(9)讨论函数2 2i =的可导性,并求出函数)(z z f+ ) (y x f在可导点的导数。另外,函数) f在可导点解析吗?是或否请说明 (z

理由。 4.(7)已知解析函数v u z f i )(+=的实部y x y u 233-=,求函数 v u z f i )(+=的表达式,并使0)0(=f 。 5.(6×2)计算积分: (1)?+-C n z z z 1 0) (d ,

其中C 为以0z 为圆心,r 为半径的正向圆周, n 为正整数; (2)?=+-3||2d ) 2()1(e z z z z z 。 6.(5×2)分别在圆环 (1)1||0<

7.(12)求下列各函数在其孤立奇点的留数。 (1) 3 sin )(z z z z f -=; (2) z z z f sin 1)(2=; (3) 11 e )(-=z z z f . 8.(7)分式线性函数、指数函数、幂函数的映照特点各是什么。

9.(6分)求将上半平面 0)Im( z 保形映照成单位圆 1|| w 的分式线性函数。 10.(5×2)(1)己知 F )()]([ωF t f =,求函数)52(-t f 的傅里叶变换; (2)求函数) i 5)(i 3(2 )(ωωω++= F 的傅里叶逆变换。

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

相关文档
相关文档 最新文档