文档库 最新最全的文档下载
当前位置:文档库 › 高中数列的常见解法)

高中数列的常见解法)

高中数列的常见解法)
高中数列的常见解法)

数列解题方法 一、基础知识:

数列:

1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列

,其中的每一个数叫做数

列的项 .

2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 .

3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号,

因此数列的一般形式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第 n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法. 4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类:

①按项的数量分: 有穷数列 、 无穷数列 ;

②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他; ③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化范围分:有界数列、无界数列.

6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数关系可以用一个

公式a n =f (n )(n ∈N +或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数列的通项公式在形式上未必唯一.

7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一

项a n -1(或前几项a n-1,a n -2,…)间关系可以用一个公式 a n =f (a 1n -)(n =2,3,…) (或 a n =f (a 1n -,a 2n -)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的 递推公式 . 8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n =

1

n

i

i a =∑=a 1

+a 2

+…+a n ,如果S n

项数n 之间的函数关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系:

通项公式a n 与求和公式S n 的关系可表示为:11(1)

(n 2)

n n n S n a S S -=?=?-≥?

等差数列与等比数列:

数列的项n a 与前n 项和n S 的关系:1

1

(1)(2)n n n s n a s s n -=?=?-≥?

数列求和的常用方法:

1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比

数列)

即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。

3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。

适用于数列11n n a a +?

??

????

和??(其中{}n a 等差) 可裂项为:

111111

()n n n n a a d a a ++=-?

1d

=

等差数列前n 项和的最值问题:

1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?10

n n a a +≥??

≤?;

(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q

p

-

的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值

(ⅰ)若已知通项n a ,则n S 最小?1

0n n a a +≤??≥?;

(ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q

p

-的非零自然数时n S 最小; 数列通项的求法:

⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即12()n a a a f n ++

+=)求n a ,用作差法:{

11

,(1)

,(2)n n n S n a S S n -==-≥。

已知12

()n a a a f n =求n a ,用作商法:(1),(1)()

,(2)

(1)

n f n f n a n f n =??=?

≥?-?。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。 ⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-+

+-

1a +(2)n ≥。

⑸已知

1()n n a f n a +=求n a ,用累乘法:12

112

1

n n n n n a a

a a a a a a ---=???

?(2)n ≥。 ⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a ;形如1n n n a ka k -=+的递推数列都可以除以n

k 得到一个等差数列后,再求n a 。

(2)形如1

1n n n a a ka b

--=

+的递推数列都可以用倒数法求通项。

(3)形如1k n n a a +=的递推数列都可以用对数法求通项。

(8)遇到q a a d a a n n n n ==--+-+1

1

11或时,分奇数项偶数项讨论,结果可能是分段形式 数列求和的常用方法:

(1)公式法:①等差数列求和公式;②等比数列求和公式。

(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和。

(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).

(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: ①

111(1)1n n n n =-++; ②1111()()n n k k n n k

=-++; ③

2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k

-=<<=-++--; ④

1111

[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ;⑤

11(1)!!(1)!

n n n n =-++;

⑥=<<

=

二、解题方法:

求数列通项公式的常用方法: 1、公式法 2、n n a S 求由 (时,,时,)n

a S n a S S n n n ==≥=--12111

3、求差(商)法 {}如:

满足

……a a a a n n n n 12121

2

251122+++=+<>

解:n

a a ==?+=11

2

2151411时,,∴

n

a a a n n n ≥+++=-+<>--212121

2215

212211时,……

<>

-<>=121

2

2得:

n n a ∴a n n =+21

∴a n n n n ==≥???+1412

21

()

() [练习] {}数列满足,,求a S S a a a n n n n n +=

=++1115

3

4

4、叠乘法 {}例如:数列

中,,

,求a a a a n

n a n n n n 1131

==++ 解:

a a a a a a n n a a n n n n 213211122311

·……·……,∴-=-= 又,∴a a n

n 133

==

5、等差型递推公式 由,,求,用迭加法a a f n a a a n

n n -==-110()

n a a f a a f a a f n n n ≥-=-=-=?

??

?

?

??-22321321时,…………两边相加,得:()()()

a a f f f n n

-=+++123()()()……

∴……a a f f f n n =++++023()()()

[练习] {}()数列,,,求a a a a n a n n n n n 111132==+≥--

6、等比型递推公式 ()a ca d c d c c d n

n =+≠≠≠-1010

、为常数,,,

()可转化为等比数列,设a x c a x n n +=+-1

()?=+--a ca c x n

n 11

令,∴()c x

d x d c -==

-11

∴是首项为,为公比的等比数列a d c a d

c c n

+

-???

???+-11

1

∴·a d c a d c c n

n +

-=+-?? ??

?-1111

∴a a d c c d c n n =+-?

? ???

---1111

{}数列满足,,求a a a a a n n n n 11934=+=+

7、倒数法 例如:,,求a a a a a n n

n n 1

1122

==

++

由已知得:

122121

1

a a a a n n n n

+=

+=+

111

2

1

a a n n +-

= ∴??????

=111121a a n 为等差数列,,公差为

()()∴

=+-=+111121

21a n n n · ∴a n n

=+2

1

数列前n 项和的常用方法:

1、公式法:等差、等比前n 项和公式

2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 {}如:

是公差为的等差数列,求a d a a n k k k n

11

1+=∑

解:()()由·11111011a a a a d d a a d k k k k k k ++=+=-?? ?

?

?≠

∴11111111a a d a a k k k n

k k k n

+=+=∑∑=-?? ?

?

?

=-?? ???+-?? ???++-?? ???????

??=

-?? ??

?++11111111111223111d a a a a a a d a a n n n ……

求和:…………111211231123+++++++++++n

3、错位相减法: {}{}{}若

为等差数列,为等比数列,求数列(差比数列)前项a b a b n n n n n

{}和,可由求,其中为的公比。S qS S q b n n n n -

如:……S x x x nx n

n =+++++<>-12341231

()x S x x x x n x nx n n n

·……=+++++-+<>-234122341

()<>

-<>-=++++--121121:……x S x x x nx n n n

()()

x

S x x nx x

n

n

n

≠=---

-11112

时,

()x S n n n n ==++++=

+112312

时,……

4、倒序相加法:把数列的各项顺序倒写,再与原来顺序的数列相加。

S a a a a S a a a a n n n n n n =++++=++++???

?

?--121121…………相加

()()()21211S a a a a a a n n n n =++++++-…………

[练习]

已知,则f x x x

f f f f f f f ()()()()()=+++?? ???++?? ???++?? ???=22

11212313414

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高中数学-数列公式及解题技巧

数列求和的基本方法和技巧 除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。

二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出 了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列 的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。 [例] 求和:1 32)12(7531--+???++++=n n x n x x x S ( 1≠x )………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。 对应高考考题:设正项等比数列{}n a 的首项2 1 1= a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 证明: 设n n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得 113)12()12(n n n n n n n C C C n C n S ++???+-++=- (反序)

高中数学题型解法归纳《数列性质的证明》

【知识要点】 一、数列性质的证明一般有两种方法: 方法一:利用等差数列等比数列的定义来证明. 1(2,)n n a a d n n N *--=≥∈?{}n a 是等差数列 1 (2,)n n a q n n N a *-=≥∈?数列{}n a 是等比数列 方法二:利用等差等比数列的中项公式来证明. 11 (2,)2 n n n a a a n n N *+-+= ≥∈{n a ?}是等差数列 211 (2,)n n n a a a n n N *-+=≥∈?数列{}n a 是等比数列 【方法讲评】 【例1】已知数列{}n a 满足4 4 4,311 ++= =+n n n a a a a (1 )求证:数列? ?? ???-+22n n a a 为等比数列; (2)设p n m N p n m <<∈,,,*,问:数列{}n a 中是否存在三项p n m a a a ,,,使p n m a a a ,,成等差数列,如果存在,请求出这三项;如果不存在,请说明理由.

而 052 2 11≠=-+a a , ∴ ? ?? ?? ?-+22n n a a 是以5为首项,3为公比的等比数列. 【点评】利用定义证明数列{}n a 等比,只要把已知条件代入1 n n a a -化简,注意化简时,一般只变分子或分母,不要同时变化,一直化简到最后是一个非零常数为止. 【反馈检测1】已知数列{}n a ,2n a ≠,158 23 n n n a a a +-= -,13a = (1)证明:数列1 { }2 n a -是等差数列. (2)设2n n b a =-,数列1{}n n b b +的前n 项和为n S ,求使2 (21)2n n n S ++??1(23)2192n n +>-?+成立 的最小正整数n . 【反馈检测2】已知数列{}n a 满足:12n n a a a n a ++ +=-,其中*n N ∈.

求数列通项公式和前n项和的常用方法(含高考题精选)

求数列通项公式和前n 项和的常用方法 一、求数列通项公式的常用方法 1.公式法:等差数列或等比数列的通项公式。 2.归纳法:由数列前几项猜测出数列的通项公式,再用数学归纳法证明其正确性。 3.累乘法:利用3 21 121 (0,2)n n n n a a a a a a n a a a -=???≠≥型如: 1()n n a g n a += 4.构造新数列: 类型1累加法 )(1n f a a n n +=+ 类型2 累乘法 n n a n f a )(1=+ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。解法(待定系数法):把原递 推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,转化为等比数列求解。 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq ) 。 (或1n n n a pa rq +=+,其中p ,q, r 均为常数) 解法:先在原递推公式两边同除以1 +n q ,得:q q a q p q a n n n n 111+?=++引入辅助数列{}n b (其中n n n q a b =),得:q b q p b n n 1 1+=+再待定系数法解决。 类型5 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:1.利用?? ?≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 2.升降标相减法 二、数列求和的常用方法 1.直接或转化等差、等比数列的求和公式求和 (1)等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 2.错位相减法 设数列{}n a 的等比数列,数列{}n b 是等差数列,则求数列{}n n b a 的前n 项和n S 。 3.裂项求和法 (1)1 1 1)1(1+- =+=n n n n a n (2))121121(211)12)(12()2(2+--+=+-=n n n n n a n 等。4.分组求和法:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为 几个等差、等比或常见的数列,然后分别求和,再将其合并。 5.逆序相加法 把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

数列知识点及常用解题方法归纳总结

数列知识点及常用解题方法归纳总结 一、 等差数列的定义与性质 () 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ?=+2 ()()前项和n S a a n na n n d n n = +=+ -112 12 {}性质:是等差数列a n ()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则 ;421 21 a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52 a S an bn a b n n n ?=+ 0的二次函数) {}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2 项,即: 当,,解不等式组可得达到最大值时的值。a d a a S n n n n 11 000 0><≥≤?? ?+ 当,,由可得达到最小值时的值。a d a a S n n n n 11000 <>≤≥?? ?+ {}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123 (由,∴a a a a a n n n n n ++=?==----12113331 ()又·,∴S a a a a 3132 22 33113 = +===

数列求和的常用方法

数列求和的常用方法 主要方法: 1.求数列的和关键是看数列的通项公式形式注意方法的选取: 2.求和过程中注意分类讨论思想的运用;转化思想的运用; 一、公式法 二、分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 1、求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 2 、 求 数 列 的 前 n 项 和 : 231 ,,71,41, 1112-+???+++-n a a a n ,… 三、 合并求和法: 1、求22222212979899100-++-+-Λ的和。 2、1-2+3-4+5-6+7-8+9-……….+ n 1-1 n +)( 3(2014山东19文) 在等差数列{}n a 中,已知2d =,2a 是1a 与4a 等比中项. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设()12 ,n n n b a += 记()1231n n n T b b b b =-+-++-L ,求n T . 4.( 2014山东19理) 已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。 (I )求数列}{n a 的通项公式; (II )令n b =,4) 1(1 1 +--n n n a a n 求数列}{n b 的前n 项和n T 。 5、(2011山东理数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:()1ln n n n n b a a =+-,求数列{}n b 的前n 项和n S . 6、(2011山东文数20)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-, 求数列{}n b 的前2n 项和2n S . 四、 错位相减法:.×. 1、已知数列)0()12(,,5,3,11 2 ≠--a a n a a n Λ,求前 n 项和。 2、 132)12(7531--+???++++=n n x n x x x S 3、求数列 ??????,2 2,,26,24,2232n n 前n 项的和 4、{2}.n n n ?求数列前项和 5、设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=

(甘志国)数列求和的七种基本方法

数列求和的七种基本方法 甘志国部分内容(已发表于 数理天地(高中),2014(11):14-15) 数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法. 1 运用公式法 很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记: 还要记住一些正整数的幂和公式: 例1 已知数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤?>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时, 所以 2 2 32(1,2,,16)32512 (17,) n n n n T n n n n * ?-=?=?-+≥∈??N L 且 例2 求1)2(3)1(21?++-?+-?+?=n n n n S n Λ. 解 设2 )1()1(k n k k n k a k -+=-+=,本题即求数列}{k a 的前n 项和. 高考题1 (2014年高考浙江卷文科第19题(部分))求数列{}21n -的前n 项和n S . 答案:2n S n =. 高考题2 (2014年高考四川卷理科第19题(部分))求数列{}24n -的前n 项和n S . 答案:23n S n n =-. 高考题3 (2014年高考福建卷文科第17题)在等比数列{}n a 中,253,81a a ==. (1)求n a ; (2)设3log n n b a =,求数列{}n b 的前n 项和n S . 答案:(1)1 3 n n a -=;(2)22 n n n S -=. 高考题4 (2014年高考重庆卷文科第16题)已知{}n a 是首项为1,公差为2的等差数列,

高中三角函数和数列部分公式

公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 推导:cos(2α)=cos(α+α)=cosαcosα-sinαsinα=cos^2(α)-sin^2(α)……① 在等式①两边加上1,整理得:cos(2α)+1=2cos^2(α) 将α/2代入α,整理得:cos^2(α/2)=(cosα+1)/2 在等式①两边减去1,整理得:cos(2α)-1=-2sin^2(α) 将α/2代入α,整理得:sin^2(α/2)=(1-cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=±[(1-cosα)/2]^(1/2)(正负由α/2所在象限决定) cos(α/2)=±[(1+cosα)/2]^(1/2)(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=±[(1-cosα)/(1+cosα)]^(1/2) 推导:tan(α/2) =sin(α/2)/cos(α/2) =[2sin(α/2)cos(α/2] /2cos(α/2)^2 =sinα/(1+cosα) =(1-cosα)/sinα 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。

高考数列专题复习(精典版知识点+大题分类+选择题+答案详解)

文科数列专题复习 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较 等差数列 等比数列 定义 常数)为(}{1d a a P A a n n n =-??+ 常数) 为(}{1q a a P G a n n n =? ?+ 通项公 式 n a =1a +(n-1)d=k a +(n-k )d=dn+1a -d k n k n n q a q a a --==11 求和公 式 n d a n d d n n na a a n s n n )2(22) 1(2)(1211-+=-+=+= ??? ??≠--=--==)1(11)1()1(111 q q q a a q q a q na s n n n 中项 公式 A= 2 b a + 推广:2n a =m n m n a a +-+ ab G =2。 推广:m n m n n a a a +-?=2 性质 1 若m+n=p+q 则 q p n m a a a a +=+ 若m+n=p+q ,则q p n m a a a a =。 2 若}{n k 成A.P (其中N k n ∈)则}{n k a 也为A.P 。 若}{n k 成等比数列 (其中N k n ∈),则}{n k a 成等比数列。 3 .n n n n n s s s s s 232,,-- 成等差数列。 n n n n n s s s s s 232,,--成等比数列。

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

高级中学数列的常见解法)

数列解题方法 一、基础知识: 数列: 1.数列、项的概念:按一定 次序 排列的一列数,叫做 数列 ,其中的每一个数叫做数 列的项 . 2.数列的项的性质:① 有序性 ;② 确定性 ;③ 可重复性 . 3.数列的表示:通常用字母加右下角标表示数列的项,其中右下角标表示项的位置序号, 因此数列的一般形式可以写成a 1,a 2,a 3,…,a n ,(…),简记作 {a n } .其中a n 是该数列的第 n 项,列表法、 图象法、 符号法、 列举法、 解析法、 公式法(通项公式、递推公式、求和公式)都是表示数列的方法. 4.数列的一般性质:①单调性 ;②周期性 . 5.数列的分类: ①按项的数量分: 有穷数列 、 无穷数列 ; ②按相邻项的大小关系分:递增数列 、递减数列 、常数列、摆动数列 、其他; ③按项的变化规律分:等差数列、等比数列、其他; ④按项的变化范围分:有界数列、无界数列.

6.数列的通项公式:如果数列{a n }的第n 项a n 与它的序号n 之间的函数关系可以用一个 公式a n =f (n )(n ∈N +或其有限子集{1,2,3,…,n}) 来表示,那么这个公式叫做这个数列的 通项公式 .数列的项是指数列中一个确定的数,是函数值,而序号是指数列中项的位置,是自变量的值.由通项公式可知数列的图象是 散点图 ,点的横坐标是 项的序号值 ,纵坐标是 各项的值 .不是所有的数列都有通项公式,数列的通项公式在形式上未必唯一. 7.数列的递推公式:如果已知数列{a n }的第一项(或前几项),且任一项a n 与它的前一 项a n -1(或前几项a n-1,a n -2,…)间关系可以用一个公式 a n =f (a 1n -)(n =2,3,…) (或 a n =f (a 1n -,a 2n -)(n=3,4,5,…),…)来表示,那么这个公式叫做这个数列的 递推公式 . 8.数列的求和公式:设S n 表示数列{a n }和前n 项和,即S n = 1 n i i a =∑=a 1 +a 2 +…+a n ,如果S n 与 项数n 之间的函数关系可以用一个公式 S n = f (n )(n =1,2,3,…) 来表示,那么这个公式叫做这个数列的 求和公式 . 9.通项公式与求和公式的关系: 通项公式a n 与求和公式S n 的关系可表示为:11(1) (n 2) n n n S n a S S -=?=?-≥? 等差数列与等比数列:

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

高中数学常见题型解法归纳 数列应用题的解法

高中数学常见题型解法归纳 数列应用题的解法 【知识要点】 一、数列的应用主要是从实际生活中抽象出一个等差、等比的数列问题解答,如果不是等差等比数列的,要转化成等差等比数列的问题来解决. 二、与增长量和降低量有关的问题一般是等差数列,与增长率和降低率有关的问题一般是等比数列. 三、单利问题:设本金为p ,期利率为r ,则n 期后本利和)1(nr p S n +=,对应的是等差数列; 复利问题:设本金为p ,期利率为r ,则n 期后本利和n n r p S )1(+=,对应的是等比数列. 四、数列的问题注意弄清数列的项数、首项、公差和公比等. 【方法讲评】 【例1】某地为了防止水土流失,植树造林,绿化荒沙地,每年比上一年多植相同亩数的林木,但由于自然环境和人为因素的影响,每年都有相同亩数的土地沙化,具体情况为下表所示: 而一旦植完,则不会被沙化. 问:(1)每年沙化的亩数为多少?(2)到那一年可绿化完全部荒沙地? (2) 设2005年及其以后各年的造林亩数分别为1a 、2a 、3a 、…,则 1800(1)4004001400n a n n =+-?=+

【点评】(1)利用等差数列的性质解答,首先要判断和证明数列是等差数列;(2)利用等差数列的性质解答时,一定要弄清数列的首项、公差和首项等,要分清是数列的通项问题还是数列的求和问题. 【反馈检测1】杭州某通讯设备厂为适应市场需求,提高效益,特投入98万元引进世界先进设备奔腾6号,并马上投入生产.第一年需要的各种费用是12万元,从第二年开始,所需费用会比上一年增加4万元,而每年因引入该设备可获得的年利润为50万元. 请你根据以上数据,解决下列问题:(1)引进该设备多少年后,开始盈利?(2)引进该设备若干年后,有两种处理方案:第一种:年平均盈利达到最大值时,以26万元的价格卖出;第二种:盈利总额达到最大值时,以8万元的价格卖出.问哪种方案较为合算?并说明理由. 【例2】商学院为推进后勤社会化改革,与桃园新区商定:由该区向建设银行贷款500万元在桃园新区为学院建一栋可容纳一千人的学生公寓,工程于2002年初动工,年底竣工并交付使用,公寓管理处采用收费还贷偿还建行贷款(年利率5%,按复利计算),公寓所收费用除去物业管理费和水电费18万元.其余部分全部在年底还建行贷款. (1)若公寓收费标准定为每生每年800元,问到哪一年可偿还建行全部贷款; (2)若公寓管理处要在2010年底把贷款全部还清,则每生每年的最低收费标准是多少元(精确到元).(参考数据:lg1.73430.2391,lg1.050.0212==,8 1.05=1.4774) 【解析】 依题意,公寓2002年底建成,2003年开始使用. (1)设公寓投入使用后n 年可偿还全部贷款,则公寓每年收费总额为1000×80(元)=800000(元)

数列求和的常用方法(三课时)

数列求和的常用方法(三课时) 数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法: 一、直接(或转化)由等差、等比数列的求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 2 1 3)]1(21[+==∑=n n k S n k n 例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列. (1)求数列{}n a 的等差数列. (2)令31ln 12n n b a n +== ,,,, 求数列{}n b 的前n 项和T . 解:(1)由已知得12313 27:(3)(4)3.2 a a a a a a ++=?? ?+++=??, 解得22a =. 设数列{}n a 的公比为q ,由22a =,可得132 2a a q q ==,. 又37S =,可知2 227q q ++=,即22520q q -+=, 解得121 22 q q ==,.由题意得12q q >∴=,. 11a ∴=.故数列{}n a 的通项为12n n a -=. (2)由于31ln 12n n b a n +== ,,,, 由(1)得3312n n a += 3ln 23ln 2n n b n ∴==, 又13ln 2n n n b b +-= {}n b ∴是等差数列. 12n n T b b b ∴=+++ 1()2 (3ln 23ln 2) 23(1)ln 2. 2 n n b b n n n += += += 故3(1) ln 22 n n n T += .

高中数学数列求和题解题方法技巧

高中数学数列求和题解题方法技巧 数列求和的七种解法 1.公式法:顾名思义就是通过等差、等比数列或者其他常见的数列的求和公式进行求解。 2.倒序相加:如果一个数列{an},与首末两端等“距离”的两项和相等或者等于同一个常数,则求该数列的前n项和即可用倒序相加法。例如等差数列的求和公式,就可以用该方法进行证明。 3.错位相减:形如An=Bn?Cn,其中{Bn}为等差数列,首项为b1,公差为d;{Cn}为等比数列,首项为c1,公比为q。对数列{An}进行求和,首先列出Sn,记为①式;再把①式中所有项同乘等比数列{Cn}的公比q,即得q?Sn,记为②式;然后①②两式错开一位作差,从而得到{An}的前n项和。这种数列求和方式叫做错位相减。 4.裂项相消:把数列的每一项都拆成正负两项,使其正负抵消,只剩下首尾几项,再进行求和,这种数列求和方式叫做裂项相消。 5.分组求和:有一类数列,既不是等差,又不是等比,但若把这个数列适当的拆开,就会分成若个等差,等比或者其他常见数列(即可用倒序相加,错位相减或裂项相消求和的数列),然后分别求和,之后再进行合并即可算出原数列的前n项和。 6.周期数列:一般地,若数列{an}满足:存在一个最小的正整数T,使得an+T=an对于一切正整数n都成立,则数列{an}称为周期数列,其中T叫做数列{an}的周期,接下来根据数列的周期性进行求和。 7.数学归纳法:是一种重要的数学方法,其对求数列通项,求和的归纳猜

想证明起到了关键作用。 高中数学解题方法实用技巧 1 解决绝对值问题 主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2 因式分解 根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是: 提取公因式 选择用公式 十字相乘法 分组分解法 拆项添项法 3

相关文档
相关文档 最新文档