文档库 最新最全的文档下载
当前位置:文档库 › 补偿密度测井仪器刻度原理及应用

补偿密度测井仪器刻度原理及应用

补偿密度测井仪器刻度原理及应用
补偿密度测井仪器刻度原理及应用

补偿密度测井仪器刻度原理及应用

摘要密度测井的主要用途是判断岩性和求孔隙度,在石油测井领域具有非常重要的意义。本文介绍了补偿密度测井仪器的工作原理,详细阐述了密度测井仪器刻度的原理及刻度方法,分析了刻度时常见问题并提出了解决方案。

关键词地层密度;补偿密度测井;探测器;刻度;解决方法

Compensated Density Logging Tool Calibration Principle and Application

LI Jianfei,HAO Guiqing

1.China Oilfield Services LimitedWell Tech,Beijing 101149

Abstract The main purpose of density logging is seeking to determine lithology and porosity in the oil exploration and survey work,it has very important significance in the logging areas. this paper introduces the principle of compensated density logging instrument,elaborated on the calibration principles and calibration methods of density logging instrument,analysis of the common problems and proposed solutions in actual calibration process.

KeywordsCompensated density; compensated density logging ; detector; calibration; solutions

0 引言

地层密度对于地层评价是一个非常有用和具有特征的参数,密度测井在石油勘探中具有非常重要的意义,是必不可少的一种测井方法。密度测井的主要用途是判断岩性和求孔隙度,和其他测井资料结合起来,对地层的含油情况做出正确的评价,它还应用于地层压力预测和地震地层学的研究方面。了解其技术原理、掌握刻度方法,对仪器的正确使用是非常重要的。

1 补偿密度测井仪的工作原理

补偿密度测井仪的基本结构都是由推靠器、探头、电路组成。仪器的放射源和探测器装在探头上,在测井时,在推靠器的作用下,探头紧靠井壁,放射源向地层发射伽马射线,密度测井仪选用的是Cs137源,它发射的伽马射线能量为0.662MeV ,这些射线和地层物质发生康普顿散射,被散射的伽马射线被探测器记录。记录值经过适当的标定,根据探测器的读数就可以确定地层的密度

EILog-05组合测井系统 补偿中子测井仪刻度 吴永安 2006年3月18日

刻度的概念: 补偿中子测井仪的一级刻度,就是要把仪器在测井过程中所得到的计数率和地层孔隙度之间建立一个数学模型。如何有效的建立这一数学模型,最大限度的减小因地面系统数据处理所带来的误差,是摆在仪器刻度工作的技术关键。 补偿中子测井仪的二级刻度,是指仪器经过长时间使用或者主要器件(探测器、整机电路板等)经过维修后,仪器状态发生了变化,为了校正这一变化所作的刻度,就是仪器的二级刻度。通俗的讲,一级刻度就是工程量与物力量的关系。二级刻度,则是工程量和工程量之间的关系。 补偿中子测井仪一级刻度: 原理:在理论上,补偿中子测井仪的长、短源距的两道计数率的比值R与地层孔隙度Ф的对数之间有非常近似直线的关系。可以将补中Ф-R计算公式表达为: LnФ = a*R + b (1)但由于各方面因素的影响,这条直线并不完全是直线。如果按照直线方程来处理测井数据,将会带来测井误差。为了尽可能减小误差,我们采用曲线方程来拟合Ф-R计算公式。CSU最新的处理公式是:在低孔隙段用的是倒数曲线公式。中、高孔隙段用的是两段直线公式。笔者的观点,无论用哪种公式,都应该以仪器实际刻度数据为准。哪种曲线能最大限度的将刻度点落在曲线

上,相关系数最大,我们就采用哪种公式。目前成套装备补偿中子测井仪采用三次曲线方程。相关系数在0.998以上。如果采用四次曲线方程,我们发现四次系数非常小,而且相关系数也没有三次曲线的相关系数大。因此,成套装备补偿中子测井仪采用三次曲线方程来处理测井数据。 刻度步骤: 1.刻度井井况介绍: 西安刻度中心有9口补偿中子刻度井。刻度井参数如下:(备注里的内容为本人多次刻度,对刻度井的了解,纯属经验,无理论根据,无实验数据支持) 2.刻度前,检查仪器是否工作正常,检查地面系统是否工作正常,

1.侧向测井(电流聚焦测井)采用电屏蔽方法,使主电流聚焦后水平流入地层,减小井眼和围岩影响。主电流线沿井轴径向成饼状流入地层。 2.理想的侧向测井组合是双侧向加微球形聚焦,可较准确地确定地层电阻率、冲洗带电阻率和侵入带直径,是计算地层含油饱和度、判断地层含油性的重要参数。 3.侧向测井电极系的主电极A0位于电极系中心,两端有屏蔽电极A1、A2,呈对称排列。 七侧向电极系主电极A0,屏蔽电极A1、A2,两对监督电极M1N1和M2N2;Um1=Un1或Um2=Un2,使主电流沿水平方向流入地层。 七侧向四个参数:①电极系长度: 210A A L =影响侧向测井的径向探测深度。电极系长度越大,探测越深;②电极距:21O O L =影响纵向分辨率。L 越小纵向分层能力越强。③分布比:L L s /0=影响电流层的形状,一般取s 为3左右较适宜。④聚焦系数:L L L q /)0(-= 1-=s q 影响电流层的形状。 双侧向电极系由9个电极组成,第二屏蔽电极A1’、A2’有着双重的作用。 4. 如何保证屏流和主电流同极性? 用同一电流源供给屏流和主电流。屏流大于主电流,在测井过程中屏流是浮动的。所以,屏流要由平衡放大电路输出的信号加以调制后通过功率放大后加到屏蔽电极上;二是用跟踪主电流来产生屏流,或用跟踪屏流来产生主电流,这种方式用在双侧向仪器中。 5.双侧向测井仪器中,增加屏蔽电极的长度可以加大聚焦能力,而增加仪器探测深度。相反,在屏蔽电极两端设置回流电极,可使主电极和屏流流入地层的深度变浅,降低探测深度。 6.侧向测井仪器工作方式:恒流式(高阻地层),恒压式(低阻地层),自由式(1229、JSC801)和恒功率式(DLT-E )。 恒流式:保持主电流恒定,测量主电极(通常用监督电极M1或M2代替)至远处电极N 之间的电位差U 。地层的电阻率越高测量电压信号越大,测量误差越小。 恒压式:保持主电极电位恒定,测量主电流。地层的电阻率越低测量电流信号越大,测量误差越小。 自由式:电流和电压按一定规律浮动,同时测量电流、电压两个量,可以得到较宽的测量动态范围。 恒功率式或可控功率式:测量过程中使最高和最低电阻率的两个极点保持功率(IU 乘积)不变,让测量电压和电流保持在仪器可测量的范围之内(不被限幅)。比自由式仪器有更宽的测量动态范围。 7.1229双侧向测井仪采用屏流主动式供电,即先有屏流后又主电流,用屏流来激励产生主电流。工作方式为自由式,为提高仪器测量动态范围用U2D 来控制深、浅屏流、屏压的变化幅度在于此。 频分双侧向供电式,fS = 4fD ,深、浅侧向供电频率分别为32Hz 和128Hz 。使深、浅侧向两个系统相对独立地控制和测量。

《测井仪器》习题答案 二、试画出2435补偿中子仪器原理框图,并说明各部分的作用。(10分) 高压电源:输出+1150V直流高压供探测器。 低压电源:输出+24V直流低压供给个单元电路。 前置放大器:将探测器输出的微伏级脉冲信号放大到可处理的电平。 鉴别器:从背景噪声中取出信号脉冲。 分频器:使长短计数道分别将计数减少到原来的1/4和1/6,避免了高计数率情况下,因电缆充电和衰减影响会造成信号首尾重叠而产生漏记。 缆芯驱动器:将脉冲信号功率放大后送上测井电缆。 三、试画出CNT-G补偿中子仪器原理框图,并说明各部分的功能。(10分)

低压电源:输出±5V 、±15V 和+24V。 高压电源:输出四路直流高压(可调)供探测器使用。 测量电路:由探测器、前置放大器、鉴别器、分频器构成,其作用是:将探测到的中子射线转换为脉冲信号。 计数器:脉冲计数。 移位寄存器:实现计数结果的并—串转换。 仪器总线接口:实现与遥测短节的命令/数据通讯。 诊断电路:用于仪器测试。 四、试画出CNT-G补偿中子仪器中的高压电源电路框图。(10分)

五、试述CNT-G补偿中子仪器中的低压电源的稳压原理。(10分) CNT-G补偿中子仪器中低压电源是一个开关型稳压电源,它通过利用误差电压的大小改变控制串联开关通断的矩形波的占空比,从而改变串联开关的接通时间而调节电源的输出电压,使其保持稳定输出+24V。 六、LDT岩性密度测井仪器为什么要进行稳谱?怎样进行稳谱?(10分) 由于LDT岩性密度测井仪器不但要探测反应来自地层伽马射线强度的计数率,同时还要根据伽马射线的能量进行分开计数,因此对伽马射线产生的脉冲幅度进行放大必须是固定的放大倍数,因而在仪器测量过程中需要确保放大倍数的稳定,这就是稳谱。仪器采用一个固定的伽马源产生一个能谱峰,然后通过在该峰中心位置两侧分别开窗计数,然后根据这两个计数率的差异来调整伽马探测器的高压以稳定探测器的放大倍数。 七、试画出LDT岩性密度测井仪器原理框图,并说明各部分的功能。(10分) 仪器总体由地面仪器、井下仪器和连接它们的CCC短节组成。 地面仪器:控制整个系统的正常运行。 CCC短节在CSU和NSC-E/PGD-G之间。它向上传输下井仪器获得的数据,向下传输来自地面的指令 井下仪器则完成信号的测量及向地面传送的任务。 八、试画出LDT岩性密度测井仪器接口电路组成框图,并说明各混合电路功能。(10 分)

补偿中子测井仪器

补偿中子测井仪属于放射性强度测井仪器。是(密度、声波。中子)等三大孔隙度测井仪器的其中之一。今天我准备从下面5个方面来介绍补偿中子测井仪器: a)仪器简介 b)仪器测井原理 c)探测器 d)电路简介 e)仪器的刻度 1. 仪器简介 补偿中子测井仪是一种通过测量地层含氢指数来确定地层孔隙度以及判断岩性的放射性测井仪器。 仪器的用途: a)确定地层孔隙度 b)判断岩性 c)确定泥质含量 仪器特点 a)仪器的推靠器: b)仪器的重量: c)由于中子射线可以很容易穿透钢管,因此补偿中子测井仪不仅可以在裸眼井中 测量,还可以在套管井中测量。 d)自然界存在伽马射线,但不存在中子射线,所以仪器在正常情况下,本底为零。 仪器主要技术指标: a)仪器最大外压:100Mpa b)仪器使用电缆长度:≤7000m c)仪器最大测速:560m/h 测速与源强有关。 d)仪器测量范围:0~100P.u. e)仪器测量精度:

当地层孔隙度为: 0 ~ 10 P.u. 时,仪器误差为:±1P.u. 当地层孔隙度为:10 ~ 45 P.u. 时,仪器误差为:±3P.u. 当地层孔隙度: > 45 P.u. 时,仪器误差为:±7P.u. 2.仪器原理: 中子测井核物理基础 补偿中子测井仪上装载着20居里的Am—Be中子源,能量约为几百万电子伏特。每秒钟将产生4?107个快中子,这些快中子射入地层,与地层的物质发生一系列的核反应。其中包括:快中子的非弹性散射、快中子对原子核的活化、快中子的弹性散射及减速。快中子经过一系列的非弹性碰撞及弹性碰撞,能量逐渐减小,最后当中子能量与地层的原子处于热平衡状态时,中子不再减速。这种能量状态的中子叫热中子。标准热中子的能量为:0.025ev,速度为2.2×105厘米/秒。根据碰撞学说,中子碰撞中的能量损失与被碰撞物质的质量和入射角有关,与中子质量相当的物质碰撞(弹性碰撞),中子损失的能量最大。在地层中,氢原子具有与中子非常接近的质量,因此地层对快中子的减速能力主要决定于地层的含氢量含氢量高的地层宏观减速能力强,减速长度小。经过几次碰撞后,快中子将被减速,能量从快中子的平均能量5.6MeV衰减到0.025eV的热中子。这些热中子部分进入探测器,撞击He-3核,引起核反应,产生H3(氚)子,该质子使其它一部分He-3电离,产生带电的离子和电子,在高压电场的作用下,电子向阳极运动,产生一负脉冲,该脉冲被电子线路放大并记录下来,探测器接受中子的多少直接反映了地层中氢原子的多少。因此He-3探测器及其电子线路组成的下井仪可以测量地层中的含氢量。地层孔隙是充满流体的细微空间,水及碳氢化合物中含有氢原子,无油地层与矿岩中极少或根本没有氢。这样仪器的相应基本上反映了充满流体的地层的细微空间,即孔隙度。 在这部分内容中,主要讲了3个方面的问题: 1:中子从发射到吸收的具体过程为: 20居里的Am—Be中子源―――――――――― 4?107个快中子、能量约为几百万电子伏特、快中子――――――-――― 非弹性散射、快中子对原子核的活化、快中子的弹性散射及减

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

《测井方法原理》实验报告 一、实验目的 认识一种型号测井系统组成;结合组合测井仪器的操作规范,理解仪器操作要领。分小组进行仪器操作实验,确保学生学习效果。通过本实验教学使学生更具体、生动地理解测井基本方法原理及仪器实现,使学生初步掌握组合测井仪器的一般操作方法和注意事项。 二、实验内容 (一)典型测井仪器简介 现代常规测井方法按照测井系列可分为岩性测井系列、孔隙度测井系列、电阻率测井系列等三大类。 岩性测井系列包括自然电位、自然伽马、井径测井。 孔隙度测井系列包括声波时差测井、密度测井、中子测井。 电阻率测井系列包括深、中、浅探测的普通视电阻率测井、侧向测井以及感应测井等。 常用测井仪器原理介绍: 常用测井仪器探管照片 1.岩性测井系列 自然电位测井:因为井内存在扩散电动势和吸附电动势,在进行自然电位测井时,将测量点击N放在地面,用电缆将M电极送至井下,提升M电极沿井轴测量自然电位

随井深的变化曲线,用以区别岩性。 自然伽马测井:井下仪器在井内由下向上提升时,来自岩层的自然伽马射线穿过井内泥浆和仪器外壳进入探测器。探测器将接收到的一连串伽马射线转换成一个个的电脉冲,然后经井下放大器加以放大,由电缆送到地面仪器,地面仪器把每分钟接收到的电脉冲数(计数率)转变为与其成比例的电位差进行记录。 井径测井:将一起下到预计的深度上,然后通过一定的方式打开井径腿,于是,互成90°的四个井径腿便在弹簧的作用下向外伸张,其末端紧贴井壁。随着一起的向外提升,井径腿就会由于井径的变化而发生张缩,并带动连杆做上下运动,将连杆同一个电位器的滑动端相连,则井径的变化便可转换成电阻的变化。给该滑动端通以一定强度的电流,滑动电阻的某一固定端与滑动端之间的电位差便可间接反映井径的大小。 2.孔隙度测井系列 声波时差测井:电子线路每隔一定的时间给发射换能器一次强的脉冲电流,使换能器晶体受到激发而产生振动,从而引起周围介质质点发生振动,产生向井内泥浆及岩层中传播声波。由于泥浆声速v1与地层声速v2不同,所以在泥浆和井壁上将发生声波反射和折射,故必有以临界角i方向入射到井壁面上的声波,折射产生沿井壁在地层中传播的滑行波。该滑行波必然引起泥浆中质点振动(形成首波),并先后传到两个接收器Rl、R2上,从而可测量出地层的声波速度。 密度测井:由于地层密度不同,对伽马射线的散射和吸收能力不同,探测器接收到的散射伽马射线计数率也就不同。在离伽马源距离为L处,探测器所接收到的散射伽马射线强度N 就是介质体积密度的函数。在源距选定后,对仪器进行刻度,找到散射伽马射线强度N和介质体积密度ρb的定量关系,则记录散射伽马射线强度(记数率)就可以测得地层的密度。 中子测井:探测探测器周围快中子变为热中子之前的超热中子密度或直接探测热中子密度,以反映地层的中子减速特性,进而计算储层孔隙度和对储集层进行评价。 3.电阻率测井系列 普通视电阻率测井:通过供电线路上的电极A、B供给电流,在井内建立电场,然后测量在测量回路上电极M、N的电位差ΔUMN,所测ΔUMN大小取决于周围介质电阻率。ΔUMN的变化则反映了沿井孔(筒)剖面上岩石电阻率的变化。 侧向测井:主电极发车主电流,屏蔽电极发出与主电流相同极性的屏蔽电流,并使他们处于等电位状态。由于主电流被屏蔽电流屏蔽,沿水平方向呈圆盘发散状流入地层。 感应测井:把装有发射线圈T和接收线圈R的感应测井探管放入井中,给发射线圈通交流电,在发射线圈周围地层中产生交变磁场Φ1,这个交变磁场通过地层,在地层中感应出电流I1,此电流环绕井轴流动,称为涡流。涡流在地层中流动又产生

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

补偿密度测井仪器刻度原理及应用摘要密度测井的主要用途是判断岩性和求孔隙度,在石油测 井领域具有非常重要的意义。本文介绍了补偿密度测井仪器的工作原理,详细阐述了密度测井仪器刻度的原理及刻度方法,分析了刻度时常见问题并提出了解决方案。 关键词地层密度;补偿密度测井;探测器;刻度;解决方法 中图分类号te133 文献标识码a 文章编号 1674-6708(2011)43-0199-02 compensated density logging tool calibration principle and application li jianfei,hao guiqing 1.china oilfield services limitedwell tech,beijing 101149 abstract the main purpose of density logging is seeking to determine lithology and porosity in the oil exploration and survey work,it has very important significance in the logging areas. this paper introduces the principle of compensated density logging instrument, elaborated on the calibration principles and calibration methods of density logging instrument, analysis of the common problems and proposed solutions in actual calibration process. keywordscompensated density; compensated density logging ;

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

第31卷 第5期2007年10月 测 井 技 术 WELL LO GGIN G TECHNOLO GY Vol.31 No.5 Oct2007 文章编号:1004Ο1338(2007)05Ο0452Ο03 过套管补偿中子测井在判断气层中的应用 王贵清 (大港油田集团测井公司,天津300280) 摘要:套管补偿中子测井在国内仅限于气层定性识别,在国外已经为定量应用阶段。简述套管补偿中子测井定性、定量识别气层基本原理基础上,论述了该技术在大港油田滩海地区的应用效果。用套管井测量的补偿中子与裸眼井的补偿中子曲线重叠法、长短源距计数率重叠法定性识别气层;用套管补偿中子测井的长短源距计数率计算测井标准比。给出了套管补偿中子标准比的定义以及标准比与地层含气饱和度的关系。应用实例表明,用套管补偿中子测井标准比能定量计算含气饱和度,定量识别了储层是气层或油气同层;套管补偿中子测井资料受井况、泥浆浸入影响较小,气层特征表征明显。 关键词:补偿中子测井;套管井;气层;标准比;含气饱和度 中图分类号:P6311917 文献标识码:A Application of Compensated N eutron Log in C ased Well to Evaluate G as R eservoir WAN G Gui2qing (Well Logging Company,Dagang Oilfield Group,Tianjin300280,China) Abstract:Gas reservoir can be qualitatively identified wit h overlapping compensated neut ron logs in cased well and uncased well,and wit h overlapping long2and short2spacing count rate of com2 pensated neutro n logs in cased well,f urt her more,gas2bearing sat uration can be quantitatively calculated by a“standard ratio of compensated neut ron in cased well”derived f rom t he count rates of long2and short2spacing.Having briefly int roduced basic p rinciples of abovementioned qualita2 tive and quantitative gas reservoir evaluation met hods,t heir applying effectiveness in Beach Area of Dagang Oilfield is described. K ey w ords:compensated neut ron logging,cased well,gas reservoir,standard ratio of compensa2 ted neut ron,gas2bearing sat uration 0 引 言 大港油田滩海地区井况复杂,测井资料品质降低,气层的特征变得模糊不清;另一方面,含气地层在钻井过程中由于泥浆滤液的侵入,气体几乎被靠近井眼地层中的地层流体(主要是滤液和少量地层水)驱替走。在地层没有恢复的前提下进行裸眼测井得到的资料无法识别气层,测井的气层解释陷入了困境。在解释油层处,试油往往油气同出。为解决这一问题,大港测井公司采用了在套管井中测量补偿中子,用套管井测量的补偿中子与裸眼井的补偿中子重叠法、长短源距计数率重叠法来定性识别气层;用长短源距计数率来计算测井标准比,利用该标准比可定量计算含气饱和度。套管补偿中子定性、定量识别气层的方法在大港油田应用效果较好,特别是在裸眼井测井资料没有任何气的显示时,可有效识别气层。 1 基本原理 1.1 利用套管井和裸眼井补偿中子测井曲线重叠 法识别气层 含气地层在钻井过程中由于泥浆滤液的侵入, 作者简介:王贵清男,工程师,1998年毕业于大庆石油学院应用地球物理专业,主要从事成像测井系列的解释及推广应用工作。

项目编号: 文件编号: 密级: 补偿中子测井仪器 培训手册 中国石油集团测井有限公司 技术中心

大家好! 很高兴有机会和大家一起交流一下放射性测井仪器的基本知识。 我们研制测井仪器的目的,就是要探测地层信息,寻找地下石油天然气储层。我们是采取什么手段来探测地下信息的呢? 图: 测井仪器探测地层信息最基本的手段就是:仪器往地层发射信号,这个信号通过与地层物质的作用,信号的某些参数将会发生变化。这些经过地层影响,发生变化了的信号就带有地层信息。然后利用相应的探测器来接收自己发射出去的信号。通过对探测到的信号进行分析,就能得到我们想知道的地层信息。 比如电法仪器,代表仪器有微球、侧向、微电极等。这些仪器往地层发射电流。 图: 我们知道,不同地层的电阻率是不相同的。电阻小的地层,发射出去的电流很快就回到仪器的探测电极。电阻大的地层相反。通过分析仪器探测电极接受到电流的大小,就可以判断出地层的电阻率参数。我们知道,地层水和石油天然气的电阻率的区别很大,通过探测地层电阻率参数,就可以划分油水层。 声波测井仪器也是一样。不过声波仪器往地层发射的不是电流,而是声波。不同密度的地层对声波的反映是不一样的。如果地层密度大,发射的声波很快就被放射回来。如果地层密度较小,发射的声波就需要一个比较长的时间才能回到仪器的声波探测器。通过分析声波从发射到接受的时间间隔,就能判断地层密度值。 为了避免声波沿着仪器外壁直接到达仪器的探测器,所以声波仪器的外壳被加工成:图: 同样,电法仪器为了避免发射的电流过快就回到仪器探测器,仪器在发射电流

补偿中子测井仪属于放射性强度测井仪器。是(密度、声波。中子)等三大孔隙度测井仪器的其中之一。今天我准备从下面5个方面来介绍补偿中子测井仪器: a)仪器简介 b)仪器测井原理 c)探测器 d)电路简介 e)仪器的刻度 1. 仪器简介 补偿中子测井仪是一种通过测量地层含氢指数来确定地层孔隙度以及判断岩性的放射性测井仪器。 仪器的用途: a)确定地层孔隙度 b)判断岩性 c)确定泥质含量 仪器特点 a)仪器的推靠器: b)仪器的重量: c)由于中子射线可以很容易穿透钢管,因此补偿中子测井仪不仅可以在裸眼井中 测量,还可以在套管井中测量。 d)自然界存在伽马射线,但不存在中子射线,所以仪器在正常情况下,本底为零。 仪器主要技术指标: a)仪器最大外压:100Mpa b)仪器使用电缆长度:≤7000m c)仪器最大测速:560m/h 测速与源强有关。 d)仪器测量范围:0~100P.u. e)仪器测量精度:

测井原理与应用 测井技术:应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找并监测油气层开发的一门应用技术。Well drilling 测井:矿场地球物理物探:地面地球物理 地层地球物理特性:1、电化学特性2、导电特性3、介电特性4、声学特性5、核特性6、磁特性7、热特性 特性随岩层的岩性、物性及所含流体特性的不同而变化。 测井方法:物理方法:1、电法测井2、声波测井3、核测井4、生产测井 测井用途: 一、评价油气层;(1)定性分析,划分渗透层、裂缝带,地层对比 地层对比:在横向上进行地层追踪的过程 (2)定量计算参数,储集层是具有一定的孔隙度和渗透率的地层(3)确定油气层的有效厚度(4)预测产能(5)研究构造和沉积环境 二、油藏描述;研究油气藏的生储盖条件,储量计算; 三、油气田开发的问题;(1)剩余油的确定及分布预测(2)开发井网调整措施研究(3)水淹层识别及水淹级别的判别 四、油气井工程中的问题;(1)地层压力,岩石强度,井壁稳定,固井质量(2)评价压裂酸化和封堵效果(3)注采井的流体动态监测(4)随钻实现了地质导向,消除了以往的盲目钻井(5)检查套管损伤 五、其他作用 电法测井:以研究岩石及其孔隙流体的导电性,介电特性及电化学特性为基础的一大类测井方法。 电化学特性:自然电位测井(SP) 介电特性:电磁波传播测井(EPT) 导电特性:双侧向电阻率测井(DLL)=聚焦测井、微球开聚焦电阻率测井(MSFL)、感应测井(DIL)、阵列感应式成像测井(AIT)、随钻电阻率测井(LWD)、套管电阻率测井(CHFR)、方位电阻率测井(ARI)、地层倾角测井(SHDT)、地层微电阻率扫描测井(FMS)井径曲线(CAL)钻头直径(BITS) 自然电位:井中自然电场产生的电位

补偿密度测井和岩密度测井 一、补偿密度测井原理和方法 岩石的密度是单位体积岩石的质量,单位是g/cm3,代表符号是ρb,也称为岩石的体积密度。岩石的体积密度ρb是代表岩石性质的一个重要参数,它不但与岩石的矿物成分及含量有关,还与岩石孔隙度和孔隙中流体的类别、性质和含量有关。因此,测量岩石体积密度是很有必要的。 前面已经讲过,当γ射线能量为中等时,伽马射线与其所穿过的物质原子中的电子发生碰撞,把一部分能量传给电子,使电子沿某一方向射出,损失了部分能量的伽马射线则沿另一方向射出,这种效应称为康普顿效应。由于康普顿效应引起γ射线的被吸收和散射,用散射截面σc表示:σc=Zσc.e。即是说σc与靶物质的原子序数成正比,即与原子的电子数成正比。因为靶物质是地层岩石,所以σc就与岩石中的电子密度(每立方厘米中的电子数)成正比。 补偿密度测井通常用137C s(铯)作为伽马射线源,它发出的γ射线具有中等能量(0.611Mev)。当其与中等原子序数的元素组成的地层相互作用时,主要发生康普顿效应。康普顿散射线性衰变系数μc可用下式表示: μc=Z A *(ρb N Aσc.e) 式中μc为康普顿散射线性衰变系数。 Z为原子序数,A为原子的摩尔质量,N A为阿伏伽德罗常数。σc.e为电子的散射截面,对于 沉积岩中的大多数元素而言,Z A 近似等于0.5N A为一常数;对于具有一定能量的γ射线来 说,σc.e也是常数,因此μc与ρb成正比关系。或者说γ射线经过岩层的散射和吸收,其能级宽度的减弱仅与岩层的密度有关。试验证明,经过散射吸收后面到达探测器的γ射线能级宽度只是岩层密度的函数。岩层密度大则γ射线被吸收得多,散射γ射线的计数率就小。反之,则计数率就大,这就是密度测井的基本原理。 概括地说:地层体积密度测井就是用距γ源一定距离的探测器,探测从源发射出来的中能γ射线穿过岩石,经康普顿效应散射γ射线计数率从而求得地层体积密度的方法。属于γ-γ测井技术之一,也称为散射γ射线测井。为了消除井壁泥饼的影响,一般采用长、短源距探测器,称为补偿密度测井仪。以长源距探测器测得的视密度为基础进行修正,即ρb=ρL+?ρ, ?ρ=a(ρL-ρS)。比例系数a可由实验拟合给出,可以看出,ρL=ρS时?ρ应等于零。 所以在测补偿密度项目时,除了显示一条地层体积视密度外,同时还要显示一条?ρ曲线,以便对视密度曲线进行补偿校正。 地层视密度ρa与探测器长、短计数率的关系是通过刻度建立的:ρa=A-BlnN。如果用L、S 分别表示长、短源距探测器,则可写为:ρL=A L-B L lnN L。ρS=A S-B S lnN S。式中A L、B L、A S、B S为长、短探测器的刻度系数。

测井方法原理 一名词解释 地层因素:F=孔隙中100%含水时的地层电阻率;地层水电阻率 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

补偿密度测井仪器刻度原理及应用 摘要密度测井的主要用途是判断岩性和求孔隙度,在石油测井领域具有非常重要的意义。本文介绍了补偿密度测井仪器的工作原理,详细阐述了密度测井仪器刻度的原理及刻度方法,分析了刻度时常见问题并提出了解决方案。 关键词地层密度;补偿密度测井;探测器;刻度;解决方法 Compensated Density Logging Tool Calibration Principle and Application LI Jianfei,HAO Guiqing 1.China Oilfield Services LimitedWell Tech,Beijing 101149 Abstract The main purpose of density logging is seeking to determine lithology and porosity in the oil exploration and survey work,it has very important significance in the logging areas. this paper introduces the principle of compensated density logging instrument,elaborated on the calibration principles and calibration methods of density logging instrument,analysis of the common problems and proposed solutions in actual calibration process. KeywordsCompensated density; compensated density logging ; detector; calibration; solutions 0 引言 地层密度对于地层评价是一个非常有用和具有特征的参数,密度测井在石油勘探中具有非常重要的意义,是必不可少的一种测井方法。密度测井的主要用途是判断岩性和求孔隙度,和其他测井资料结合起来,对地层的含油情况做出正确的评价,它还应用于地层压力预测和地震地层学的研究方面。了解其技术原理、掌握刻度方法,对仪器的正确使用是非常重要的。 1 补偿密度测井仪的工作原理 补偿密度测井仪的基本结构都是由推靠器、探头、电路组成。仪器的放射源和探测器装在探头上,在测井时,在推靠器的作用下,探头紧靠井壁,放射源向地层发射伽马射线,密度测井仪选用的是Cs137源,它发射的伽马射线能量为0.662MeV ,这些射线和地层物质发生康普顿散射,被散射的伽马射线被探测器记录。记录值经过适当的标定,根据探测器的读数就可以确定地层的密度

绪论 电法测井被引入石油工业已经超过半个多世纪。从那时起,就有许多新的和改良的测井仪器被开发出来并投入使用。 随着测井技术的发展,测井资料解释技巧也取得了很大的发展。目前,详细分析由精心选择的配套电缆测井服务的测量结果,提供了一种用来导出或推断含油气和含水饱和度、孔隙度、渗透率指数和储集层岩石岩性的精确数值的方法。 已经有数百篇描述各种测井方法及其应用和解释的论文被发表,这些文献在内容上足够丰富,但通常情况下对于测井的普通用户却不适用。 因此,本书将对这些测井方法和解释技术做一个总的回顾,并对由斯伦贝谢公司提供的裸眼井测井项目做一些详细的讨论,包括测井解释的基本方法和基本应用。讨论过程尽可能的保持简洁、清晰,最大限度的减少数学推导。 希望本书能够成为任何一位对测井感兴趣的人的实用手册。某些可能对更详细资料感兴趣的人,可以查阅每章后列出的参考文献和其他测井文献。 1.1测井历史 世界上第一条电法测井曲线是于1927年在法国东北部阿尔萨斯省的佩彻布朗的一个小油田的油井内被记录到的。这条测井曲线,使用“点测”方法记录井眼穿过的岩层的单条电阻率曲线。井下测量设备(叫做探头或电极系)按照固定的间隔在井眼内停下来进行测量,然后计算出电阻率并通过手工绘制在曲线图上。逐点继续完成这个过程,直到整条测井曲线被记录下来。第一条测井曲线的一部分如图1-1所示。

图1-1 第一条测井曲线:由亨利-道尔点绘手工绘制在坐标纸上1929年,电阻率测井作为商业性服务被引入委内瑞拉、美国和前苏联,很快又进入荷属东印度(今天的印度尼西亚)。电阻率测量结果的对比功能和识别潜在油气层方面的用途很快被石油工业所承认。

核磁共振测井原理 一、快速发展的核磁共振测井技术 1945年,Bloch 和Purcell发现了核磁共振(NMR)现象。从那时起,NMR作为一种有活力的谱分析技术被广泛应用于分析化学、物理化学、生物化学,进而扩展到生命科学、诊断医学及实验油层物理等领域。如今,NMR已成为这些领域的重要分析和测试手段。 40年代末,Varian公司证实了地磁场中的核自由运动,50年代,Varian Schlumberger-Doll,Chevron三个公司开展了核磁共振测井可行性研究。60年代初开发出实验仪器样机,它基于Chevron研究中心提出的概念,仪器使用一些大线圈和强电流,在志层中产生一个静磁场,极化水和油气中的氢核。迅速断开静磁场后,被极化的氢核将在弱而均匀的地磁场中进动。这种核进动在用于产生静磁场的相同线圈中产生一种按指数衰减的信号。使用该信号可计算自由流体指数FFI,它代表包含各种可动流体的孔隙度。这些早期仪器有一些严重的技术缺陷首先,共振信号的灵敏区包括了所有的井眼流体,这迫使作业人员使用专门的加顺磁物质的泥浆和作业程序,以消除大井眼背景信号,这是一促成本昂贵且耗时冗长的处理,作业复杂而麻烦,测井速度慢石油公司难以接受。其次,用强的极化电流持续20ms的长时间,减小了仪器对快衰减孔隙度成分的灵敏度,而只能检测具有长弛豫衰减时间的自由流体,由于固液界面效应对弛豫影响及岩石孔隙中油与水的弛豫时间差异不大,使得孔隙度和饱和度都很难求准。此外,这些仪器为翻转被极化的自旋氢核需消耗大量功率,不能和其它测井仪器组合。但这些难题没有使核磁共振测井研究中止。70年代末至80年代初,美国Los Alamos 国家实验室Jasper Jackson 博士提出“INSDE-OUT”磁场技术。在相同时期,磁共振成象(MRI)概念也得到很大发展。1983年,Melvin Miller博士在美国创办了NU-MAR公司,他们综合了“INSIDE-OUT”概念和MAR技术同时,斯伦贝谢公司几十年来,一直在努力发展核磁共振测井技术。总体来看,十几年来核磁共振测井技术的快速发展表现在以下几个方面: 第一,根据“INSIDE-OUT”思想,不用地磁场,而是在井中人工放置一个高强度磁体,所推出的核磁共振率统核心部分是由稳恒磁体发射射频(RF)脉冲并采集自旋回波信号的RF线圈组成。该技术使稳恒场B0与RF场B1相互垂直,磁体的轴沿井筒主向,其磁场方向垂直地地层。B0场与B1场的特点是:在空间任意处它们均相互正交;它们的等场强线为同心圆柱面;场强在径向上均与距离的平方成反比。B0与B1的正交性是获取最大信号的关鍵。核磁共振空间是由RF脉冲频率确定的,可以通过选频选定探测空间。因此使用各种新型核磁共振测井仪不象过去那样要进行繁重的泥浆处理作业。 第二,选用了由Carr,Purcell,Meiboon和Gill改进的脉冲回波序列技术,即CPMG 序列脉冲回波技术,它的思想是对可逆转散相效应引起的快衰减进行补偿。设计RF线圈和稳恒磁场的独特组合可以实现自旋回波序列。选用这种技术的优点是:(1)利用自旋转回波方法可以获得较高的信噪比,这对任何测量都是一个基本指标,对井下连续测量更重要。(2)自旋回波技术可放松对磁场极高均匀性的需求。这对MIR(核磁共振成象)和MRL(磁共振测井)都非常重要。MIR使用梯度场来定位信号怪生区域。MRL特别要求其测量对象置在探头之外,因此均匀度很高的磁场是不可能的。(3)自旋回波序列可视具体情况需要进行修改,有灵活可变化的特点,适于多种多样的井眼和地质情况。近二、三十年已发展出几百种回波序列。由于计算机和电子技术的不断发展,使僺作者控制RF脉冲的强度、相位、宽度和发射时间的能力不断增强,也使核磁共振测井可选用的自旋回波序列更丰富多样。 第三、开展了大量实验研究,为NMR测井应用提供了科学基础。实验研究是进场应用的基础,多年来国内外石油公司、研究单位、测井公司、大学对多孔岩石NMR测井应用的主要原理如孔隙度表面弛豫特性、体积流体弛豫特性、流体扩散弛豫、岩石中顺磁物质对弛豫影响,岩石孔隙度、渗透率、孔隙结构、润湿性与弛豫特性的关系,束缚流体、可动流体弛豫特性,油、水、气弛豫特性差别,粘度、矿化度对弛豫时间影响等等方面开展了大量实验研究,同时对实验资料分析处理研究所作的假设与近似作了充分阐述,为应用核磁共振测井资料求岩石物理参数,识别油、气、水,预测产能,选择测井参数等建立了应用基础,大大推进发该技在油气勘探、开发中的应用。 第四、对测量参数的选择做了很多分析研究工作。每次测井中有三个参数能够控制,它们是回波间隔、等待时间和采集的回波总数。因而NMR测量是一种动态结果,取决于如何

相关文档