文档库 最新最全的文档下载
当前位置:文档库 › 波纹管膨胀节应力腐蚀裂纹倾向控制

波纹管膨胀节应力腐蚀裂纹倾向控制

波纹管膨胀节应力腐蚀裂纹倾向控制
波纹管膨胀节应力腐蚀裂纹倾向控制

应力腐蚀断裂精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】

应力腐蚀断裂 一.概述 应力腐蚀是材料、或在静(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有 害物质浓度往往很低,如大气中微量的H 2S和NH 3 可分别引起钢和铜合金的应力腐蚀

1.应力腐蚀的机理:阳极溶解和氢致开裂机理 阳极溶解机理应力腐蚀断裂必须首先发生选择性腐蚀,而金属的腐蚀又受图4所示的阳极极化曲线的影响。以不锈钢为例,增加介质中Cl-含量,降低介质中O2含量及pH值,都会使图4a中阳极极化曲线从左向右移动,这四根曲线分别对应于蚀坑或裂纹区(图4b)的不同位置。应力的主要作用在于使金属发生滑移或使裂纹扩展,这两种力学效应都可破坏钝化膜,从而使阳极过程得以恢复,促进局部腐蚀。钝化膜破坏以后,可以再钝化。若再钝化速度低于钝化膜破坏速度,则应力与腐蚀协同作用,便发生应力腐蚀断裂。 氢致开裂机理或称氢脆机理,是应力腐蚀断裂的第二种机理。这种机理承认SCC必须首先有腐蚀,但是,纯粹的电化学溶解,在很多情况下,既不易说明SCC速度,也难于解释SCC的脆性断口形貌。氢脆机理认为,蚀坑或裂纹内形成闭塞电池,局部平衡使裂纹根部或蚀坑底部具备低的pH值,这是满足阴极反应放氢的必要条件。这种氢进入金属所引起的氢脆,是SCC的主要原因。这种机理取决于氢能否进入金属以及金属是否有高度的氢脆敏感性。高强度钢在水溶液中的SCC以及钛合金在海水中的SCC是氢脆引起的。

2.应力腐蚀开裂的断口形貌:穿晶断口开裂图

3.氢鼓泡产生机理,文字图 通过实验和理论分析研究了氢鼓泡形核、长大和开裂的过程. 在充氢试样中发现直径小于100 nm未开裂的孔洞, 它们是正在长大的氢鼓泡, 也发现已开裂的鼓泡以及裂纹多次扩展导致破裂的鼓泡.分析表明, 氢和空位复合能降低空位形成能, 从而使空位浓度大幅度升高, 这些带氢的过饱和空位很容易聚集成空位团.H在空位团形成的空腔中复合成H2就使空位团稳定, 成为氢鼓泡核.随着H 和过饱和空位的不断进入, 鼓泡核不断长大, 内部氢压也不断升高.当氢压产生的应力等于被氢降低了的原子键合力时, 原子键断开, 裂纹从鼓泡壁上形核. 图5 氢鼓泡形核、长大示意图 (a) 空位V和原子氢H聚集成为空位-原子氢集团; (b) 原子氢在空位 团中复合成分子氢H2, 使其稳定, 鼓泡核形成; (c) 空位和氢不断进 入鼓泡核使其长大; (d) 当鼓泡核内氢压产生的应力等于原子键合力时, 在鼓泡壁形成裂纹 首先, 氢(H)进入金属和空位(V)复合, 使空位形成能大大降低, 从而大幅度升高空位浓度, 这些过饱和空位容易聚集成空位团. 当4个或以上的空位或空位-氢复合体(V-H)聚集成空位四面体或空位团时, 内部形成空腔, 如图5(a). 空位所带的氢在空腔中就会复合成H2, 形成氢压. 由于室温时H2不能分解成H, 故含H2的空位团在室温是稳定的, 它就是鼓泡核, 如图5(b). 随着H和空位不断进入鼓泡核, 就导致鼓泡在充氢过程中不断长大, 同时氢压不断升高, 如图5(c). 当鼓泡中的氢压在内壁上产生的应力等于被氢降低了的原子键合力时, 原子键断裂, 裂纹沿鼓泡壁形核, 如图5(d). 随着氢的不断进入, 裂纹扩展, 直至鼓泡破裂4.氢进入金属材料的途径P129 5.氢致脆断类型:可逆和不可逆,第一类和第二类

重庆大学 课题:Abaqus计算裂纹应力强度因子 学院: 专业: 学号: 姓名:

一、计算裂纹应力强度因子

问题描述:以无限大平板含有一单边裂纹为例,裂纹长度为a=10mm,平板宽度h=30,弹性模量E=210000Pa,泊松比v=0.33,在远场受双向均布拉应力。 使用Abaqus计算该问题: 1、进入part模块 建立平板part,平板的尺寸相对于裂纹足够大,本例尺寸为50x30 (mm);使用Partation Face:sketch工具,将part分隔成如图1形式 图1 2、进入property模块 建立弹性材料;截面选择平面问题的solid,homogeneous;赋予截 面。 3、进入Assembly模块 实体的类型(instance type)选择independent。 4、进入mesh模块 划分单元格如图2所示。

图2 5、进入interaction模块 指定裂纹special/creak/assign seam;生成裂纹crack 1, special/crack/create;special/crack/edit,对两个裂纹进行应力奇异的 设置。 6、进入step模块 在initial步之后建立static,general步;在 output/history output requests/create/中创建输出变量。 7、进入load模块 定义位移和荷载边界,如图3所示。

图3 8、进入job模块,提交计算 Mises应力分布见图4,在.dat文件中(图5)查看应力强度因子。 图4

图5 计算解析解: 由公式F=1.12?0.23(a/h)+10.6(a/h)2?21.71(a/h)3+30.38(a/h)4 计算得解析解为k=1001 应力强度因子误差为0.09% 二、误差分析 改变板的长度,其他条件不变 1.当长度L=100时 误差为0.5% 2.当板长L=30

腐蚀疲劳与应力腐蚀开裂的关系 河南邦信防腐材料有限公司 2017年3月整理

尽管腐蚀疲劳和腐蚀开裂在许多不同的情况下都可能发生,但是在某种程度上,它们被认为具有很大的相关性。当这两者同时发生时,会在许多行业内造成不可估量的经济损失。 近一个世纪以来,工程材料(主要是金属材料)的腐蚀疲劳已成为全球最重要的研究主题之一。第一次世界大战期间,这种腐蚀疲劳失效现象首先是在英国皇家海军某个设备的电缆中观察到的。如今,腐蚀疲劳已被认为是研究最为广泛的腐蚀失效类型之一。而自1960年代初以来,应力腐蚀开裂(SCC)也逐渐引起了人们的广泛关注。尽管在许多不同情况下腐蚀疲劳和应力腐蚀开裂会单独发生,但它们仍然被认为具有很大的相关性。众所周知,当这两种现象同时发生时,会在许多行业中导致设备失效并带来巨大的经济损失。这些失效都是突发性的和灾难性的,是近年来人们进行广泛的科学和工程研究的重要主题。但是,要了解腐蚀疲劳和应力腐蚀开裂如何相互作用,必须首先了解每种腐蚀类型涉及的机理。 什么是应力腐蚀开裂? 应力腐蚀开裂(SCC)被定义为由于机械应力和腐蚀的相互作用而发生的开裂现象。造成应力腐蚀开裂有很多因素,但与其中任何一种单独作用的因素相比,腐蚀性环境这一因素在材料中引起的应力产生的破坏一般更大。尽管SCC最常见于金属中,但它也可以存在于一些其他材料中,例如聚合物和玻璃等。 SCC带来的结果通常被认为是灾难性的,因为材料的强度会因此发生降低,随后材料的结构也可能发生破坏。 通常情况下,细微的腐蚀裂纹仅在材料的晶界处形成,而其余的区域则不受破坏。因此,在临时检查中通常很难检测到SCC损伤现象,并且不容易预测损伤的程度。 导致SCC进一步发展的原因之一是某些金属的晶界缺乏钝性。由于杂质在这些位置的偏析现象改变了材料的微观结构,使材料的表面钝化难以在边界界面处发生。

《断裂力学》 大作业 题目:含圆孔和裂纹板应力强度因子分析 姓名: 学号: 专业: 授课教师:

一、问题描述 含多裂纹矩形板受垂直方向拉伸载荷作用,如图 1 所示,计算中心裂纹尖端的应力强度因子KⅠ和KⅡ,并讨论其随即和参数L、h、a、D、 等的变化规律,写一篇分析报告。 图1. 含三条裂纹矩形板受垂直拉伸载荷作用 要求 (1)报告中计算所用到的分析方法和模型应阐述清楚,并写出必要的计算公式。 (2)绘制应力强度因子随几何参数的变化曲线。 (3)列出必要的参考文献 二、理论分析

在线弹性断裂力学中,I型裂纹尖端的应力场为: (1sin sin) 222 (1sin sin) 222 cos cos 222 3 3 3 x y xy σ σ τ θθθ θθθ θθθ ? =- ? ? ? =+ ? ? ? = ? ? I型裂纹尖端的位移场为: 1)cos(1cos) 22 1)sin sin 22 3 3 u v κ κ θθ θθ ? =-- ? ? ? ?=+ ?? 其中: 34 3 1 ν κν ν - ? ? =?- ?+ ? 平面应变 平面应力 同理,对II型裂纹尖端的应力场: (2cos cos) 222 cos sin cos 222 (1sin sin) 222 3 3 3 x y xy σ σ τ θθθ θθθ θθθ ? =+ ? ? ? = ? ? ? =- ? ? 显然,位移场和应力场均可以表示成应力强度因子的形式。通过对裂纹尖端的应力应变场分析来求解对应的应力强度因子,便是传统有限元求解应力强度因子的原理。而对于I、II复合型裂纹尖端的应力强度因子,可通过它们的叠加获得。 确定应力强度因子的方法有3大类:解析法、数值解法和实验方法。解析法只能计算简单问题,大多数问题需要采用数值解法,当前工程中广泛采用的数值解法是有限单元法。随着有限元法的发展,有限元在断裂力学中的应用越来越普及。近年来,计算机技术得到了迅猛发

管道的应力腐蚀断裂参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月 管道的应力腐蚀断裂参考文本

使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 四川省的天然气管线由于介质未处理好,在被输送的天然气中H2S大大超过规走的含量,曾发生多次爆破事故。 据国外文献介绍,美国1955年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词Stress Corrosion CracKing而来的,其定义为:在应力和介质联合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a小时临界裂纹长度2ac时,管线是不会断裂的’但由于疲劳或(和)环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac时”则管道产生断

关注碱性应力腐蚀开裂 碱溶液中的腐蚀 在室温下,对于各种金属和合金,包括碳钢在内,在任意浓度的碱溶液(如氢氧化钠或者氢氧化钾)中的腐蚀,是较为容易控制的。随着温度和浓度的增加,腐蚀也将随之增强。考虑腐蚀的影响,碳钢的有效安全使用限制温度大约是150℉/65℃。读者从图1的曲线中可以看到碳钢的安全温度限制。相比于碳钢,不锈钢抵抗一般性腐蚀的能力更强;在大约接近250℉/121℃的温度下才发生碱性应力腐蚀开裂。 一般而言,随着含镍量的增加,金属抵抗碱溶液腐蚀的能力增强。碱性应力腐蚀开裂的敏感性主要取决于合金成分、碱浓度、温度和应力水平。对于一般开裂机理,都存在一个裂纹发生的临界应力值。不幸的是,现在还没有精确的获得在高温碱性环境下的高含镍量合金的临界应力值。由于600合金在压水反应堆蒸汽发生器传热管中的大量使用,已经获得了许多600合金在碱性环境下的数据。200合金(纯镍)除了在极其恶劣的碱性环境,包括熔盐的情况下,一般是不会发生腐蚀的。 合金抗碱溶液腐蚀的能力 碳钢和低合金钢 任意浓度的氢氧化钠和氢氧化钾(作为以下的碱)可用碳钢容器在室温下进行保存。当温度高于周围环境时,碳钢的腐蚀速率增大并且伴随着发生碱性应力腐蚀开裂的风险。碳钢容器可以在温度达到180℉/82℃的情况下安全的贮存低浓度的碱溶液;而对于浓度为50%的溶液,在温度接近120℉/48℃的情况下就会有发生碱性应力腐蚀开裂的风险。氢氧化钠环境下的使用图(图1)被广泛用于确定碳钢在不同碱浓度下的安全使用温度。图2所示的是碳钢在碱性环境下的裂纹显微照片。 铁素体不锈钢 高纯度的铁素体不锈钢,例如E-Brite 26-1(UNS S44627),显示出了很好的对高浓度碱性溶液的腐蚀抵抗力,其抗碱腐蚀性能远好于奥氏体不锈钢。根据报道,它抗碱性腐蚀的性能不低于镍。由于这种很好的对碱性环境的抗腐蚀性,使其能使用在会对镍合金造成腐蚀的次氯酸盐和氯酸盐杂质的环境中。据一则报道表明,26-1铁素体不锈钢可以在300℉/148℃到350℉/177℃的高温环境下使用。据另一则报道显示,其在350℉/177℃到400℉/204℃温度下,氢氧化钠的浓度为45%时,仍有很好的抗腐蚀能力。基于其对碱性环境,特别在含有氧化的污染物情况下,的良好抗腐蚀性,因此,在碱的蒸发器管中得到广泛应用。然而,铁素体不锈钢的致命缺陷是其固有的低的焊 接韧性和在高温下的低强度。因此,它们不能正常的应用 于压力容器。 奥氏体不锈钢 研究者根据商用纯碱溶液开发了用于描述影响碱脆的浓度 和温度参数图,也即为300系列奥氏体不锈钢的应力腐蚀 开裂。图3显示了所开发的图。1mpy的等蚀线在大约100° C使,对具有20%-60%浓度的碱为常数,应力腐蚀开裂的轮 廓线在40%-50%浓度范围内则稍高。 300系列不锈钢在热的浓度为40%-50%范围内的碱中很可能 会发生快速的一般性腐蚀,事实上,这种现象已经被观察 到了。因此,可能的安全限值将低于图上所示数值,例如: 50%浓度所对应的70°C和40%浓度所对应的80°C。 对于304/316类型的不锈钢,一般服役最大温度限值是100°C。在更高的温度下将会产生碱性开裂。300系列不 锈钢的应力腐蚀开裂是一种典型的穿晶裂纹。 双相不锈钢 双相不锈钢具有类似于316不锈钢那样的抗一般性腐蚀的 能力,并且对氯化物应力腐蚀开裂的敏感性性也较低。具 有较高合金含量的显著添加了钼和氮成分的双相钢合金, 抗碱性环境腐蚀的能力要优于316不锈钢。据报道,2205 不锈钢和2906不锈钢能很好的抵抗碱性应力腐蚀开裂。 高含镍量的奥氏体不锈钢 高含镍量的不锈钢中约含25-35 wt%的镍,包含有非专利 和有专利的合金,如:904L、Sanicro28、20Cb-3合金、800合金、AL6- XN等。与300系列不锈钢相比较,这些合 金对侵蚀性(高温)溶液的抵抗力有了极大的提高。 镍合金 在抗碱性环境下的腐蚀和应力腐蚀开裂方面,商业纯镍,200合金(N02200)和201合金(N02201)是最好的材料。400合金(N04400)和600合金(N06600)也具有优异的抗应力腐蚀能力。当碱浓度在70%以上,温度高于290°C(550°F)时,这些合金也会出现腐蚀应力开裂。镍铬钼合金,如C- 276(N10276),具有很好的抗碱性开裂的能力,但,在高浓度和高

收稿日期:2007-03-12 基金项目:国家自然科学基金资助项目(10472097). 作者简介:覃森(1981-),男,重庆人,硕士研究生,主要从事材料失效的数值仿真研究. 机械与材料 涂层中裂纹应力强度因子的计算及裂纹扩展 覃 森,潘亦苏,罗征志 (西南交通大学工程科学研究院,成都 610031) 摘要:在涂层工作过程中,由于喷涂材料硬度高、抗裂性能差、喷涂工件刚性大工件表面产生应力集中,涂层很容易产生裂纹.对于含初始裂纹的喷涂材料,在拉伸载荷作用下裂纹的扩展与裂尖应力强度因子有很大的关系,根据断裂力学的基本原理,提出了利用数值模拟的方法来计算裂纹尖端的应力强度因子.并讨论了裂纹前沿网格划分对应力强度因子的影响,预测了裂纹扩展时形状的变化. 关 键 词:三维有限元分析;应力强度因子;正交网格;裂纹扩展中图分类号:TH128 文献标识码:A 文章编号:1671-0924(2007)06-0011-04 Calculation of Crack Stress Intensity Factors and Crack Propagation in Coating QIN Sen,P AN Y-i su,LUO Zheng -zhi (Research Ins titute of Engineering Science,Sou th west Jiaotong University,Chengdu 610031,China) Abstract:Because of the high hardness and lo w crack -resistance of spray material,and the high rigidity of spray workpieces,and the stress convergence on the coating surface,cracks tend to result on the coating.To the initial spray material with a crack,the propagation path of the c rack in the material under tensile load has much to do with the stress intensity factor.According to the basic principle of the fracture me -chanics,this paper proposes the numerical method to calculate the stress intensity factor of the crack tip,discusses the effect of crack front grid partition on stress intensity,and predicts the shape changes during the propagation of crack. Key words:3-D FE M;stress intensity factors;orthogonal grid;propagation of crack 0 引言 从20世纪50年代初到60年代初断裂力学形成之后,就在航空航天、土木建筑及水利交通等众多领域中得以大力发展和广泛应用[1] .断裂力学 考虑材料破坏是由于初始裂纹的扩展造成的.在外力作用下,有初始裂纹的材料首先在裂纹尖端 区域引起应力集中,所以裂纹在外力作用下就很容易引起扩展,直至裂纹失效.裂纹在外力作用下 第21卷 第6期Vol.21 No.6重庆工学院学报(自然科学版) Journal of Chongqing Institu te of Technology(Natural Science Edition)2007年6月Jun.2007

应力腐蚀断裂 一.概述 应力腐蚀 是材料、或在静 (主要是拉应力 )和腐蚀的共同作用下产生的失效现 象。 它常出现于用钢、黄铜、高强度铝合金和中,凝汽器管、矿山用钢索、飞机紧 急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜 被腐蚀而受 到破坏 , 破坏的表面和未破坏的表面分别形成阳极和阴极 , 阳极处的金属 成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电 流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹, 裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还 能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应 力腐蚀, 不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合 避免使用对应力腐蚀敏感的材料 , 可以采用抗应力腐蚀开裂的不锈钢系列 工作状态下构件所承受的外加载荷形成的抗应力。 加工,制造,热处理 引起的内应力。 装配,安装形成的内应力。 温差引起的热应力。 裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要 的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开 裂,合金比纯金属更易发生应力腐蚀开裂。 下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金 可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且介质中的有害物 质浓度往往很低,如大气中微量的 H 2S 和NH 可分别引起钢和铜合金的应力腐蚀开裂。 空气中少量NH 是鼻子嗅不到 而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响 理选材, 如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构 件,减 少。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。 采用金属或 非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见也 可减小或停止应力 腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究, 并分析比较应力腐蚀断裂 其他环境作用条件下发生失效的特征。,由于应力腐蚀的 测试方法与本文中重点分析之处 结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1. 2. 3 . 4 .

基于ANSYS的断裂参数的计算 本文介绍了断裂参数的计算理论,并使用ANSYS进行了实例计算。通过计算说明了ANSYS可以用于计算断裂问题并且可以取得很好的计算结果。 1 引言 断裂事故在重型机械中是比较常见的,我国每年因断裂造成的损失十分巨大。一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。 2 断裂参量数值模拟的理论基础 对于线弹性材料裂纹尖端的应力场和应变场可以表述为: 其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。 图1 裂纹尖端的极坐标系

应力强度因子和能量释放率的关系: G=K/E" (3) 其中:G为能量释放率。 平面应变:E"=E/(1-v2) 平面应力:E=E" 3 求解断裂力学问题 断裂分析包括应力分析和计算断裂力学的参数。应力分析是标准的ANSYS线弹性或非线性弹性问题分析。因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。如图2所示,图中给出了二维和三维裂纹的术语和表示方法。 图2 二维和三维裂纹的结构示意图 3.1 裂纹尖端区域的建模 裂纹尖端的应力和变形场通常具有很高的梯度值。场值得精确度取决于材料,几何和其他因素。为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征: ·裂纹面一定要是一致的。 ·围绕裂纹尖端或裂纹前缘的单元一定是二次单元,并且他的中间节点在四分之一边处。这样的单元也称作为奇异单元。

管道的应力腐蚀断裂 四川省的天然气管线由于介质未处理好,在被输送的天然气中 H2S大大超过规定的含量,曾发生多次爆破事故。 据国外文献介绍,美国 1955 年第一次发生由于氢脆而产生的氢应力破坏,六十年代出现了其他形式的应力腐蚀断裂,以后随着时间的延续,这类破坏事故越来越多,而应力腐蚀断裂也越 来越多地为管道工作者所关注,并成为研究的课题。 应力腐蚀断裂简称为SCC,这系由英文名词StressCorrosionCracKing而来的,其定义为:在应力和介质联 合作用下,裂纹的形成和扩展的过程叫做应力腐蚀,由于应力腐蚀而产生的断裂称为应力腐蚀断裂。 当原始缺陷的长度2a 小时临界裂纹长度2ac 时,管线是不会断裂的,但由于疲劳或( 和 ) 环境的作用,裂纹长度可以增长,当原始缺陷长度逐渐增长,最后达到2ac 时,则管道产生断裂。这里只将讨论后者,即在环境和应力相互作用下引起的应力腐蚀 断裂。一、应力腐蚀的机理 为说明应力腐蚀需先简单的介绍腐蚀反应。大家知道,钢铁 放在潮湿的空气中,就会生锈,锈不断脱落,就会导致截面减小 和重量减轻,这称为钢铁受到了腐蚀。腐蚀是一种电化学过程, 它又可分为阳极过程和阴极过程,这二者是共存的。 金属原子是由带正电的金属离子,对钢来说,就是二价的铁离子 F2+和周围带负电的电子云 ( 用 e- 来表示)构成的,如下所

示: Fe→ Fe2++2e-上式是一个可逆反应。当铁遇到水,铁离子Fe2+ 和水化合的倾向比 Fe2+与 e- 结合成金属的倾向还要强,因此金 属铁遇到水后就会发生如下反应: 上式放出电子e- ,故称为阳极反应。 阳极反应所放出的电子必须通过阴极过程( 即吸收电子的过 程) 被取走,式的反应才能继续存在,否则该式将是可逆的。 一种常见吸收电子的阴极过程是吸氧过程,见下式: O2+2H2O+4e→- 4OH-氢氧根 OH-和铁离子F e2+结合,就会产生铁锈,即 Fe2O3 2Fe2++60H-→ Fe2O3·3H2O综合阳极过程和阴极过程,即联合上两式,可写出下式: 4Fe+nH2O+3O2→ 2Fe2O3·nH2O 由上式可以看出,钢管生锈的条件为第一要接触水( 或潮湿的空气 ) ,第二要接触空气,以提供 O2前者是阳极过程,后者是阴极过程。 实验表明,和腐蚀介质相接触的阳极金属介面上会形成一层 致密的复层,即纯化膜,它能阻碍阳极金属进一步溶解。但金属

第三节应力腐蚀裂纹 一、应力腐蚀概述 金属或合金在应力,特别是拉伸应力的作用下,又处在特定的腐蚀环境中,材料虽然在外观上没有多大变化,如未产生全面腐蚀或明显变形,但却产生了裂纹。这种现象称作应力腐蚀裂纹。因此,在全面腐蚀较严重的情形下,不易产生应力腐蚀裂纹。应力腐蚀外观无变化,裂纹发展迅速且预测困难,因而更具危险性。 应力腐蚀裂纹是应力和腐蚀环境相结合造成的。所以,只要消除应力和腐蚀环境两者中的任何一个因素,便可以防止裂纹的产生。实际上既无法完全消除装置在制造时的残余应力,又无法使装置完全摆脱腐蚀性环境。采用上述方法防止应力腐蚀几乎是不可能的。因此,一般是通过改变材料的方法解决这个问题。此外,焊缝部位由于热应变作用会产生很大的残余应力,而加热冷却的热循环过程,也会使材质发生变化。所以对于焊缝部分要比对于焊接本体更加注意,认真查看是否发生了应力腐蚀裂纹。 由于金属材料和腐蚀环境结合的情况有所不同,应力腐蚀裂纹也各不相同。根据材料的微观组织,可以鉴别裂纹的特征。有的是沿晶粒边缘产生的裂纹,有的是伸展到晶粒内部而又有显著分枝的裂纹,有的则是与晶粒边缘、晶粒内部无关的裂纹。 广义的应力腐蚀裂纹有时又区分为狭义的应力腐蚀裂纹和氢脆裂纹。应力腐蚀裂纹和氢脆裂纹虽然同属广义的应力腐蚀裂纹,但两者之间实质上有很大区别。应力腐蚀裂纹指的是,金属材料在特定的腐蚀环境中,受到应力作用,沿着金属内微观径路在有限范围内发生腐蚀而出现裂纹的现象。而氢脆裂纹指的则是,金属材料受到应力作用,由于腐蚀反应产物氢被金属吸收,产生氢蚀脆化,出现裂纹的现象。 应力腐蚀裂纹和氢脆裂纹,两者可以用腐蚀环境和应力再现的方法或电化学方法进行鉴别。近些年来,又开发出了音响鉴别方法。这种方法是考虑到氢脆裂纹是机械性破坏,所以产生裂纹时会发生音响。而应力腐蚀裂纹是金属溶解造成的破坏,不会发生音响。在实际装置中,应力腐蚀裂纹非常复杂,在大多数情况下对两者不加区别,一律看做广义的应力腐蚀裂纹。 金属材料并不是在所有的腐蚀环境中都能产生应力腐蚀裂纹。不同金属材料的应力腐蚀都需要特定的腐蚀环境。随着各种金属材料应用范围的不断扩大,腐蚀环境的种类也出现增多的趋势。 化学工业中的应力腐蚀,是由于原材料中所含的杂质或在各工序中经过分解、合成等过程生成的腐蚀性成分造成的。能造成应力腐蚀的原材料中的杂质有硫、硫化物、氯化钠和氯化锰等无机盐、脂环酸、氮化合物等。另外,为了防止腐蚀所加入的碱,再生重整等过程中使用的催化剂,也是能引起应力腐蚀裂纹的物质。 二、应力腐蚀的机理与特征 应力腐蚀机理比较成熟的有机械化学效应、闭塞电池理论、表面膜理论、氢脆理论四种学说。下面简单介绍这四种理论。 机械化学效应理论认为,金属材料在应力作用下在应力集中处迅速变形屈服成为腐蚀电池阳极区,与金属表面腐蚀电池的阴极区构成小阳极大阴极的腐蚀电池。使金属沿特定的狭窄区域迅速溶解开裂。 闭塞电池理论认为,某些几何因素使金属裂纹引发点处电解液流动不畅形成闭塞电池。

应力腐蚀 (一)应力腐蚀现象 金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的低应力脆断现象,称为应力腐蚀断裂。 应力腐蚀断裂并不是金属在应力作用下的机械性破坏与在化学介质作用下的腐蚀性破坏的迭加所造成的,而是在应力和化学介质的联合作用下,按持有机理产生的断裂。其断裂抗力比单个因素分别作用后再迭加起来的要低很多。由拉伸应力和腐蚀介质联合作用而引起的低应力脆性断裂称为应力腐蚀(常用英文的三个字头SCC表示)。不论是韧性材料还是脆性材料都可能产生应力腐蚀断裂。 应力腐蚀断裂一般都是在特定的条件下产生的: 1.只有在拉伸应力作用下才能引起应力腐蚀开裂(近来有研究说压应力下也可能产生)。这种拉应力可以是外加载荷造成的应力;也可以是各种残余应力,如焊接残余应力,热处理残余应力和装配应力等。一般情况下,产生应力腐蚀时的拉应力都很低,如果没有腐蚀介质的联合作用,机件可以在该应力下长期工作而不产生断裂。 2.产生应力腐蚀的环境总是存在特定腐蚀介质,这种腐蚀介质一般都很弱,如果没有拉应力的同时作用,材料在这种介质中腐蚀速度很慢。产生应力腐蚀的介质一般都是特定的,也就是说,每种材料只对某些介质敏感,而这种介质对其它材料可能没有明显作用,如黄铜在氨气氛中,不锈钢在具有氯离子的腐蚀介质中容易发生应力腐蚀,但反应过来不锈钢对氨气,黄铜对氯离子就不敏感。 3.一般只有合金才产生应力腐蚀,纯金属不会产生这种现象.合金也只有在拉伸应力与特定腐蚀介质联合作用下才会产生应力腐蚀断裂。 常见合金的应力腐蚀介质: 碳钢:荷性钠溶液,氯溶液,硝酸盐水溶液,H2S水溶液,海水,海洋大气与工业大气 奥氏体不锈钢:氯化物水溶液,海水,海洋大气,高温水,潮湿空气(湿度90%),热NaCl,H2S水溶液,严重污染的工业大气(所以不锈钢水压试验时氯离子的含量有很严格的要求)。 马氏体不锈钢:氯化的,海水,工业大气,酸性硫化物 航空用高强度钢:海洋大气,氯化物,硫酸,硝酸,磷酸

裂纹尖端应力强度因子的计算 图为一带有中心裂纹的长板,两端作用均布力,且p=1Pa ,结构尺寸如图所示,确定裂纹尖端的应力强度因子。已知材料的性能参数为:弹性模量E=2.06×1011Pa ,泊松比u=0.3 应力强度因子KI=p a π=025.01415926.3?=0.2802;现在利用有限元软件ansys 对其建模求解来确定其数值解与解析解进行比较。 一、建立模型 由于结构具有对称性,在利用有限元计算裂纹尖端应力强度因子时,取其四分之一的模型即可 1. 输入材料的参数和选取端元 FINISH /CLEAR, START /TITLE, STRESS INTENSITY-CTACK IN PLATE H=1000 !设置比例尺 /TRIAD, OFF !关闭坐标系的三角符号 /PREP7 ET, 1, PLANE82, , , 2 MP, EX, 1, 2. 06E11 MP, NUXY , 1, 0.3 !输入泊松比 2. 建立平面模型 RECTNG ,-25/H,50/H,0,100/H !生成矩形面 LDIV ,1,1/3,,2,0 !在1号线上生成裂纹尖端所处的位置

3.划分网格 为了方便裂纹尖端因子的计算,ansys软件专门提供了一个对裂纹尖端划分扇形单元的命令,即:“kscon”。其命令流如下: LESIZE, 2,,,15,,,,,1 !对线指定单元个数 LESIZE, 4,,,15,0.3,,,,1 LESIZE, 3,,,12,,,,,1 KSCON,5,3.5/H,1,8 !对裂纹尖端所在的位置划分扇形单元ESIZE,3/H,0, AMESH,1 FINISH

应力腐蚀断裂 一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显着。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即

/ 实验教学 / - 131 - 2013年2月下 第06期(总第300期) 10.3969/j.issn.1671-489X.2013.06.131 金属材料应力腐蚀裂纹的探讨 陶勇 四川建筑职业技术学院 四川德阳 618000 摘 要 金属被环境介质的化学以及电化学作用而受破坏过程即腐蚀。根据工程实情,对应力腐蚀裂纹的形成等问题展开研究,对设计中怎样更有效地实施措施以防止金属材料应力腐蚀的现象发生以及在生产实践中怎样处理金属材料应力腐蚀裂纹的问题进行探究。关键词 金属材料;应力腐蚀;裂纹 中图分类号:T G111.91 文献标识码:B 文章编号:1671-489X(2013)06-0131-02Discussion of Metal Material Stress Corrosion Crack //Tao Yong Abstract Corrosion means the process which metal is damaged by the environmental medium through chemical and electrochemical action. According to the actual project situation, with the help of the study of stress corrosion crack issues, we have explored the methods about how to deal with such problems effectively and prevent the crack in the design.Key words Metal material; stress corrosion; crack 1 应力腐蚀概论 应力腐蚀指的是金属材料或结构处于静载拉应力与一定的腐蚀环境一起作用下所导致发生的脆性破裂。1.1 金属材料应力腐蚀裂纹 金属材料于一定的腐蚀环境中,被应力作用,因着金属本身微观径路在设限范围内产生腐蚀而呈现裂纹的现象称应力腐蚀裂纹。应力腐蚀裂纹的特征是金属外表为脆性机械断裂。裂纹只产生于金属的部分区域,由内向外发展,通常是与作用力保持垂直状态。金属材料应力腐蚀裂纹同简单因应力导致的破坏不一样,其腐蚀在极其微弱的应力条件下也可以产生;金属材料应力腐蚀裂纹同单一因腐蚀造成的破坏也不一样,其腐蚀性最为微弱的介质也可以导致腐蚀裂纹。而处于严重的全面腐蚀状况下,则不易发生应力腐蚀裂纹现象。应力腐蚀外表没有变化,裂纹发展速度极快并且很难意料,因此可以说是一种具有极大危害性的破坏形式。它的破坏往往是无法意料的,就发展速度而言,能够达到孔蚀的数百万倍。导致设备发生渗漏现象及至爆炸,是所有腐蚀形态中最具危害的一种。1.2 氢脆理论 依据裂纹发展阶段的电化学反应,可将应力腐蚀划分成阳极和阴极两个反应敏感型。具体说明:1)应力腐蚀阳极反应敏感指的是此类应力腐蚀裂纹的产生与发展阶段都是受裂纹处金属的阳极溶解制约的,裂纹的发展快慢也是由金属阳极溶解的快慢决定;2)应力腐蚀阴极反应敏感指的是此类应反应阶段中因阴极吸氢而导致的脆性破坏,其也称之为氢脆型应力腐蚀。而氢脆裂纹指的是金属材料在应力作用下,因为腐蚀反应所产生的氢为金属所吸收出现氢蚀脆化导致的裂纹。 金属材料并非是在各种腐蚀环境中均出现应力腐蚀裂纹。不同的金属材料的应力腐蚀均需一定的腐蚀环境。因各金属材料适用范围的逐渐扩大,腐蚀环境的类型也呈现数量 增加的趋势[1]。 2 金属材料发生应力腐蚀的特征 通常所讲的应力腐蚀,即阳极反应敏感应力腐蚀。对于金属材料发生应力腐蚀的特征,可从4个方面来加以说明。2.1 金属材料发生应力腐蚀裂纹必须是拉应力 只有处于应力(特别是拉应力)的状态下,才会发生应力腐蚀裂纹。发生应力腐蚀的应力属于其中的静态部分,它既可能是外加载荷或者装配力(包括拧螺栓、胀接力等)引发的应力,也可能是构件在制造、热处理、焊接等加工阶段中发生的内应力。不论来源怎样,造成应力腐蚀裂纹的应力一定包含拉伸应力的成分,压缩应力是不能引发应力腐蚀裂纹的。而且,此种应力往往是很轻微的,若不是在腐蚀环境条件中,此弱小的应力是不能够让构件产生机械性破坏的。促成破坏的应力值要依据材料、腐蚀介质等实际情况来定[2]。2.2 促成一定金属材料产生应力腐蚀的环境介质是特定的 发生应力腐蚀的材料与介质并非任意的,只在两者处于某种组合时才能产生应力腐蚀。引发一般钢应力腐蚀的腐蚀介质包括的溶液有:氢氧化物;含有硝酸、碳酸盐、硫化氢的水;海水,硫酸与硝酸混合;融化的锌、锂;热状态的三氯化铁;液体氨。引发奥氏体不锈钢应力腐蚀介质包括的溶液有:具有酸性、中性的氯化物;海水;热融的氯化物;热状态的氟化物、氢氧化物[3]。2.3 金属材料 通常极纯的金属不会发生应力腐蚀破坏,只是处于合金或者包含杂质的金属中才能够产生。因为金属材料与腐蚀环境互相作用的状况不尽相同,金属材料应力腐蚀裂纹也都不尽相同。裂纹或沿晶粒边缘发生;或延伸到晶粒内部而又明显分枝;裂纹或与晶粒边缘、晶粒内部都没有关系。2.4 破坏过程 金属材料应力腐蚀裂纹,往往在没有意料的状况下突然 (下转P134)

一.概述 应力腐蚀是材料、机械零件或构件在静应力(主要是拉应力)和腐蚀的共同作用下产生的失效现象。它常出现于锅炉用钢、黄铜、高强度铝合金和不锈钢中,凝汽器管、矿山用钢索、飞机紧急刹车用高压气瓶内壁等所产生的应力腐蚀也很显著。 常见应力腐蚀的机理是:零件或构件在应力和腐蚀介质作用下,表面的氧化膜被腐蚀而受到破坏,破坏的表面和未破坏的表面分别形成阳极和阴极,阳极处的金属成为离子而被溶解,产生电流流向阴极。由于阳极面积比阴极的小得多,阳极的电流密度很大,进一步腐蚀已破坏的表面。加上拉应力的作用,破坏处逐渐形成裂纹,裂纹随时间逐渐扩展直到断裂。这种裂纹不仅可以沿着金属晶粒边界发展,而且还能穿过晶粒发展。应力腐蚀过程试验研究表明:当金属加上阳极电流时可以加剧应力腐蚀,而加上阴极电流时则能停止应力腐蚀。一般认为压应力对应力腐蚀的影响不大。 应力腐蚀的机理仍处于进一步研究中。为防止零件的应力腐蚀,首先应合理选材,避免使用对应力腐蚀敏感的材料,可以采用抗应力腐蚀开裂的不锈钢系列,如高镍奥氏体钢、高纯奥氏体钢、超纯高铬铁素体钢等。其次应合理设计零件和构件,减少应力集中。改善腐蚀环境,如在腐蚀介质中添加缓蚀剂,也是防止应力腐蚀的措施。采用金属或非金属保护层,可以隔绝腐蚀介质的作用。此外,采用阴极保护法见电化学保护也可减小或停止应力腐蚀。本篇文章将重点介绍应力腐蚀断裂失效机理与案例研究,并分析比较应力腐蚀断裂其他环境作用条件下发生失效的特征。,由于应力腐蚀的测试方法与本文中重点分析之处结合联系不大,故不再本文中加以介绍。 二.应力腐蚀开裂特征 (1)引起应力腐蚀开裂的往往是拉应力。 这种拉应力的来源可以是: 1.工作状态下构件所承受的外加载荷形成的抗应力。 2.加工,制造,热处理引起的内应力。 3.装配,安装形成的内应力。 4.温差引起的热应力。 5.裂纹内因腐蚀产物的体积效应造成的楔入作用也能产生裂纹扩展所需要的应力。 (2)每种合金的应力腐蚀开裂只对某些特殊介质敏感。 一般认为纯金属不易发生应力腐蚀开裂,合金比纯金属更易发生应力腐蚀开裂。下表列出了各种合金风应力腐蚀开裂的环境介质体系,介质有特点:即金属或合金可形成纯化膜,弹介质中有有破坏纯化膜完整性的离子存在。而且

相关文档