文档库 最新最全的文档下载
当前位置:文档库 › 磷酸铁锂生产配方及工艺

磷酸铁锂生产配方及工艺

磷酸铁锂生产配方及工艺
磷酸铁锂生产配方及工艺

磷酸铁锂生产配方及工

文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

正极材料调试详细工艺流程1.原材料检验

1.1磷酸铁:纯度%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量

检测报告)

1.2碳酸锂:纯度%以上,D90粒度小于5um ;

1.3蔗糖:纯度%以上,D90粒度小于5um ;

1.4纯水:电导率大于10兆欧。

1.5氮气:%

1.6分散剂:聚乙二醇(PEG)

2.工艺过程

2.1磷酸铁烘干除水

(1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。

(2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。

2.2研磨机混料工序

正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同

(调试时一台单独运行亦可),程序如下:

(1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。

(2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。

(3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。

2.3分散机机物料分散工序

(1)将两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg(包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。

2.4喷雾干燥工序

(1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。

(2)可以按照喷雾粒度大小调节固含量为15%~30%。

2.5液压机物料压块装料

分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。

2.6推板炉烧结

先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。

2.7辊压超细磨

将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。

2.8筛分、包装

将研磨物料进行筛分、包装。5Kg、25Kg两种规格。

2.9检验、入库

产品检验、贴标签入库。包括:产品名称、检验人、物料批次、日期。

关于磷酸铁锂配方以及制作工艺要点

关于材料应用的一些建议和方法 一、我们推荐的配方: LiFePO4:SP:KS-6:PVDF:NMP=(90-92):(1-2):(2-1):(5-6):(120-140) 二、我们推荐的混合方案: 1.)pvdf母液的配制,5%的pvdf的nmp溶液,搅拌溶解pvdf母液时,一定要充分溶解,最好能高温(50-60度)搅拌一小时,并真空静置2小时,使高分子链充分的伸展,这时的成膜性能最好。 2.)在配置好的母液中添加KS-6,充分润湿并高速搅拌1小时,使其充分分散。利用其片状石墨的润滑作用,为下一步的SP和主材料的分散做准备。 3.)在上述溶液中加入SP,充分湿润,高速搅拌一小时,充分分散后,低速搅拌并抽真空,消除SP的加入引入的气泡。 4.)在上述溶液中加入需要加入量一半的磷酸铁锂,充分湿润,高速(转速3500转以上、线速度350-500之间)搅拌30分钟后,再加入余下材料的一半,高速搅拌60分钟,加入相当于固体材料质量20%-40%的nmp,搅拌30分钟,粘度降低后,加入余下的材料,高速搅拌2-3个小时。加入适量nmp调整浆料粘度,慢速搅拌并抽真空。 三、我们推荐的涂布参数设置、面密度设置、压实密度 涂布参数我们建议烤箱前段温度在90-100度之间,中间温区在110-120度,尾端温区在80-90度,这样极片不易出现开裂和水痕装,粘接效果也较好,关于涂布速度,以充分干燥为标准设置。我们推荐的面密度pd60在300左右,压实密度2.1-2.4,pt30在260左右,压

实密度2.0-2.2。可以保证加工性能,并兼顾到电池容量和功率。对于分切时边缘脱粉的问题,可以考虑调整辊压、分切的顺序,采用先分切,后辊压的方式,这样会降低生产效率,可以弥补粘接性能不好造成整批报废的问题。 四、我们对电池装配的建议 电芯组装是电池生产的关键环节,对电池容量的发挥、电池首次效率、电池的存储性能有较大的影响。因此在这个过程中,一定要对一些关键因素做一些重点控制,如车间粉尘控制、电池装配比控制(电池松紧度)、电池短路测试,隔膜的选择等。我们建议电池的装配比最好不要超过91%、测试电池短路时绝缘测试仪电压应该不低于200v。由于磷酸铁锂超细粉和一次颗粒很小,国产隔膜或者走私过来的次优隔膜可都能对电池的首次效率和荷电存储有较大的影响。五、我们对电池化成和分容制度的建议 对于磷酸铁锂电池的化成,由于磷酸铁锂本征导电率较低,活化相对困难。因此应该考虑在化成前,电解液充分的浸润电极,常温搁置7个小时以上,高温(50-60)老化2个小时以上。化成时最好考虑小电流高电压化成,我们建议化成制度是: 1)0.1c恒流充电5小时,上线电压4v 2)0.2c恒流恒压充电6小时,上限电压4v 3)搁置30分钟 4)0.2c恒流放电至2.0v。 5)如果电池容量和设计容量有较大出入,考虑循环2)-4)步两

磷酸铁锂电池加工过程中常见的问题

磷酸铁锂电池加工过程中常见的问题 磷酸铁锂因锂离子的扩散系数低,导电性上较差,所以当下做法是将其颗粒做小,甚至是做成纳米级数,通过缩短LI+和电子的迁移路径,来提升其充放电速度(理论上,迁移时间和迁移路径平方成反比)。但由此给电池加工带来一系列的难题。 首先遇到的是材料分散问题 制浆是电池生产过程中最为关键的工序之一,其核心任务就是把活性物质、导电剂、粘结剂等物料均匀的混合,使得材料性能能够更好的发挥。要混匀,先要能分散。颗粒减小,相应的比表面也就增大,表面能也就增大,颗粒间发生聚合的趋势就增强。克服表面能分散所需要的能量也就越大。现在普遍用的是机械搅拌,机械搅拌能量分布是不均匀的,只有在一定的区域内,剪切强度足够大,能量足够高,才能把聚合的颗粒分开。要提升分散能力,一个是在搅拌设备的结构上优化,不改变最大剪切速度的情况下提高有效分散区域的空间比例;一个是提高搅拌功率(提高搅拌速度),提升剪切速度,相应的有效分散空间也会增大。前者属设备上的问题,提升空间有多大,涂布在线不做评论。后者,提升空间有限,因为剪切速度提到一定限度,就会对材料造成伤害,导致颗粒破损。 较为有效的方法是采用超声波分散技术。只是超声波设备价格较高,前些时候接触的一家,其价格和进口的日本机械搅拌机相当。超声分散工艺时间短,总体能耗降低,浆料分散效果好,材料颗粒的聚合得到有效延缓,稳定性大为提高。 另外,可以通过使用分散剂来改善分散效果。 涂布均一性问题 涂布不均,不仅电池一致性就不好,还关系到设计、使用安全性等问题。所以,电池制作过程中对涂布均一性的控制很严格。做配方、涂布工艺的知道,材料颗粒越小,涂布越难做均匀。就其机理,我尚未看到相关的解释。涂布在线认为是电极浆料的非牛顿流体特性引起的。 电极浆料应属非牛顿流体中的触变流体,该类流体的特点是静止时粘稠,甚至呈固态,但

磷酸铁锂材料的制备方法

磷酸铁锂材料的制备方法主要有: (1)高温固相法:J.Barker等就磷酸盐正极材料申请了专利,主要采用固相合成法。以碳酸锂、氢氧化锂等为锂源,草酸亚铁、乙二酸亚铁,氧化铁和磷酸铁等为铁源,磷酸根主要来源于磷酸二氢铵等。典型的工艺流程为:将原料球磨干燥后,在马弗炉或管式炉内于惰性或者还原气氛中,以一定的升温加速加热到某一温度,反应一段时间后冷却。高温固相法的优点是工艺简单、易实现产业化,但产物粒径不易控制、分布不均匀,形貌也不规则,并且在合成过程中需要使用惰性气体保护。 (2)碳热还原法:这种方法是高温固相法的改进,直接以铁的高价氧化物如Fe 2O 3 、LiH 2 PO 4 和碳粉为原料,以化学计量比混合,在箱式烧结炉氩气气氛中于70 0℃烧结一段时间,之后自然冷却到室温。采用该方法做成的实验电池首次充放电容量为151mAh/g。该方法目前有少数几家企业在应用,由于该法的生产过程较为简单可控,且采用一次烧结,所以它为LiFePO 4 走向工业化提供了另一条途径。但该法制备的材料较传统的高温固相法容量表现和倍率性能方面偏低。 (3)水热合成法:S.F.Yang等用Na 2HPO 4 和FeCL 3 合成FePO 4 .2H 2 O,然后与CH 3 C OOLi通过水热法合成LiFePO 4 。与高温固相法比较,水热法合成的温度较低,约 150度~200度,反应时间也仅为固相反应的1/5左右,并且可以直接得到磷酸铁锂,不需要惰性气体,产物晶粒较小、物相均一等优点,尤其适合于高倍率放电领域,但该种合成方法容易在形成橄榄石结构中发生Fe错位现象,影响电化学性能,且水热法需要耐高温高压设备,工业化生产的困难要大一些。据称Pho stech的P 2 粉末便采用该类工艺生产。 (4)液相共沉淀法:该法原料分散均匀,前躯体可以在低温条件下合成。将Li OH加入到(NH 4) 2 Fe(SO 4 ) 3 .6H 2 O与H 3 PO 4 的混合溶液中,得到共沉淀物,过滤 洗涤后,在惰性气氛下进行热处理,可以得到LiFePO 4 。产物表现出较好的循环稳定性。日本企业采用这一技术路线,但因专利问题目前尚未大规模应用。(5)雾化热解法:雾化热解法主要用来合成前躯体。将原料和分散剂在高速搅拌下形成浆状物,然后在雾化干燥设备内进行热解反应,得到前躯体,灼烧后得到产品。 (6)氧化-还原法: 该法能得到电化学优良的纳米级的磷酸铁锂粉体,但其工艺很复杂,不能大量生产,只适合实验室研究。

磷酸二铵生产的工艺特点探讨

磷酸二铵生产的工艺特点探讨 磷酸二铵特有的制备工艺,包含多重特性。不同态势下的热平衡、中和状态的管控、关联着的水平衡,都会对接续的磷酸制备,产生多重干扰。经由审慎的比对可知,槽式架构下的产出工艺、带有双管特性的制备工艺,很易化解惯常见到的热平衡疑难。制备出来的磷酸二铵,能够达到拟定好的水分指标;且耗费掉的氨偏少。后续时段的运行中,双管工艺特有的制备流程,能维持住运行时段内的稳定。为此,有必要明辨不同特性的生产工艺,在这种根基上,摸索出适宜特性的工艺流程。 标签:磷酸二铵;生产工艺;特点 最近几年,磷酸二铵这一物质特有的制备流程,正在拓展原初的规模;大型化架构下的制备装置,也在不断递增。成套架构之下的制备工艺,可以分出双管特性的反应流程、单管架构中的一次氨化、带有中和特性的反应路径。新近添加进来的喷浆造粒,吸纳了多重工艺独有的优势。企业应依循拟定出来的产出指标、现场范畴以内的真实条件,选出最适宜特性的这种工艺。只有这样,才会适应更替着的市场需求,不断调和预设的操作工艺。 1 氨洗涤器特有的堵塞疑难 1.1 明辨根本成因 依循调研得来的数值,可以发觉氨洗涤特有的容器,惯常被阻塞。这种管路阻塞,添加了拟定好的氨耗,耗费掉了偏多能量。氨洗涤器特有的阻塞成因,可以分出如下的层级: 第一,是洗涤器衔接的喷管阻塞;第二,是洗涤器架构以内的气液分离,阻塞住了固有的管路。尾气没能被完全抽走,没能完善洗净,造成耗费掉的氨增添;第三,进到容器范畴以内的磷酸没能足量,造成尾气夹带着的氨气,没能充分洗涤;第四,洗涤器配有的管路,遇到偏多杂物,也阻塞住了导管。 1.2 摸索化解的路径 为化解掉这样的阻塞疑难,添加了某规格下的过滤器。容器夹带着的这些杂物,在管路固有的过滤之处,有序予以隔离。实际上,制备出来的磷酸量,若没能达到预设的水准,可能由于体系配有的管路,涵盖着偏多弯头。除此以外,若酸质偏多,会造成安设好的管路结垢,添加了固有阻力。 磷酸进到固有的容器以内,若添加进来的酸液没能足量,就造成潜藏着的结垢状态;析出来的多重结晶,就会阻塞这一配件。为此,若要化解这样的疑难,还可安设专用特性的磷酸管路,预设双管供酸特有的新颖路径。如上的办法,能满足惯常的产出需求。经由改造得来的数值可知,体系架构以内的喷管阻塞,逐

三聚磷酸钠生产工艺.doc

三聚磷酸钠生产工艺 一、三聚磷酸钠的性质 1.1 产品名称 三聚磷酸钠俗称“磷酸五钠”或“五钠”,化学式Na5P3O10,分子量368。 1.2 产品性质 1.2.1 物理性质 1、外观:白色粉末状结晶,流动性较好。 2、Ⅰ型的密度为2.62g/cm3,Ⅱ型的密度为2.57g/cm3。 3、熔点:620℃ 1.2.2 化学性质 1、水合性能 三聚磷酸钠因生成温度不同而有高温型(Ⅰ型)和低温型(Ⅱ型)之分,其区别在于两者的键长和键角不同,Ⅰ型和Ⅱ型产品水合后均生成六水合物Na5P3O10·6H2O,在相同条件下,Ⅰ型水合作用较快产生的热量高,溶于水时易产生结块现象,这是由于Ⅰ型结构中存在四配位体的钠离子,四配位体对水有强亲和力,反之Ⅱ型在水中则以很慢的速度生成六水物。 三聚磷酸钠在室温下相当稳定,在潮湿的空气中会缓慢的发生水解反应,最终生成正磷酸钠,反应如下:Na5P3O10+2H2O→2Na2HPO4+NaH2PO4 2、对金属离子的螯合能力 三聚磷酸钠与溶于水中的Ca2+、Mg2+、Fe3+等金属离子有络合作用,生成可溶性络合物,如:

Na5P3O10+Ca2+→Na3(CaP3O10)+2Na+ 三聚磷酸钠的络合能力一般以钙值表示,即100g磷酸盐所能络合钙离子的克数,理论值为13.4。 3、缓冲作用 三聚磷酸钠水溶液呈弱碱性(1%水溶液的PH值约为9.7),它在PH 为4.3~14范围水)中,形成悬浊液(类似乳化液)的作用,即分散作用。 三聚磷酸钠也能使液态、固态微粒更好的溶于液体(如水)介质中,使溶液外观完全透明,好像真溶液一样,这就是增溶作用。 由于三聚磷酸钠具有以上独特的性能,使之成为洗衣粉中的一种重要的理想原料。 1.3 产品用途 1.3.1 三聚磷酸钠主要作为合成洗涤剂的助剂 同时还用于纤维工业精炼、漂白、染色的助剂、水质稳定剂、锅炉除垢剂、洗涤剂及食品工业的添加剂。 1.3.2 三聚磷酸钠在合成洗涤剂中的作用 合成洗涤剂的主要成份是表面活性剂,表成活性剂具有润湿作用、渗透作用、乳化作用、分散作用和发泡作用等等,去污作用正是上述一些作用的综合综果。 表面活性剂单独使用虽有去污作用,但是并不是在所有的情况下都能得到满意的效果,例如:在硬水中效果差,手感不佳,价昂,在高PH时洗涤效果虽好,但是高PH值又会对被洗物和洗衣机发生侵蚀作用等等,因此,为使合成洗涤剂即具有良好的洗涤效果,又具有

磷酸铁锂正极材料项目

磷酸铁锂正极材料项目 简述 磷酸铁锂是近年来发展较快的锂电池正极材料,其分子式LiMPO4,Lithium Iron Phosphate ,简称LFP正极材料,其结构为橄榄石型结构,有高稳定性,和目前锂材料最大的不同是不含钴等贵重元素,没有毒性,原料价格低且磷、锂、铁存在于地球的资源含量丰富,不会有供料问题。其工作电压适中(3.2V)、电容量大(170mAh/g)、高放电功率、可快速充电且循环寿命长,在高温与高热环境下的稳定性高。用作电池的磷酸铁锂材料一般颜色为灰白色,经过包裹碳后成为黑色粉末。 磷酸铁锂具有以下几个重要的优点: (1)高性价比,目前,一般国内磷酸铁锂的价格为每吨25万元,国外产品的价格约在30万元以上。我们产品的性能基本上同国内外的主流产品,材料成本和消耗成本(电源,燃料和人工费用)约在8-10万左右,利润率较好。 (2)磷酸铁锂的单位容量约为钴酸锂的75%,成本只相当于钴酸锂的三分之一左右,而且没有爆炸等危险,无毒性,电池循环寿命约是锂电池的4-5倍,高于锂电池8-10倍高放电功率(可瞬间产生大电流),加上同样能量密度下整体重

量,约较锂电池减少30-50%,其在动力电池市场上有更广阔的前景。 建设主要内容: 计划建设年产6000吨磷酸铁锂材料生产基地,项目占地100亩,总建筑面积9000平方米。建设研发中心、原料库、成品库、加工车间及办公区域。项目分两期建设,其中一期总投资1亿元,形成年产2000吨磷酸铁锂材料产能。二期总投资4亿元,达到年产6000吨产能水平。购置设备有实验合成用气氛反应炉及控制设备台、高温纤维加热炉、高能量密度介质搅拌磨、无污染型介质搅拌磨、真空干燥箱、混合机、X射线沉降粒度仪、电超声法纳米粒度仪、比表面吸附仪等,设备总价2500万元。 总投资 5亿元,其中企业自筹3.5亿元,国内银行贷款1.5亿元 经济效益分析 按年生产6000吨磷酸铁锂材料计算,销售收入6000*25万元,利润总额6亿元,实现利税4亿元。

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一. 高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等) ,磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFeP04分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFeP04粉体材料。 例1: C.H.Mi等采用一:步加热法得到包覆碳的LiFeP04,其在30 C, 0.1 C 倍率下的初始放电容量达到160 mAh g-1 ;例2 : S.S.Zhang等采用二步加热法,以 FeC:2O4 2H2O和LiH2PO4为原料,在氮气保护下先于350~380 C加热5 h形成前驱体,再在800 C下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放 电容量为159 mAh g-1 ;例3 : A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4 2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300 C下预热分解,再在氮气保护下先于 450 C加热10 h,再于800 C烧结36 h,产物在放电电流密度为2.3 mA g-1时放电,室温初始放电容量在136 mAh g-1 左右;例4: Padhi 等以Li2CO3 , Fe(CH3COO)2 , NH4H2PO4 为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA h /g ; Takahashi 等以LiOH H2O, FeC2O4 2H2O , (NH4)2HPO4 为原料,在675、725、800 C下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以 At+5%H2为保护气氛,在700 C下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3 4-3 5V之间,0 05C首次放电比容量为150mA h/g ;例 6 :高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4 前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139 4mA h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0 15% ;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500 C下预烧,再在700 C下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3 98F0 02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA h/g。 2?优点:工艺简单、易实现产业化 3?缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次 稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4 粉末导电性能不好,需要添加导电剂增强其导电性能 4?改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能 二. 碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气 保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1:杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具 有优势,10 C时容量保持率为88.1% ;例2 : Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g ; 例3 : PP.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛

磷酸铁锂电池配方以及制作工艺

磷酸铁锂电池配方以及制作工艺 关于材料应用的一些建议和方法 一、我们推荐的配方: LiFePO4:SP:KS-6:PVDF:NMP=(90-92):(1-2):(2-1):(5-6):(120-140) 二、我们推荐的混合方案: 1.)pvdf母液的配制,5%的pvdf的nmp溶液,搅拌溶解pvdf母液时,一定要充分溶解,最好能高温(50-60度)搅拌一小时,并真空静置2小时,使高分子链充分的伸展,这时的成膜性能最好。 2.)在配置好的母液中添加KS-6,充分润湿并高速搅拌1小时,使其充分分散。利用其片状石墨的润滑作用,为下一步的SP和主材料的分散做准备。 3.)在上述溶液中加入SP,充分湿润,高速搅拌一小时,充分分散后,低速搅拌并抽真空,消除SP的加入引入的气泡。 4.)在上述溶液中加入需要加入量一半的磷酸铁锂,充分湿润,高速(转速3500转以上、线速度350-500之间)搅拌30分钟后,再加入余下材料的一半,高速搅拌60分钟,加入相当于固体材料质量20%-40%的nmp,搅拌30分钟,粘度降低后,加入余下的材料,高速搅拌2-3个小时。加入适量nmp调整浆料粘度,慢速搅拌并抽真空。 三、我们推荐的涂布参数设置、面密度设置、压实密度 涂布参数我们建议烤箱前段温度在90-100度之间,中间温区在110-120度,尾端温区在80-90度,这样极片不易出现开裂和水痕装,粘接效果也较好,关于涂布速度,以充分干燥为标准设置。我们推荐

的面密度pd60在300左右,压实密度2.1-2.4,pt30在260左右,压实密度2.0-2.2。可以保证加工性能,并兼顾到电池容量和功率。对于分切时边缘脱粉的问题,可以考虑调整辊压、分切的顺序,采用先分切,后辊压的方式,这样会降低生产效率,可以弥补粘接性能不好造成整批报废的问题。 四、我们对电池装配的建议 电芯组装是电池生产的关键环节,对电池容量的发挥、电池首次效率、电池的存储性能有较大的影响。因此在这个过程中,一定要对一些关键因素做一些重点控制,如车间粉尘控制、电池装配比控制(电池松紧度)、电池短路测试,隔膜的选择等。我们建议电池的装配比最好不要超过91%、测试电池短路时绝缘测试仪电压应该不低于200v。由于磷酸铁锂超细粉和一次颗粒很小,国产隔膜或者走私过来的次优隔膜可都能对电池的首次效率和荷电存储有较大的影响。 五、我们对电池化成和分容制度的建议 对于磷酸铁锂电池的化成,由于磷酸铁锂本征导电率较低,活化相对困难。因此应该考虑在化成前,电解液充分的浸润电极,常温搁置7个小时以上,高温(50-60)老化2个小时以上。化成时最好考虑小电流高电压化成,我们建议化成制度是: 1)0.1c恒流充电5小时,上线电压4v 2)0.2c恒流恒压充电6小时,上限电压4v 3)搁置30分钟 4)0.2c恒流放电至2.0v。

磷酸铁锂正极材料稳定性探讨

磷酸铁锂正极材料稳定性探讨 张世杰副总工程师 中国电子科技集团公司第十八研究所 目录 引言 磷酸铁锂正极材料产业现状分析 目前磷酸铁锂正极材料批产存在的主要质量问题 产生质量问题的主要原因分析 如何提高磷酸铁锂批次稳定性 讨论 1、引言 采用磷酸铁锂正极材料制备的锂离子电池与其他正极材料制备的锂离子电池比较具有三个突出的特点:一是电池安全性好,电池在过充电、过放电、短路、针刺等试验条件下安全;二是电池充放电循环寿命长且容量保持率高,能够循环2000次且容量仍能保持90%;三是电池倍率放电能力强,可以几十倍率放电。因此,磷酸铁锂正极材料被公认为是动力锂离子电池理想正极材料,也成为世人关注的“热点”。

锂离子电池制造商在使用国产磷酸铁锂正极材料试验和生产电池过程发现:国产磷酸铁锂正极材料与国际先进同类产品相比仍有较大差距、一部分磷酸铁锂供应商提供的材料存在不同程度的质量问题、批次产品之间存在质量不稳定等问题。为此,国产磷酸铁锂正极材料质量一致性又成为人们关注的“焦点”。 如何迅速解决磷酸铁锂正极材料生产中存在的关键技术问题、工艺技术问题和产品质量问题?如何提高磷酸铁锂批生产过程产品批次不稳定问题?更是从事磷酸铁锂正极材料技术研究、产品开发、中试和批生产技术攻关工作者所面临的一大“难点”。 本报告正是针对以上人们关心和关注的问题,结合实际工作中遇到的问题,浅谈一些粗浅的见解。 2、磷酸铁锂正极材料产业现状分析 国内已经形成了一批磷酸铁锂正极材料生产商,产业初具规模,并把产品投向市场,提供给锂离子电池制造商使用。但是,大家普遍感到:目前国内磷酸铁锂正极材料批量生产技术还存在突出的工艺稳定性问题。突出表现在: 一些大的锂离子电池制造商从磷酸铁锂材料平均粒径、电极加工性、电极压实密度、实际比容量、循环寿命、倍率放电、温度特性、安全性等方面对国内几个磷酸铁锂材料供应商和Valence等国外供应商所提供的材料进行了非常系统的试验评价,客观的试验数据表明:国内磷酸铁锂批产产品与Valence等国外供应商产品比较仍有较大差距; 表1: Valence公司产品与国产产品3个主要指标对比

磷酸二铵生产工艺简单叙述

磷酸二铵生产工艺简述 磷酸二铵的化学质量 执行中华人民共和国国家标准:GB10205-10212-88 磷酸二铵(颗粒)技术要 磷酸铵盐是一种含有磷和氮两种营养元素的高浓度复合肥料,它由氨中和磷酸而制成。磷酸有三个氢离子,可以依次地为氨所中和生产磷酸一铵、磷酸二铵、磷酸三铵。工业上制得的磷酸铵盐肥料实际上是一铵和二铵的混合物。以一铵为主的肥料称为磷酸一铵肥料,以磷酸二铵为主的肥料称为磷酸二铵肥料。通常,前者含磷52%,含氮12%;后者含磷约46%,含氮约18%;磷酸三铵不稳定,在常温下就能放出氨而变成磷酸二铵,磷酸二铵较磷酸三铵稳定,但当温度达90℃时,开始分解放出氨并转变为磷酸一铵。磷酸一铵是最稳定的,加热到130℃以上才会分解放出氨而变为焦磷酸,甚至变成偏磷酸。因此磷酸一铵和磷酸二铵都能作为肥料使用,并且能够按任何比例混合。 4.1 原料技术要求 4.1.1 磷酸 指 标 名 称 DAP 优等品 一等品 合格品 有效磷(中性柠檬酸铵溶性磷, 以P 2O 5计) % 46~48 ≥42 ≥38 水溶性(以P 2O 5计)% > 42 38 32 总氮含量 N% 16~18 ≥15 ≥13 总养分(有效磷+总氮)% ≥ 64 57 51 水份含量 % 1.5 2.0 2.5 粒度 (1~4mm ),% 90 80 80

P2O5 29~46% 4.1.2 硫酸 H2SO4含量 : 93~98 % w/w 4.1.3 氨 状态 : 液体 NH3 含量 : 99.5 % w/w 含水率 : 0.3 % w/w 最大. 在操作温度下的压力 : 高于平衡压力0.3 - 0.4 MPa (在界区,表压最小 1.0 MPa) 4.1.4 包裹油 类型 : 胺化油 4.2 公用工程消耗 4.2.1 蒸汽(来源) 低压蒸汽: 压力 : 0.2 ~ 0.3 MPa(表压),在界区 温度 : 饱和的(133-143℃) 中压蒸汽: 压力 : 1.0 MPa(表压),在界区 温度 : 饱和的 (183℃) 4.2.2 工艺和生活用水 压力 : 0.3 MPa(表压),在界区 温度 : 环境 分析 :

磷酸铁锂生产配方及工艺

正极材料调试详细工艺流程 1.原材料检验 1.1磷酸铁:纯度99.5%以上,D90粒度小于5um ;(必须有纯度、粒度及杂质含量检 测报告) 1.2碳酸锂:纯度99.5%以上,D90粒度小于5um ; 1.3蔗糖:纯度99.5%以上,D90粒度小于5um ; 1.4纯水:电导率大于10兆欧。 1.5氮气:99.999% 1.6分散剂:聚乙二醇(PEG) 2.工艺过程 2.1磷酸铁烘干除水 (1)烘房烘干工序:不锈钢匣钵装满原料磷酸铁置入烘房,调节烘房温度220±20℃,6-10小时烘干。出料转下一工序至回转炉烧结。 (2)回转炉烧结工序:回转炉升温、通氮气达到要求后,进料(来自上工序烘房的物料),调节温度540±20℃,烧结8-12小时。 2.2研磨机混料工序 正常生产时,两台研磨机同时投入运行,两台设备具体投料和操作相同(调试时一台单独运行亦可),程序如下: (1)碳酸锂研磨:称量碳酸锂13Kg、蔗糖12Kg、纯水50Kg,混合研磨1-2小时。暂停。 (2)混合研磨:在上述混合液中加入磷酸铁50Kg,纯水25Kg,混合研磨1-3小时。停机,出料转入分散机。取样测粒度。 (3)清洗:称量100Kg纯水,分3-5次清洗研磨机,洗液全部转入分散机。 2.3分散机机物料分散工序

(1)将2.2两台研磨机混合好(或者1台研磨机两次混合)的物料约500Kg(包括清洗研磨机的物料)一起转入分散机,再加入100Kg纯水,调节搅拌速度,充分搅拌分散1-2小时,等待用泵打入喷雾干燥设备。 2.4喷雾干燥工序 (1)调节喷雾干燥设备的进口温度220±20℃,出口温度110±10℃,进料速度80Kg/hr,然后,开始进料喷雾干燥,得到干燥物料。 (2)可以按照喷雾粒度大小调节固含量为15%~30%。 2.5液压机物料压块装料 分别调节液压机的压力为150吨和175吨,在模具中装入喷雾干燥好的物料,保压一定时间,压实成块状。装入匣钵转入推板炉。同时,放入几组散装样品,与压成块状的物料进行对比。 2.6推板炉烧结 先升温,通氮气,达到气氛要求100ppm以下,将匣钵推入推板炉,按升温段300-550℃,4-6小时;恒温段750℃8-10小时;降温段6-8小时进行,出料。 2.7辊压超细磨 将推板炉烧好的物料输入超细磨,调节转速,进行辊压研磨后送入超细磨进行研磨。每批取样测试粒度。 2.8筛分、包装 将研磨物料进行筛分、包装。5Kg、25Kg两种规格。 2.9检验、入库 产品检验、贴标签入库。包括:产品名称、检验人、物料批次、日期。

磷酸铁锂的生产工艺与技术路线选择

磷酸铁锂的生产工艺与技术路线选择锂离子电池作为一种高性能的二次绿色电池,具有高电压、高能量密度(包括体积能量、质量比能量)、低的自放电率、宽的使用温度范围、长的循环寿命、环保、无记忆效应以及可以大电流充放电等优点。锂离子电池性能的改善,很大程度上决定于电极材料性能的改善,尤其是正极材料。目前研究最广泛的正极材料有LiCoO2、LiNiO2以及LiMn2O4等,但由于钴有毒且资源有限,镍酸锂制备困难,锰酸锂的循环性能和高温性能差等因素,制约了它们的应用和发展。因此,开发新型高能廉价的正极材料对锂离子电池的发展至关重要。 1997年,Padhi等报道了具有橄榄石结构的磷酸铁锂(LiFePO4)能够可逆地嵌脱锂,且具有比容量高、循环性能好、电化学性能稳定、价格低廉等特点,是首选的新一代绿色正极材料,特别是作为动力锂离子电池材料。磷酸铁锂的发现引起了国内外电化学界不少研究人员的关注,近几年,随着锂电池的越来越广的应用,对LiFePO4的研究越来越多。 2.1 磷酸铁锂的结构和性能 磷酸铁锂(LiFePO4)具有橄榄石结构,为稍微扭曲的六方密堆积,其空间群是P mnb型,晶型结构如图2.1所示。 图2.1 磷酸铁锂的空间结构图 LiFePO4由FeO6八面体和PO4四面体构成空间骨架,P占据四面体位置,而Fe和Li则填充在八面体空隙中,其中Fe占据共角的八面体位置,Li则占据共边的八面体位置。晶格一个FeO6八面体与两个FeO6八面体和一个PO4四面

体共边,而PO4四面体则与一个FeO6八面体和两个LiO6八面体共边。由于近乎六方堆积的氧原子的紧密排列,使得锂离子只能在二维平面上进行脱嵌,也因此具有了相对较高的理论密度(3.6g/cm3)。在此结构中,Fe2+/Fe3+相对金属锂的电压为3.4V,材料的理论比容量为170mA·h/g。在材料中形成较强的P-O-M 共价键,极大地稳定了材料的晶体结构,从而导致材料具有很高的热稳定性。 Wang等对LiFePO4的电化学性能做了详细的分析,图2.2是LiFePO4的循环载荷伏安图,在C-V图中形成两个峰,在阳极扫描时Li+从Li x FePO4结构中脱出,在3.52V形成氧化峰;当在4.0~3.0扫描时Li+嵌入到Li x FePO4结构中,相应的在3.32V形成还原峰;C-V曲线中的氧化还原峰表明在L iFePO4电极上发生着可逆的锂离子嵌脱反应。 图2.2 磷酸铁锂的循环载荷伏安图 2.2 磷酸铁锂的制备方法及研究 LiFePO4正极材料的性能在一定程度上取决于材料的形态、颗粒的尺寸以及原子排列,因此制备方法尤为重要。目前主要有固相法和液相法,其中固相法包括高温固相反应法、碳热还原法、微波合成法和脉冲激光沉积法;液相法包括溶胶·凝胶法、水热合成法、沉淀法以及溶剂热合成法等。 2.2.1 固相法 2.2.1.1 高温固相反应法… 2.2.1.2 碳热还原法 碳热还原法也是固相法中的一种,是比较容易工业化的合成方法,以廉价的

磷酸铁锂正极材料制备方法比较

磷酸铁锂正极材料制备方法比较 A.固相法 一.高温固相法 1.流程:传统的高温固相合成法一般以亚铁盐(草酸亚铁,醋酸铁,磷酸亚铁等),磷酸盐(磷酸氢二铵,磷酸二氢铵),锂盐(碳酸锂,氢氧化锂,醋酸锂及磷酸锂等)为原料,按LiFePO4分子式的原子比进行配料,在保护气氛(氮气、氩气或它们与氢气的混合气体)中一步、二步或三步加热,冷却后可得LiFePO4粉体材料。 例1:C.H.Mi等采用一:步加热法得到包覆碳的LiFePO4,其在30℃,0.1 C 倍率下的初始放电容量达到160 mAh·g-1;例2:S.S.Zhang等采用二步加热法,以FeC:2O4·2H2O和LiH2PO4为原料,在氮气保护下先于350~380℃加热5 h形成前驱体,再在800℃下进行高温热处理,成功制备了LiFePO4/C复合材料,产物在0.02 C倍率下的放电容量为159 mAh·g-1;例3:A.S.Andersson等采用三步加热法,将由:Li2CO3、FeC2O4·2H2O 和(NH4)2HPO4组成的前驱体先在真空电炉中于300℃下预热分解,再在氮气保护下先于450℃加热10 h,再于800℃烧结36 h,产物在放电电流密度为2.3 mA·g-1时放电,室温初始放电容量在136 mAh·g-1左右;例4:Padhi等以Li2CO3,Fe(CH3COO)2,NH4H2PO4为原料,采用二步法合成了LiFePO4正极材料,其首次放电容量达110 mA·h /g;T akahashi 等以LiOH·H2O, FeC2O4·2H2O,(NH4)2HPO4为原料,在675、725、800℃下,制备出具有不同放电性能的产品,结果表明,低温条件下合成的产品放电容量较大;例5:韩国的Ho Chul Shin、Ho Jang等以碳酸锂、草酸亚铁、磷酸二氢铵为原料,添加5wt%的乙炔黑为碳源、以At+5%H2为保护气氛,在700℃下煅烧合成10h,得到碳包覆的LiFePO4材料。经检测表明,用该工艺合成的LiFePO4制备的电池放电平台在3·4-3·5V之间,0·05C首次放电比容量为150mA·h/g;例6:高飞、唐致远等以醋酸锂、草酸亚铁、磷酸二氢铵为原料,聚乙烯醇为碳源。混料球磨所得粒径细小,分布的悬浊液。然后将悬浊液采用喷雾干燥的方法制得LiFePO4前驱体,再通过高温煅烧合成LiFePO4/C正极材料,首次放电比容量最为139·4mA·h/g,并具有良好的循环性能,经10C循环50次后,比容量仅下降0·15%;例7:赵新兵、周鑫等以氢氧化锂、磷酸铁、氟化锂为原料,,聚丙烯为碳源,先在500℃下预烧,再在700℃下煅烧合成具有F掺杂的LiFePO酒精为球磨介质4/C材料,电化学测试结果表明,LiFePO3·98F0·02/C 具有最佳放电特性,在1C倍率充放电下比容量为146mA·h/g。 2.优点:工艺简单、易实现产业化 3.缺点:颗粒不均匀;晶形无规则;粒径分布范围广;实验周期长;难以控制产物的批次稳定性;在烧结过程中需要耗费大量的惰性气体来防止亚铁离子的氧化;所生产的LiFePO4粉末导电性能不好,需要添加导电剂增强其导电性能 4.改性:添加导电剂(多用蔗糖,乙炔黑,聚乙烯醇,聚丙烯等碳源)增强其导电性能二.碳热还原法 1.流程:碳热还原法也是高温固相法中的一种,是比较容易工业化的合成方法,多数以氧化铁或磷酸铁做为铁源,配以磷酸二氢锂以及蔗糖等碳源,均匀混合后,在高温和氩气或氮气保护下焙烧,碳将三价铁还原为二价铁,也就是通过碳热还原法合成磷酸铁锂。 例1: 杨绍斌等以正磷酸铁为铁源,以葡萄糖、乙炔黑为碳源,采用碳热还原法合成橄榄石型磷酸铁锂。研究发现:双碳复合掺杂样品电性能最高为148.5 mAh/g,倍率放电性能仍具有优势,10 C时容量保持率为88.1%;例2:Mich等以分析纯的FePO4和LiOH为原料,聚丙烯为还原剂,合成的材料在0.1 C及0.5 C倍率下首次放电比容量分别为160 mAh/g 和146.5 mAh/g;例3:P.P.Prosini 等以(NH4)2Fe(SO4)2和NH4H2PO4为原料首先合成FePO4,然后用LiI还原Fe3+,并在还原性气氛下(Ar:H2=95:5)于550℃加热1 h后合成了最终样品,其在0.1C倍率下的室温

磷肥生产工艺流程图

磷肥生产工艺流程图 ?酸法用硫酸、磷酸、硝酸或盐酸分解磷矿,并把磷矿中的钙以钙盐的形式分离或固定。这是磷肥的主要生产方法,中特别是硫酸法。硫酸分解磷矿,将硫酸钙分离后制得磷酸。 ?磷酸是生产高浓度磷肥的中间原料。酸法又称为湿法,用酸法制得的磷肥,常统称为湿法磷肥。 ?热法利用高温分解磷矿, 并进一步制成可被作物吸收的磷酸盐或玻璃体物质。这类生产方法所制得的产品往往不溶于水。磷肥的热法生产习惯上还包括元素磷和热法磷酸生产,再以热法磷酸为原料加工成高浓度磷肥。用热法制得的磷肥常统称为热法磷肥。

?普通过磷酸钙生产方法有两种:稀酸矿粉法和浓酸矿浆法。前种用稀硫酸与矿粉发反应,再经化成熟化制得粉状SSP,后者用浓硫酸与矿浆反应,再经化成熟化制得粉状SSP。 ?钙镁磷肥磷矿石,含镁矿石,燃料破碎成小块,按一定比例配料,装入高炉,在高温条件下,炉料熔融成FMP,放出用水淬速迅速冷却,成为颗粒状玻璃体,再经沥水,干燥及其研磨即成粉状FMP成品。

?湿法磷酸用各种无机酸分解磷矿,得到磷酸。现在我国大部份磷酸产量都来自湿法。湿法生产中绝大部分是硫酸法。 ?磷酸铵磷酸铵主要有磷酸一铵和磷酸二铵,生产方法主要有传统法和料浆法。二铵采用传统法,一铵采用料浆法。

?重过磷酸钙 ?化成法以浓磷酸和磷矿粉为主要原料,在混合机内生成料浆,并继续反应固化,然后转移到熟化仓库,经过缓慢反应成化,成为粉粒状半成品。在造粒机内造粒,再经干燥,破碎,冷却等制成颗粒状成品。

?重过磷酸钙 ?料浆法以稀硫酸和硫矿粉为主要原料,在反应槽混合生成料浆,然后送到造粒机与返粒滚动成粒,再经干燥,破碎,冷冻制得粒状成品。

复合肥主要工艺技术和生产方法介绍

复合肥主要工艺技术和生产方法介绍 (2011-06-08 11:06:52) 标签: 杂谈 一、综合颗粒状复混肥料的生产方法主要有以下几种: 1.料浆法以磷酸、氨为原料,利用中和器、管式反应器将中和料浆在氨化粒化器中进行涂布造粒,在生产过程中添加部分氮素和钾素以及其他物质,再经干燥、筛分、冷却而得到NPK 复合肥产品,这是国内外各大化肥公司和工厂大规模生产常采用的生产方法。磷酸可由硫酸分解磷矿制取,有条件时也可直接外购商品磷酸,以减少投资和简化生产环节。该法的优点是既可生产磷酸铵也可生产NPK肥料,同时也充分利用了酸、氨的中和热蒸发物料水份,降低造粒水含量和干燥负荷,减少能耗,此法的优点是:生产规模大,生产成本较低,产品质量好,产品强度较高。由于通常需配套建设磷酸装置及硫酸装置,建设不仅投资大,周期长,而且涉及磷、硫资源的供应和众多的环境保护问题(如磷石膏、氟、酸沫、酸泥等),一般较适用于在磷矿加工基地和较大规模生产、产品品数不多的情况。如以外购的商品磷酸为原料,则目前稳定的来源和运输问题及价格因素是不得不考虑的,近年来,由于我国磷酸工业技术和装备水平的提高,湿法磷酸作为商品进入市场有了良好的条件,在有资源和条件的地区建立磷酸基地,以商品磷酸满足其它地区发展高浓度磷复肥的需要,正在形成一种新的思路和途径,市场需求必将促进这一行业发展,也必将解决众多地区原料磷酸的需求问题。拥有该种生产技术的外国公司主要有挪威的norsk hydro、西班牙incro、espindsea、法国的AZF、KT、美国的Davy/TVA等。国内的主要生产厂家有:中阿化肥有限公司、江西贵溪化肥厂、云南云峰化工公司、南京南化磷肥厂、大连化工厂、金昌化工公司、广西鹿寨磷肥厂等。拥有相近于该种生产技术的国内企业主要有山东的红日集团、四川成都科技大学、上海化工研究院等。 2.固体团粒法以单体基础肥料如:尿素、硝铵、氯化铵、硫铵、磷铵(磷酸一铵、磷酸二铵、重钙、普钙)、氯化钾(硫酸钾)等为原料,经粉碎至一定细度后,物料在转鼓造粒机(或园盘造粒机)的滚动床内通过增湿、加热进行团聚造粒,在成粒过程中,有条件的还可以在转鼓造粒机加入少量的磷酸和氨,以改善成粒条件。造粒物料经干燥、筛分、冷却即得到NPK复合肥料产品,这也是国际广泛采用的方法之一,早期的美国及印度、日本、泰国等东南亚国家均采用此法生产。该法原料来源广泛易得,加工过程较为简单,投资少,生产成本低、上马快,生产灵活性大,产品的品位调整简单容易,通用性较强,采用的原料均为固体,对原材料的依托性不强,由于是基础肥料的二次加工过程,因此几乎不存在环境污染问题,由于我国目前的基础肥料大部分为粉粒状,因此,我国中小型规模的复合肥厂大多采用此种方法。目前,该种生产技术在国内已日趋成熟。国内最早开发和拥有该项生产技术和成套装备知识产权的单位为上海化工研究院。 3.部分料浆法近年来,在TVA尿素、硝铵半料浆法及团粒法的基础上,国内又发展了利用尿液或硝铵溶液的喷浆造粒工艺-即部分料浆法,该技术利用了尿素和硝铵在高温下能形成高浓度溶液的特性(?95%),由于尿液或硝铵溶液温度高,溶解度大,液相量大的特点,

磷酸铁锂公司企业名录

磷酸铁锂公司企业名录 Document number:PBGCG-0857-BTDO-0089-PTT1998

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司

十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

三聚磷酸钠生产工艺

三聚磷酸钠生产工艺三聚磷酸钠生产工 艺 一、三聚磷酸钠的性质 1.1产品名称 三聚磷酸钠俗称“磷酸五钠”或“五钠”,化学式NaP3O。,分子量 36 & 1?2产品性质 1.2.1物理性质 1、外观:白色粉末状结晶,流动性较好。 2、1型的密度为2.62g/cm3,H型的密度为2.57g/cm3。 3、熔点:620 C 1.2.2化学性质 1、水合性能 三聚磷酸钠因生成温度不同而有高温型(I型)和低温型(H型)之分,其区别在于两者的键长和键角不同,I型和H型产品水合后均生成六水合物NaP30o ? 6HQ在相同条件下,I型水合作用较快产生的热量高,溶于水时易产生结块现象,这是由于I型结构中存在四配位体的钠离子,四配位体对水有强亲和力,反之H型在水中则以很慢的速度生成六水物。

三聚磷酸钠在室温下相当稳定,在潮湿的空气中会缓慢的发生水解反应,最终生成正磷酸钠,反应如下:NaP3Q o+2H2Q - 2NQHPQ+NahPQ 2、对金属离子的螯合能力 三聚磷酸钠与溶于水中的Ca+、M&、Fe3+等金属离子有络合作用,生成可溶性络合物,如: NaRO o+C厂Na(CaP30o)+2Na+ 三聚磷酸钠的络合能力一般以钙值表示,即100g磷酸盐所能络合 钙离子的克数,理论值为13.4。 3、缓冲作用 三聚磷酸钠水溶液呈弱碱性(1%水溶液的PH直约为9.7),它在PH 为4.3?14范围水)中,形成悬浊液(类似乳化液)的作用,即分散作用。 三聚磷酸钠也能使液态、固态微粒更好的溶于液体(如水)介质 中,使溶液外观完全透明,好像真溶液一样,这就是增溶作用。 由于三聚磷酸钠具有以上独特的性能,使之成为洗衣粉中的一种 重要的理想原料。 1.3产品用途 1.3.1三聚磷酸钠主要作为合成洗涤剂的助剂 同时还用于纤维工业精炼、漂白、染色的助剂、水质稳定剂、锅 炉除垢剂、洗涤剂及食品工业的添加剂。 1.3.2三聚磷酸钠在合成洗涤剂中的作用 合成洗涤剂的主要成份是表面活性剂,表成活性剂具有润湿作用、渗透作用、乳化作用、分散作用和发泡作用等等,去污作用正是上述一些作用的

相关文档
相关文档 最新文档