文档库 最新最全的文档下载
当前位置:文档库 › 实验3 FSK (ASK)调制解调实验

实验3 FSK (ASK)调制解调实验

实验3 FSK (ASK)调制解调实验
实验3 FSK (ASK)调制解调实验

实验3 FSK(ASK)调制解调实验

一、实验目的

1.掌握FSK(ASK)调制器的工作原理及性能测试;

2.掌握FSK(ASK)锁相解调器工作原理及性能测试;

3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。

二、实验仪器

1.FSK调制模块,位号A

2.FSK解调模块,位号C

3.时钟与基带数据发生模块,位号:G

4.噪声模块,位号B

5.20M双踪示波器1台

6.小平口螺丝刀1只

7.频率计1台(选用)

8.信号连接线3根

三、实验原理

(一) FSK调制电路工作原理

FSK调制电路是由两个ASK调制电路组合而成,它的电原理图,如图3-1所示。16K02为两ASK已调信号叠加控制跳线。用短路块仅将1-2脚相连,输出“1”码对应的ASK已调信号;用短路块仅将3-4脚相连,输出“0”码对应的ASK已调信号。用短路块将1-2脚及3-4

图3-1中,输入的数字基带信号分成两路,一路控制f1=32KHz的载频,另一路经反相器去控制f2=16KHz的载频。当基带信号为“1”时,模拟开关B打开,模拟开关A关闭,此时输出f1=32KHz;当基带信号为“0”时,模拟开关B关闭,模拟开关A打开,此时输出f2=16KHz;在输出端经开关16K02叠加,即可得到已调的FSK信号。

电路中的两路载频(f1、f2)由时钟与基带数据发生模块产生的方波,经射随、选频滤波变为正弦波,再送至模拟开关4066。载频f1的幅度调节电位器16W01,载频f2的幅度调节电位器16W02。

(二) FSK解调电路工作原理

FSK解调采用锁相解调,锁相解调的工作原理是十分简单的,只要在设计锁相环时,使它锁定在FSK的一个载频上,此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图3-2所示。FSK锁相解调器采用集成锁相环芯片

图3-2 FSK锁相环解调器原理示意图

MC4046。其中,压控振荡器的频率是由17C02、17R09、17W01等元件参数确定,中心频率设计在32KHz左右,并可通过17W01电位器进行微调。当输入信号为32KHz时,调节17W01电位器,使环路锁定,经形成电路后,输出高电平;当输入信号为16KHz时,环路失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

四、各测量点和可调元件的作用

1. FSK调制模块

16K02:两ASK已调信号叠加控制跳线。用短路块将1-2脚及3-4脚都相连,则输出FSK 已调信号。仅1-2脚连通,则输出ASK已调信号。

16TP01:32KHz方波信号输入测试点,由4U01芯片(EPM240)编程产生。

16TP02:16KHz方波信号输入测试点,由4U01芯片(EPM240)编程产生。

16TP03:32KHz载波信号测试点,可调节电位器16W01改变幅度。

16TP04:16KHz载波信号测试点,可调节电位器16W02改变幅度。

16P01:数字基带信码信号输入铆孔。

16P02:FSK已调信号输出铆孔,此测量点需与16P01点波形对比测量。

2.FSK解调模块

17W01:解调模块压控振荡器的中心频率调整电位器。

17P01:FSK解调信号输入铆孔。

17TP02:FSK解调电路中压控振荡器输出时钟的中心频率,正常工作时应为32KHz左右,频偏不应大于2KHz,若有偏差,可调节电位器17W01。

17P02:FSK解调信号输出,即数字基带信码信号输出,波形同16P01。

3.噪声模块

3W01:噪声电平调节。

3W02:加噪后信号幅度调节。

3TP01:噪声信号测试点,电平由3W01调节。

3P01:外加信号输入铆孔。

3P02:加噪后信号输出铆孔。

五、实验内容及步骤

1.插入有关实验模块:

在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ FSK调制模块”、“噪声模块”、“FSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.信号线连接:

用专用导线将4P01、16P01;16P02、3P01;3P02、17P01连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。

3.加电:

打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.设置好跳线及开关:

用短路块将16K02的1-2、3-4相连。拨码器4SW02:设置为“00000”,4P01产生2K的 15位m序列输出。

5.载波幅度调节:

16W01:调节32KHz载波幅度大小,调节峰峰值4V。

16W02:调节16KHz载波幅度大小,调节峰峰值4V。

用示波器对比测量16TP03、16TP04两波形。

6.FSK调制信号和巳调信号波形观察:

双踪示波器触发测量探头接16P01,另一测量探头接16P02,调节示波器使两波形同步,

观察FSK调制信号和巳调信号波形,记录实验数据。

7.噪声模块调节:

调节3W01,将3TP01噪声电平调为0;调节3W02,调整3P02信号幅度为4V。

8.FSK解调参数调节:

调节17W01电位器,使压控振荡器锁定在32KHz(16 KHz行不行?),同时可用频率计监测17TP02信号频率。

9.无噪声FSK解调输出波形观察:

调节3W01,将3TP01噪声电平调为0;双踪示波器触发测量探头接16P01,另一测量探头接17P02。同时观察FSK调制和解调输出信号波形,并作记录,并比较两者波形,正常情况,两者波形一致。如果不一致,可微调17W01电位器,使之达到一致。

10.加噪声FSK解调输出波形观察:

调节3W01逐步增加调制信号的噪声电平大小,看是否还能正确解调出基带信号。11.ASK实验与上相似,这儿不再赘述。

12.关机拆线:

实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

注:由于本实验中载波频率为16KHz、32KHz,所以被调制基带信号的码元速率不要超过4KHz。

六、实验结果分析

根据输入的基带信号,请画出FSK、ASK各主要测试点波形。

FSK的Matlab仿真结果

原始基带信号

调制后的信号

接收到有噪声的信号

解调后的信号

抽样判决后的信号

调制信号的频谱分析

实验室演示的图形

基带信号和调制信号

原始信号和恢复信号ASK的Matlab仿真结果

实验室演示的图形

ASK的基带信号和调制信号

实验心得

通过两个不同频率的载波信号可以对调制信号进行2FSK调制;通过想干解调,可以较好的实现2FSK调制信号的解调;解调出来的波形与调制信号相比会有一定的延时。2FSK 信号频谱是看成由两个不同频率的2ASK信号频谱组成。

附录

FSK的Matlab程序

主程序

close all

clear all

n=16;

f1=18000000;

f2=6000000;

bitRate=1000000;

N=50;

noise=10;

signal=source(n,N);

transmittedSignal=fskModu(signal,bitRate,f1,f2,N);

signal1=gussian(transmittedSignal,noise);

configueSignal=demoFSK(signal1,bitRate,f1,f2,N);

子程序

function bitstream=demoFSK(receivedSignal,bitRate,f1,f2,N)

load num

signal1=receivedSignal;

signal2=filter(gaotong,1,signal1); %通过HPF,得到高频分量

signal3=abs(signal2); %整流

signal3=filter(lowpass,1,signal3); %通过LPF,形成包络

bitstream=[];

IN1=fix(length(lowpass)/2)+fix(length(gaotong)/2); %延迟时间 bitstream1=[];

LL=N; %每个bit的抽样点数

i=IN1 +LL/2;

while (i<=length(signal3)) %判决

bitstream1=[bitstream1,signal3(i)>=0.5];

i=i+LL;

end

bitstream1

figure(5)

subplot(3,1,1);

plot(1:length(signal1),signal1);

title('Waveof receivingterminal(including noise)');

grid on;

subplot(3,1,2);

plot(1:length(signal2),signal2);title('After Passing HPF');grid on; subplot(3,1,3);

plot(1:length(signal3),signal3);title('After Passing LPF');grid on;

signal4=filter(daitong,1,signal1); %通过BPF,得到低频分量

signal5=abs(signal4); %整流

signal5=filter(lowpass,1,signal5); %通过LPF,形成包络

IN2=fix(length(lowpass)/2)+fix(length(daitong)/2); %延迟时间

bitstream2=[];

LL=N; %每个bit的抽样点数

i=IN2 +LL/2;

while (i<=length(signal5)) %判决

bitstream2=[bitstream2,signal5(i)>=0.5];

i=i+LL;

end

bitstream2

figure(6)

subplot(3,1,1);

plot(1:length(signal1),signal1);

title('Wave of receiving terminal(including noise)');grid on;

subplot(3,1,2);

plot(1:length(signal4),signal4);title('After Passing BPF');grid on;

subplot(3,1,3);

plot(1:length(signal5),signal5);title('After Passing LPF');grid on;

for i=1:min(length(bitstream1),length(bitstream2)) %判决

if(bitstream1(i)>bitstream2(i))

bitstream(i)=1;

else

bitstream(i)=0;

end

end

bitstream

bit=[]; %接收端波形

for i=1:length(bitstream)

if bitstream(i)==0

bit1=zeros(1,N);

else

bit1=ones(1,N);

end

bit=[bit,bit1];

end

figure(7)

plot(bit),title('binary of receiving terminal'),grid on;

axis([0,N*length(bitstream),-2.5,2.5]);

end

function transmittedSignal=fskModu(signal,bitRate,f1,f2,N)

t=linspace(0,1/bitRate,N);

c1=sin(2*pi*t*f1);

c2=sin(2*pi*t*f2);

transmittedSignal=[];

for i=1:length(signal)

if signal(i)==1

transmittedSignal=[transmittedSignal,c1];

else

transmittedSignal=[transmittedSignal,c2];

end

end

figure(2)

plot(1:length(transmittedSignal),transmittedSignal);

title('Modulation of FSK');grid on;

figure(3)

m=0:length(transmittedSignal)-1;

F=fft(transmittedSignal);

plot(m,abs(real(F))),title('ASK_frequency-domain analysis real'); grid on;

end

FSK的Matlab程序

clc;

clear;

N=30;

xn=[];

x=[1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0];

t=0.01:0.01:N;

y=cos(2*pi*2*t);

for i=1:N

if x(i)==1

xn(i*100-99:i*100)=ones(1,100);

else

xn(i*100-99:i*100)=zeros(1,100);

end

end

subplot(5,2,1)

plot(xn);

title('原始二进制信号');

axis([0 3000 -1 2])

y=cos(2*pi*2*t);

subplot(5,2,2)

plot(y);

title('载波波形');

axis([0 3000 -2 2])

z=xn.*y;

subplot(5,2,3)

plot(z)

title('已调信号')

axis([0 3000 -1.5 1.5])

%对已调信号进行频谱分析

ba=fft(z,512);

ba=abs(ba);

subplot(5,2,4)

plot(ba);

title('已调信号频谱') axis([-200 600 0 150])

%加入高斯噪声

a=0.1;%noise 系数,控制噪声功率noise=a*(2*rand(1,100*N)-1); z1=z+noise;

subplot(5,2,5)

plot(z1);

title('加入噪声后信号波形');

%对加噪信号进行频谱分析

ba=fft(z1,512);

ba=abs(ba);

subplot(5,2,6)

plot(ba);

title('加噪信号频谱')

axis([-200 600 0 150])

%设计一个低通滤波器

Wp =50/80; Ws = 70/80;

[n,Wn] = buttord(Wp,Ws,1,5) [b,a] = butter(n,Wn);

%对加入噪声的信号进行滤波

x_fir=filter(b,1,z1);

%观察滤波之后的信号波形

subplot(5,2,7)

plot(x_fir);

title('滤波之后的信号')

axis([0 3000 -2 2])

%相干解调

x2=x_fir.*y;

subplot(5,2,8);

plot(x2);

title('与相干载波相乘波形') axis([0 3000 -0.5 2])

%对加入噪声的信号进行滤波

x3=filter(b,1,x2);

subplot(5,2,9)

plot(x3);

title('与相干载波相乘后滤波波形 ') axis([0 3000 -0.5 2.5])

%抽样判决

for i=1:N

if abs(x3(i*100-20))>=0.5;

xn2(i*100-99:i*100)=ones(1,100); else

xn2(i*100-99:i*100)=zeros(1,100); end

end

subplot(5,2,10);

plot(xn2);

title('恢复波形')

axis([0 3000 -1 2])

BPSK调制及解调实验报告

实验五BPSK调制及解调实验 一、实验目的 1、掌握BPSK调制和解调的基本原理; 2、掌握BPSK数据传输过程,熟悉典型电路; 3、了解数字基带波形时域形成的原理和方法,掌握滚降系数的概念; 4、熟悉BPSK调制载波包络的变化; 5、掌握BPSK载波恢复特点与位定时恢复的基本方法; 二、实验器材 1、主控&信号源、9号、13号模块各一块 2、双踪示波器一台 3、连接线若干 三、实验原理 1、BPSK调制解调(9号模块)实验原理框 PSK调制及解调实验原理框图 2、BPSK调制解调(9号模块)实验框图说明 基带信号的1电平和0电平信号分别与256KHz载波及256KHz反相载波相乘,叠加后得到BPSK调制输出;已调信号送入到13模块载波提取单元得到同步载波;已调信号与相干载波相乘后,经过低通滤波和门限判决后,解调输出原始基带信号。 四、实验步骤 实验项目一 BPSK调制信号观测(9号模块) 概述:BPSK调制实验中,信号是用相位相差180°的载波变换来表征被传递的信息。本项目通过对比观测基带信号波形与调制输出波形来验证BPSK调制原理。 1、关电,按表格所示进行连线。

2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【BPSK/DBPSK数字调制解调】。将9号模块的S1拨为0000,调节信号源模块W3使256 KHz载波信号峰峰值为3V。 3、此时系统初始状态为:PN序列输出频率32KHz。 4、实验操作及波形观测。 (1)以9号模块“NRZ-I”为触发,观测“I”; (2)以9号模块“NRZ-Q”为触发,观测“Q”。 (3)以9号模块“基带信号”为触发,观测“调制输出”。 思考:分析以上观测的波形,分析与ASK有何关系? 实验项目二 BPSK解调观测(9号模块) 概述:本项目通过对比观测基带信号波形与解调输出波形,观察是否有延时现象,并且验证BPSK解调原理。观测解调中间观测点TP8,深入理解BPSK解调原理。 1、保持实验项目一中的连线。将9号模块的S1拨为“0000”。 2、以9号模块测13号模块的“SIN”,调节13号模块的W1使“SIN”的波形稳定,即恢复出载波。 3、以9号模块的“基带信号”为触发观测“BPSK解调输出”,多次单击13号模块的“复位”按键。观测“BPSK解调输出”的变化。 4、以信号源的CLK为触发,测9号模块LPF-BPSK,观测眼图。 思考:“BPSK解调输出”是否存在相位模糊的情况?为什么会有相位模糊的情况? 五、实验报告 1、分析实验电路的工作原理,简述其工作过程; 输入的基带信号由转换开关转接后分成两路,一路经过差分编码控制256KHz的载频,另一路经倒相去控制256KHz的载频。???解调采用锁相解调,只要在设计锁相环时,使它锁定在FSK的一个载频上此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。? 2、分析BPSK调制解调原理。 调制原理是:基带信号先经过差分编码得到相对码,再根据相对码进行绝对调相, 即将相对码的1电平和0电平信号分别与256K载波及256K反相载波相乘,叠加后得到DBPSK 调制输出。?

实验一 ASK调制与解调实验

通 信 原 理 实 验 报 告 学院:信息与通信工程学院 专业:光电工程 班级:12051041 学号:12051041 姓名 时间:2014.11.21

实验一 ASK调制与解调实验 一实验目的 1.理解ASK调制的工作原理及电路组成。 2.理解ASK解调的原理及实现方法。 3.了解ASK信号的频谱特性。 二实验内容 1.观察ASK调制与解调信号的波形。 2.观察ASK信号频谱。 三实验器材 1.信号源模块 5.20M双踪示波器一台 2.数字调制模块 6.连接线若干 3.数字解调模块 7.频谱分析仪 4.同步提取模块 四实验原理 1.2ASK 调制原理 ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。 2.2ASK 解调原理 本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

DBPSK调制解调实验

班级:2016112 学号:20161223 姓名:谢峻漪 实验三DBPSK调制/解调实验 一、实验目的 1、了解BPSK差分解调的基本工作原理; 2、掌握DBPSK数据传输过程; 二、预备知识 1、差分BPSK的解调基本工作原理; 2、软件无线电的基本概念; 三、实验仪器 1、J H5001-4实验箱一台; 2、20MHz示波器一台; 四、实验原理 差分BPSK是相移键控的非相干形式,它不需要在接收机端恢复相干参考信号。非相干接收机容易制造而且便宜,因此在无线通信系统中被广泛使用。在DBPSK系统中,输入的二进制序列先差分编码,然后再用BPSK调制器调制。差分编码后的序列﹛a n﹜是通过对输入b n与a n-1进行模2和运算产生的。如果输入的二进制符号b n为0,则符号a n与其前一个符号保持不变,而如果b n为1,则a n与其前一个符号相反。 差分编码原理为: n ) a⊕ - = n a b ( ( )1 (n ) 其实现框图如图4.3-1所示: 图4.3-1 差分编码示意图 一个典型的差分编码调制过程如4.3-2图所示:

图4.3-2 差分编码与载波相位示意图 在DBPSK 中,其不需要进行载波恢复,但位定时仍是必须的。在DPSK 中如何恢复位定时信号,初看起来比较复杂。我们仍按以前的信号定义,如图4.3-3所示: 图4.3-3 位定时误差信号提取 实际上其与相干BPSK 中的位定时恢复是一样的,由由其存在一个较小的系统剩余频差(发送中频与接收本地载波的频差,其与码元速率相比而言一般较小),结果是在每个剩余频差的周期中,具有很多有码元信号(例如对于64KBPS 的速、剩余频差为1KHZ ,则每个剩频差的周期中可包含64个码元符号)。从这些码元信号中可以根据下面的公式对位定时误差的大小进行计算: )]2()2()[()(+--=n S n S n S n e b 当然在剩余载波发生正负变化时,按上式提取的位定时误差信号可能出现不正确的情况,但只要在位定时误差信号的输出端加一滤波器,就可以克服在DBPSK 中剩余载波的影响(在相对剩余载波不大时)。 对位定时的调整如下:如果0)(>n e b ,则位定时抽样脉冲向前调整;反之应向后调整。 对DBPSK 的解调是通过比较接收相邻码元信号(I ,Q )在星座图上的夹角,如果大于900 则为1,否则为0,如图4.3-4所示:

基于MATLAB的ASK调制解调实验

基于MATLAB 的ASK 调制解调实验 1.实验目的 (1) 熟悉MATLAB 中M 文件的使用方法,并在掌握ASK 调制解调原理的基础上,编写出ASK 调制解调程序。 (2) 绘制出ASK 信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对ASK 信号解调原理的理解。 (3) 对信号叠加噪声,并进行解调,绘制出解调前后信号的时频波形,改变 噪声功率进行解调,分析噪声对信号传输造成的影响。 2.实验原理 (1)ASK 调制原理 ASK 指的是振幅键控方式。这种调制方式是根据信号的不同,调节正弦波的幅度。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。幅移键控法(ASK )的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断, 此时又可称作开关键控法(OOK )。二进制幅度键控记作2ASK 。2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。有载波输出时表示发送“1”,无载波输出时表示发送“0”。2ASK 信号可表示为 t w t s t e c cos )()(0=式中, c w 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列 )()(b n n nT t g a t s -=∑其中,g(t)是持续时间b T 、高度为1的矩形脉冲,常称为 门函数;n a 为二进制数字???-=P P a n 101,出现概率为 ,出现概率为 2ASK/OOK 信号的产生方法通常有两种:模拟调制(相乘器法)和键控法。本模拟幅度调制的方法用乘法器实现。相应的调制如图5-1和图5-2:

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

通信原理实验 QPSK调制解调实验

HUNAN UNIVERSITY 课程实验报告 题目:十QPSK调制解调实验 指导教师: 学生姓名: 学生学号: 专业班级:

实验10 QPSK调制解调实验 一、实验目的 1. 掌握QPSK调制解调的工作原理及性能要求;了解IQ调制解调原理及特性 2. 进行QPSK调制、解调实验,掌握电路调整测试方法了解载波在QPSK相干及非相干时的解调特性 二、实验原理 1、QPSK调制原理 QPSK又叫四相绝对相移调制,它是一种正交相移键控。QPSK利用载波的四种不同相位来表征数字信息。由于每一种载波相位代表两个比特信息,因此,对于输入的二进制数字序列应该先进行分组,将每两个比特编为一组,然后用四种不同的载波相位来表征。 用调相法产生QPSK调制原理框图如图所示,QPSK的调制器可以看作是由两个BPSK调 制器构成,输入的串行二进制信息序列经过串行变换,变成两路速率减半的序列,电平发生器分别产生双极性的二电平信号I(t)和Q(t),然后对Acosωt和Asinωt进行调制,相 加后即可得到QPSK信号。 二进制码经串并变换后的码型如图所示,一路为单数码元,另外一路为偶数码元,这两个支路互为正交,一个称为同相支路,即I支路;另外一路称为正交支路,即Q支路

2、QPSK解调原理 由于QPSK可以看作是两个正交2PSK信号的合成,故它可以采用与2PSK信号类似的解调方法进行解调,即由两个2PSK信号相干解调器构成,其原理框图如图 三、实验步骤 在实验箱上正确安装基带成形模块(以下简称基带模块)、IQ调制解调模块(以下简称IQ模块)、码元再生模块(以下简称再生模块)和PSK载波恢复模块。 1、QPSK调制实验 a、关闭实验箱总电源,用台阶插座线完成连接 * 检查连线是否正确,检查无误后打开电源。 b、按基带成形模块上“选择”键,选择QPSK模式(QPSK指示灯亮)。 c、用示波器观察基带模块上“NRZ-I,I-OUT,NRZ-Q,Q-OUT”的信号;并分别与“NRZ IN”信号进行对比,观察串并转换情况。 NRZ-I 与NRZ IN I-OUT与NRZ IN NRZ-Q 与NRZ IN Q-OUT与NRZ IN d、观测IQ调制信号矢量图。

ASK调制解调

电子电路设计CDIO一级项目 设计说明书 题目:2ASK调制解调matlab仿真设计 专业班级: 学生姓名: 学号: 设计周数: 2周 年月日 1.任务要求 1.1对数字通信系统主要原理和技术进行研究,包括二进制相移键控(2ASK)及解调技术和高斯噪声信道原理等。 1.2建立数字通信系统数学模型; 1.3建立完整的基于2ASK的模拟通信系统模型; 1.4对系统进行仿真、分析。 2.任务目的 通过我们对本学期课程的学习和理解,综合运用课本中所学到的理论知识完成通信系统模型的设计。以及锻炼我们查阅资料的能力,数字信号的MATLAB应用能力。学会简单电路的实验调试和测试方法,增强我们的动手能力。为以后学习和工作打下基础。3.通信系统 3.1通信系统原理 通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图3-1所示。

通信系统可分为数字通信系统和模拟通信系统。数字通信系统是利用数字信号来传递消息的通信系统,其模型如图3-2所示, 模拟通信系统是利用模拟信号来传递消息的通信系统,其模型如图3-3 所示。 图3-3 模拟通信系统模型 数字通信系统较模拟通信系统而言,具有抗干扰能力强、便于加密、易于实现集成化、便于与计算机连接等优点。因而,数字通信更能适应对通信技术的越来越高的要求。近二十年来,数字通信发展十分迅速,在整个通信领域中所占比重日益增长,在大多数通信系统中已代替模拟通信,成为当代通信系统的主流。 在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。 必须用数字基带信号对载波进行调制,产生各种已调数字信号。 但可以用载波的某些离散状态来表示数字基带信号的离散状态。基本的三种数字调制方式是:振幅键控(ASK)、频移键控(FSK)和相移键控(PSK 或DPSK)。本次重点论述2ASK 数字调制系统的原理及其解调原理。 3.2 2ASK 的调制与解调仿真 3.2.1 二进制振幅键控(2ASK )原理 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制.当数字基带信号为二 进制时,则为二进制振幅键控. 设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为

FSK调制解调实验

实验报告册课程:通信系统原理教程 实验:FSK调制解调实验 班级: 姓名: 学号: 指导老师: 日期:

实验四:FSK 调制解调实验 一、实验目的: 1、了解对FSK 信号调制解调原理; 2、根据其原理设计出2FSK 信号的调制解调电路,在对电路进行仿真,观察 其波形,从而检验设计出的调制解调器是否符合要求。 二、实验原理: 2FSK 信号调制: 又称数字调频,它是用两种不同的载频1ω ,2ω来代表脉冲调制信号1 和0,而载波的振幅和相位不变。如果载波信号采用正弦型波,则FSK 信号可表示为: 2FSK 信号()t S 分解为信号()t S 1与()t S 2之和,则有:()()()t S t S t S 21+= 其中:()()()t U t S m 11cos ω=,代表数字码元“1” ()()()t U t S m 22cos ω=,代表数字码元“0” 2FSK 信号调制器模型如下图: 如上图,两个独立的振荡器产生不同频率的载波信号,当输入基带信号()1=t S 时,调制器输出频率为f1的载波信号,当()0=t S 时,反相器的输出()t S 调制器输出频率为f2的载波信号。f1和f2都取码元速率的整数倍。 2FSK 信号的带宽为:B f f B FSK 221+-= 其中:f 1为对应脉冲调制信号1的载波频率;f 2为对应脉冲调制信号0的载波频率。 2FSK 信号解调: 是调试的相反过程。由于移频键控调制是将脉冲调制信号“1”用FSK 信号()t S 1,而“0”用()t S 2表示,那么在接收端,可从FSK 信号中恢复出其基带信号。本设计采用了普通鉴频法进行解调,将()t S 1恢复成码元1,把()t S 2恢复成码元0 。 2FSK 信号的解调可以采用相干解调,也可以采用包络解调。 实验中采用相干解调,解调器模型如下图: ) 2 2cos(2)(2t f b T t πφ= 号 号调制器

4ASK载波调制信号的调制解调与性能分析解析

计算机与通信学院 2013年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析专业班级:通信工程四班 姓名: 学号: 指导教师: 成绩:

本次课程设计四进制振幅键控(4ASK)载波调制信号的调制解调与性能分析。通过对二进制数字信源进行四进制振幅键控(4ASK)数字调制,并画出信号波形及功率谱,分析其性能。课程设计是在MATLAB上完成软件的设计与仿真的,运用MATLAB 语言实现了数字基带信号的4ASK调制的模拟,并得到二进制基带信号和相应得四进制基带信号以及4ASK调制信号的波形显示,给出了整体调制和解调的模块图和仿真波形,通过调试代码,观察2ASK与4ASK 的不同,最后根据二进制振幅键控的原理来设计四进制振幅键控的调制与解调两个过程,从而对其性能进行进一步的分析总结。 关键字:4ASK 相干解调基带信号

一、设计概要 (1) 二、 MATLAB/SIMULINK简介 (2) 三、通信技术的历史和发展 (4) 3.1通信的概念 (4) 3.2 通信的发展史简介 (5) 3.3通信技术的发展现状和趋势 (5) 四、设计原理 (7) 4.1 4ASK信号的原理 (7) 4.2 4ASK调制解调原理 (8) 五、设计步骤 (11) 5.1载波信号的调制 (11) 5.2调制信号的解调 (11) 5.3调试分析 (11) 5.4开发工具和编程语言 (12) 5.5测试结果及图形说明 (13) 总结 (15) 参考文献 (16) 致谢 (17)

一、设计概要 本次课设主要通过研究4ASK信号的调制解调,首先通过对二进制2ASK的分析来研究出四进制4ASK的变化,对2ASK的基带信号和传输的载波信号,以及其波形图进行分析,从而掌握多进制的振幅键控(MASK)调制解调的原理及其实现方法,然后利用MATLAB7.0仿真实现4ASK的调制与解调,并仿真4ASK载波信号在高斯白噪声下的误码率和误比特率的性能,同时给出调制信号、载波信号及已调信号的波形图和频谱图。最后根据仿真的波形图来分析4ASK的性能特点,以及对以后信道的传输有更重要的意义和频带利用率,资源有效充分利用,全方面的来考虑4ASK的用途。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告 一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,

Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。

图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 3. 2DPSK信号的解调原理 2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 (1) 2DPSK信号解调的极性比较法 它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。它的原理框图如图1.3.1所示。 码变换相乘 载波 s(t)e o(t) 相乘器低通滤波器抽样判决器2DPSK 带通滤波器 延迟T

基于MATLAB的ASK调制解调实现

长沙理工大学 《通信原理》课程设计报告 学院专业 班级学号 学生姓名指导教师 课程成绩完成日期2016年1月8日

课程设计成绩评定 学院专业 班级学号 学生姓名指导教师 课程成绩完成日期2016年1月8日指导教师对学生在课程设计中的评价 指导教师对课程设计的评定意见

课程设计任务书 城南学院通信工程专业

基于MATLAB的ASK调制解调实现 学生姓名:指导老师: 摘要MATLAB是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型软件,本课程设计主要内容是利用MATLAB集成环境下的M文件,编写程序来实现ASK的调制解调,要求采样频率为360HZ,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。目的是熟悉MATLAB中M文件的使用方法,并在掌握ASK 调制解调原理的基础上,编写出2ASK调制解调程序,绘制出ASK信号解调前后在时域和频域中的波形,观察解调前后频谱有何变化以及对信号叠加噪声后的变化。最终得到随着输入信号噪声的增加增大,误码越严重的结论,加深对ASK信号解调原理的理解。 关键词ASK调制解调;时域谱;频域谱;高斯白噪声;信噪比 1 引言 通信原理是通信工程专业的一门重要的专业课,是通信工程专业后续专业课的基础,掌握通信原理课程的知识不仅可以打下一个坚实的专业基础,还能提高处理通信系统问题能力和素质。通过本课程设计的ASK振幅键控调制解调,可以进一步理解数字通信的基础理论,有助于加深对通信原理的理解。 1.1课程设计目的 通过设计基于MATLAB的ASK调制解调实现,让我深入理解和掌握二进制ASK 调制解调以及噪声对信号传输的影响[1]。 在通信原理理论知识的基础上加深对ASK调制解调设计原理及实现方法的理解。使我对通信信号波形及频谱有深刻的认识。不仅加强了对课本知识的了解,而且还涉及到了MATLAB编程语言和软件的使用,以及基本的操作常识[2]。 掌握调制解调函数的应用,增强了我动手实践的能力。

PSK调制解调实验报告范文

PSK调制解调实验报告范文 一、实验目的 1. 掌握二相绝对码与相对码的码变换方法; 2. 掌握二相相位键控调制解调的工作原理及性能测试; 3. 学习二相相位调制、解调硬件实现,掌握电路调整测试方法。 二、实验仪器 1.时钟与基带数据发生模块,位号:G 2.PSK 调制模块,位号A 3.PSK 解调模块,位号C 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M 双踪示波器1 台 7.小平口螺丝刀1 只 8.频率计1 台(选用) 9.信号连接线4 根 三、实验原理 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。本实验箱采用相位选择法实现相位调制(二进制),绝对移相键控(PSK 或CPSK)是用输入的基带信号(绝对码)选择开关通断控制载波相位的变化来实现。相对移相键控

(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。 (一)PSK 调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s 伪随机码、及其相对码、32KHz 方波、外加数字信号等。相位键控调制解调电原理框图,如图6-1 所示。 1.载波倒相器 模拟信号的倒相通常采用运放来实现。来自1.024MHz 载波信号输入到运放的反相输入端,在输出端即可得到一个反相的载波信号,即π相载波信号。为了使0 相载波与π相载波的幅度相等,在电路中加了电位器37W01 和37W02 调节。 2.模拟开关相乘器 对载波的相移键控是用模拟开关电路实现的。0 相载波与π相载波分别加到模拟开关A:CD4066 的输入端(1 脚)、模拟开关B:CD4066 的输入端(11 脚),在数字基带信号的信码中,它的正极性加到模拟开关A 的输入控制端(13 脚),它反极性加到模拟开关B 的输入控制端(12 脚)。用来控制两个同频反相载波的通断。当信码为“1”码时,模拟开关 A 的输入控制端为高电平,模拟开关A 导通,输出0 相载波,而模拟开关 B 的输入控制端为低电平,模拟开关B 截止。反之,当信码为“0”码时,模拟开关A 的输入控制端为低电平,模拟开关A 截止。而模拟开关B 的输入控制端却为高电平,模拟开关B 导通。输

实验4 PSK(DPSK)调制解调实验

班级通信1403 学号201409732 姓名裴振启指导教师邵军花日期 实验4 PSK(DPSK)调制解调实验 一、实验目的 1. 掌握PSK 调制解调的工作原理及性能要求; 2. 进行PSK 调制、解调实验,掌握电路调整测试方法; 3. 掌握二相绝对码与相对码的码变换方法。 二、实验仪器 1.PSK QPSK调制模块,位号A 2.PSK QPSK解调模块,位号C 3.时钟与基带数据发生模块,位号:G 4.噪声模块,位号B 5.复接/解复接、同步技术模块,位号I 6.20M双踪示波器1台 7.小平口螺丝刀1只 8.频率计1台(选用) 9.信号连接线4根 三、实验原理 PSK QPSK调制/解调模块,除能完成上述PSK(DPSK)调制/解调全部实验外还能进行QPSK、ASK调制/解调等实验。不同调制方式的转換是通过开关4SW02及插塞37K01、37K02、 四、PSK(DPSK)调制/解调实验 进行PSK(DPSK)调制时,工作状态预置开关4SW02置于00001, 37K01、37K02①和②位挿入挿塞,38K01、38K02均处于1,2位相连(挿塞挿左边)。 相位键控调制在数字通信系统中是一种极重要的调制方式,它具有优良的抗干扰噪声性能及较高的频带利用率。在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而广泛应用在实际通信系统中。 本实验箱采用相位选择法实现二进制相位调制,绝对移相键控(CPSK或简称PSK)是 用输入的基带信号(绝对码)直接控制选择开关通断,从而选择不同相位的载波来实现。相对移相键控(DPSK)采用绝对码与相对码变换后,用相对码控制选择开关通断来实现。1.PSK调制电路工作原理 二相相位键控的载波为1.024MHz,数字基带信号有32Kb/s伪随机码、及其相对码、32KHz 方波、外加数字信号等。

4ASK载波调制信号的调制解调与性能分析(1)解析

****************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析 专业班级:通信工程四班 姓名:赵天宏 学号: 11250414 指导教师:彭清斌 成绩:

摘要 实际通信中的许多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即正弦载波调制。通过MATLAB软件平台,设计并实现了多进制幅移键控(M-ary Amplitude-Shift Keying,MASK)中的四电平调制(4-ary Amplitude Shift Keying,4ASK)的调制系统和解调系统。本文首先介绍了四电平调制和解调的原理,随后介绍载波产生、振幅调制、振幅判别等功能模块的设计,最后给出了整体调制解调的模块图和仿真波形。 关键词:载波调制、数字通信、四电平调制和解调

目录 一、设计目的和要求 (1) 1.1设计目的 (1) 1.2设计要求 (1) 二、设计内容及原理 (2) 2.1 四进制ASK信号的表示式 (2) 2.2产生方法 (3) 2.3 4ASK调制解调原理 (3) 三、运行环境及MATLAB简介 (6) 3.1运行环境 (6) 3.2 MATLAB简介 (6) 四、详细设计 (8) 4.1载波信号的调制 (8) 4.2调制信号的解调 (8) 4.3编程语言 (9) 4.4测试结果 (10) 五、调试分析 (11) 六、参考文献 (12) 总结 (13)

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

ASK调制与解调的仿真

实验四 ASK 调制与解调的仿真 一. 实验目的 1. 掌握幅度键控的原理,通过对仿真的过程和结果分析,加深对其理解。 2. 运用MATLAB 对ASK 的调制与解调过程进行仿真。 二. 实验内容 运用MATLAB 编程实现ASK 调制解调过程,并且输出其调制后的波形,画出频谱、功率谱密度图,并比较各种调制的误码率情况,讨论其调制效果。 三. 软件概要设计说明,功能模块及流程和工作原理 ASK 信号调制器的设计:产生二进制振幅键控信号的方法主要有两种: 法1:采用相乘电路,用基带信号()t A 和载波()t ωcos 相乘就得到已调信号输出; 法2:采用开关电路,这里的开关由输入基带信号()t A 控制,用这种方法可以得到同样的输出波形。 ASK 信号解调器的设计:ASK 信号的解调方法有两种,即包络检波法和相干解调法,前者属于非相干解调。其中解调的原理框图如图所示。 根据ASK 调制的表达式可知: 2()cos ASK n c S t a A t ω=? 综合式 令A =1,则ASK 信号的一般时域表达式为: t nT t g a t S c n s n ASK ωcos )()(2??????-=∑ t t S c ωcos )(= 式中,s T 为码元间隔,()g t 为持续时间[]2,2Ts Ts -内任意波形形状的脉冲(分析时一般

设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。 根据ASK 相干解调的表达式: )2cos()(21)(21)]2cos(1[21)()(cos )()cos()()(2t t m t m t t m t t m t t y t z c c c c ωωωω+=+?=?=?= 其中第1项是基带信号,第2项是频率为c ω2的高频信号,利用低通滤波器可检出基带信号,再经过抽样判决,可恢复出原始信号序列。 四. 软件详细设计、关键技术与难点、测试数据 用MATLAB 编程如下: t=0::8; % 定义时间采样值 y=sin(2*pi*t); % 定义未调信号的表达式 x=[ones(1,100),zeros(1,100),ones(1,100),ones(1,100),zeros(1,100),zeros(1,100),ones(1,100),zero s(1,101)]; %定义载波X 的取值 z=x.*y; % 定义已调信号的表达式 subplot(3,1,1) % 画第一个图 plot(t,x) % 画出载波图 axis([0,8,,]) % 定义范围 xlabel('时间') % 定义坐标轴的名字 title('未调信号'); % 定义图的名字 subplot(3,1,2); % 画第二个图 plot(t,y) % 画出调制信号图 axis([0,8,,]) % 定义范围 xlabel('时间') % 定义坐标轴的名字 title('载波') % 定义图的名字 subplot(3,1,3) % 画出第三个图 plot(t,z) % 画出解调后的图 axis([0,8,,]) % 定义范围 xlabel('时间') % 定义坐标轴的名字 title('已调信号'); % 定义图的名字 仿真结果:

二相BPSK(DPSK)调制解调实验

电子科技大学通信学院 《通信原理及同步技术系列实验八》二相BPSK(DPSK)调制解调实验 班级 学生 学号 教师

二相BPSK(DPSK)调制解调实验指导书 二相BPSK(DPSK)调制解调实验 一、实验目的 1、掌握二相BPSK(DPSK)调制解调的工作原理。 2、掌握二相绝对码与相对码的变换方法。 3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。 4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。 5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。 6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。 二、实验原理 数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。 PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。同时PSK调制的实现也比较简单。因此,PSK技术在中、高数据传输中得到了十分广泛的应用。 BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。其调制原理框图如图1所示,解调原理框图如图2所示。 图1 BPSK的模拟调制方式

由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。 差分编解码的原理可用下式描述。 1n n n d b d -=⊕ 1 ???n n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。 差分编码的原理框图如3图所示,差分解码的原理框图如4图所示。 在数字通信系统中,由于基带码元采用矩形波表示,其频谱是无限宽的,当信号通过实际的带限信道,频域截短,时域变为无限,产生码间串扰,为了克服码间串扰,需要对码元进行成形滤波。实际应用中,大多采用升余弦滤波器作为成形滤波器。 滚降系数为α的升余弦滚降特性传输函数H (ω)可表示为: 图2 BPSK 信号的解调原理框图 图3 差分编码原理框图 图4 差分解码原理框图

ASK调制与解调--通原实验报告

ASK调制与解调 一、实验目的 1.掌握2ASK调制器的基本工作原理; 2.掌握2ASK解调器的基本工作原理。 二、实验原理 1.2ASK信号波形 2.2ASK调制信号的产生 实验原理图,如图所示:方法一和方法二 方法一 方法二 3.2ASK调制信号的解调 2ASK信号的解调可以采用同步或非同步解调方式。

三、 实验设备 音频振荡器、主振荡器、序列码产生器、双模开关、加法器、乘法器、可变直流电压、共享模块,可变直流电压、移相器 四、 实验过程 1.2ASK 信号调制连接图如下: 方法一中: (1) 数字信号的产生方法 利用主振荡器模块的2KHz 正弦信号加到序列码产生器的时钟控制端(CLK )产生序列信号; (2) 数字信号的调制要注意时钟同步问题 在本实验中可利用主振荡器模块的8.33KHz 加到音频振荡器的SYNC 端,用于时钟同步; (3) 利用双模开关产生二进制振幅键控信号(2ASK ) 方法二中: (1)序列信号应为单极性0,1序列,可加入“可变直流电压”调节。 2.2ASK 信号解调连接图如下:

(1)在非同步解调中,将ASK已调信号经过整流器,低通滤波器最后通过比较器输出。 (2)在同步解调中,载波提取可利用主振荡器和移相器(若有相位偏移)完成;然后再通过低通滤波器最后通过比较器输出。 五、实验结果 1.基带信号(黄色)与调制信号(蓝色)波形: 2.调制信号(黄色)与调制信号(蓝色)波形:

六、实验分析 ASK调制实际上就是将信号波形与载波相乘,得到调制波形,相当于是通过开关来控制信号的通断,这个实验较为简单,所以比较顺利地完成了。

相关文档
相关文档 最新文档