文档库 最新最全的文档下载
当前位置:文档库 › 三维巷道建模及可视化的初步研究_朱延华[1]

三维巷道建模及可视化的初步研究_朱延华[1]

三维巷道建模及可视化的初步研究_朱延华[1]
三维巷道建模及可视化的初步研究_朱延华[1]

校园安全管理及可视化解决方案

校园安全管理及可视化解决方案

目录 1 应用需求 (4) 2 GIS在行业中的典型应用 (8) 2.1 校园三维场景展示 (8) 2.2 多样化定位调图功能 (12) 2.3 校园室内数据展示与管理 (12) 2.4 校园管线三维模型展示 (12) 3 基于GIS的数字校园解决方案 (5) 3.1 GIS产品配置与总体架构 .............................................................................................. 错误!未定义书签。 3.1.1 总体架构 ............................................................................................................ 错误!未定义书签。 3.1.2 平台逻辑结构 .................................................................................................... 错误!未定义书签。 3.1.3 平台开发架构 .................................................................................................... 错误!未定义书签。 3.1.4 平台部署架构 .................................................................................................... 错误!未定义书签。 3.1.5 软件配置 ............................................................................................................ 错误!未定义书签。 3.1.6 数据库平台 ........................................................................................................ 错误!未定义书签。 3.1.7 平台运行环境 .................................................................................................... 错误!未定义书签。 3.2 校园地面设施管理 ....................................................................................................... 错误!未定义书签。 3.2.1 建立校园地面三维仿真环境 ............................................................................ 错误!未定义书签。 3.2.2 校园建筑属性展示 ............................................................................................ 错误!未定义书签。 3.2.3 地下管线三维管线查询 .................................................................................... 错误!未定义书签。 3.2.4 自动飞行浏览 .................................................................................................... 错误!未定义书签。 3.3 校园地下管线管理 ....................................................................................................... 错误!未定义书签。 3.3.1 地下管线敷设数据入库 (13) 3.3.2 管线属性数据查询 (13) 3.3.3 管线综合分析 (14) 3.3.4 管线三维浏览展示 ............................................................................................ 错误!未定义书签。 3.3.5 管线三维查询 .................................................................................................... 错误!未定义书签。 3.4 学校房产资源管理 (19) 3.4.1 查看三维建筑的每层房间图形 ........................................................................ 错误!未定义书签。 3.4.2 房产资源专业权属管理功能 (19) 3.4.3 校园教室分配审批发布 (19) 3.4.4 房产信息查询功能 (20) 3.5 三维仿真设施报修管理 (21) 3.5.1 故障点管理及综合分析统计 (21) 3.5.2 实时故障报修 (21) 3.6 绿色校园 (22) 3.6.1 建筑房间照明节能分析管理 (22) 3.6.2 供热数据统计与管理 (22) 3.7 数字校园生活 (22) 3.7.1 公共活动位置定向 (22) 3.7.2 图书馆查询 (22) 3.7.3 应急演练 (22) 3.8 校园安全 ....................................................................................................................... 错误!未定义书签。

地学信息三维可视化实习报告

地学信息三维可视化实习报告 班级: 姓名: 学号: 上交日期:2016.11.16

实习一 1.利用对象图形法创建一个三维立方体,并将各顶点设置为不同的颜色 对象法是IDL5.0引入面向对象编程概念后出现的,面向对象的基础也就是对象类的使用。对象类允许编程者将数据和方法封装成一个包,称之为对象。一个对象类可以重复利用生成多个对象。IDL 的三维坐标系使用的是右手笛卡尔坐标系,与Microsoft Direct3D 的左手坐标系相区别,示意图如下。

程序: PRO triangularprism oWindow = OBJ_NEW('IDLgrWindow',dimension =[400,400],retain = 2) oView = OBJ_NEW('IDLgrView',viewPlane_Rect =[-1,-1,3,3],zClip = [2,-1],eye = 10) oModel = OBJ_NEW('IDLgrModel') ;创建多边形 oPoly = OBJ_NEW('IDLgrPolygon') ;设置对象层次体系结构 oView->add,oModel oModel->add,oPoly ;顶点坐标 verts = [[0,0,0],[1,0,0],[0,1,0],[0,0,1]] ;顶点链接顺序 connect =[3,0,1,2,3,0,2,3,3,0,1,3,3,1,2,3] ;设置多边形顶点与链接关系,类型显示为线 oPoly->setproperty,data =verts, polygons = connect,style =1 ;选择45° oModel->rotate ,[-1,0,-1],45 ;绘制显示

浅谈三维建模技术的研究与应用

浅谈三维建模技术的研究与应用 兰文涛 新疆油田公司风城油田作业区 摘要:以应用为主的三维地理信息系统模型,通过Skyline TerraExplorer Pro和3ds Max模型制作,并发布应用到GIS,从而推进了GIS应用,实现了油田设施在计算机中的展示、研究与管理步伐,加快了数字油田建设,并促进了克拉玛依标志性建筑三维模型的早日完成。 关键词:3ds Max;Skyline TerraExplorer Pro;建模;GIS;应用 1.1 前言 2000年,中国石油天然气股份有限公司新疆油田分公司(以下简称油田公司)在“数字地球”技术背景下,提出了数字新疆油田的宏伟战略,并制定了“数字新疆油田”信息建设“三个阶段”的战略部署。不仅将从根本上建立从分散到集中,从无序到有序的信息化建设新秩序,而且标志着“数字新疆油田”规模化建设的开始。 但是“数字油田”是一个庞大,复杂的工程,涉及的内容之多,之广,它涉及数据建设,信息系统建设,网络工程建设等,其中信息系统的建设,是由二维地理信息来表示的。二维 GIS始于二十世纪六十年代的机助制图,今天已深入到社会的各行各业中,如土地管理、电力、电信、城市管网、水利、消防、交通以及城市规划等。但二维GIS存在着自身难以克服的缺限,本质上是基于抽象符号的系统,不能给人以自然界的本原感受。随着应用的深入,第三维的高程信息显得越来越重要。一些二维GIS 和图象处理系统现已能处理高程信息,但它们并未将高程变量作为独立的变量来处理,只将其作为附属的属性变量对待,能够表达出表面起伏的地形,但地形下面的信息却不具有,因此它们在国际国内也被俗称为2.5维的系统。考虑到2.5维这一概念并不严密,作者称之为“地形面三维”或简称面三维。我们认为,面三维的GIS本质上仍然是二维GIS系统。 二维GIS只能处理平面X、Y轴向上的信息,不能处理铅垂方向Z轴上的信息。它在表达上通常是将Z值投影到二维平面上进行处理,因此对于同一(x, y)位置的多个Z值不能表达。 世界的本原是处在三维空间中的,二维GIS将现实世界简化为平面上二维投影的概念模型注定了它在描述三维空间现象上的无能为力,克服这一缺陷迫切需要真正的基于三维空间的GIS的问世。三维地理信息系统就是在这一前提下进行的开发,它充分体现了三维建模技术,对三维物体进行了真实再现,从而满足生产、科研、管理、决策等对空间信息的可视化需求。 2.1 三维地理信息系统的定义与特点 2.1.1 三维地理信息系统的定义 三维地理信息系统(Geographical Information System)简称三维GIS,三维GIS是近年来迅速发展起来的一门融计算机图形学和数据库技术于一体的新型空间信息技术,它把现实世界中对象的空间位置和相关属性有机地结合起来,满足用户对空间信息管理的要求 ,并借助其特有的空间分析功能和可视化表达,进行各种辅助决策。从而满足了生产、科研、管理、决策等对空间信息的可视化需求。 从不同的角度出发,GIS有三种定义:①基于工具箱的定义:认为GIS是一个从现实世界采集、存

基于GE_GIS技术的三维可视化校园地理信息系统设计与实现

基于GE &GIS 技术的三维可视化校园地理信息系统设计与实现 郭正鑫,张祖陆,赵 璐 (山东师范大学人口#资源与环境学院,山东济南250014) 摘要:目前,校园地理信息系统多采用二维地图显示。基于Google Earth 展示平台和GIS 技术的校园地理信息系统,探讨了以动态、三维的方式来显示和管理校园信息的新方法。实践证明,与传统的校园GIS 相比,该系统可更加直观地反映校园信息,有效提高校园信息交互检索的效率,并为在其它领域的应用提供了借鉴。 关键词:三维仿真模型;地理信息系统;校园地理信息系统 中图分类号:P208;G47 文献标志码:A 文章编号:1005-8141(2008)11-0961-04 Design and Implementation of 3D Campus Geographic Information System Based on Google Earth and GIS GUO Zheng-xin,ZHANG Zu-lu,ZHAO Lu (College of Population,Resources and Envi ronmen t,Shandong Normal University ,Jinan 250014,Chi na) Abstract:Nowadays,the spatial data in campus GIS were displayed by planar map s.This paper discussed a new method to display and manage the diversiform campus information in a dynamic 3D mode and constructed the campus geographic information system based on Google Earth and GIS.The resul t showed that this system could recur the campus information much more vividly and could interactively search the campus information much more efficien tly than traditional campus GIS.In addition,this study could provide reference for the application of 3D visualization technology in other field. Key words:3D artificial model;Geographic Information System;campus geographic i nformation system 收稿日期:2008-09-10;修订日期:2008-10-19 基金项目:国家自然科学基金项目(编号:40471122);山东省自然科学基金项目(编号:Y2004E01)资助。 第一作者简介:郭正鑫(1983-),男,硕士研究生,主要从事GIS 开发和应用。 1 3D )C GIS 的提出 GIS 是用来存储、管理空间数据的信息系统,几乎所有使用空间数据和空间信息的部门都可以应用,如导航、土地、水资源利用以及辅助决策服务等[1]。在对校园GI S 的研究中,如曲巨宝对分布式WebGIS 技术的校园地理信息系统的研究[2] ,李明峰、朱振宇等对建立基于MapX 校园地理信息系统的研究[3],杨武年等关于数字成都理工大学校园空间信息系统构建与实现的研究[4] 等。这些研究有的侧重专业研究,有的侧重对具体问题的分析,有的侧重技术开发。但上述大部分校园GI S 研究多采用二维地图显示,并且着重突出某一方面的功能。因此,本研究提出了另一个新的思路,即构建一个三维可视化校园地理信息系统(3D Campus Geographic Information System,3D )CGIS)来增强校园GIS 的可视化程度。 GE(Google Earth)采用的3D 地图定位技术能够把Google Map 上的最新卫星图片推向一个新水平,使其最近几年的应用范围越来越广,如汽车导航、交通服务、城市定位搜索、监控系统等。刘冰、石奉华对GE 在旅游、导航的问题进行了探讨 [5] ;陈锐祥、何兆成等 主要研究了GE 在交通信息服务系统中的应用[6];孙 玉龙、茅志兵等阐述了GE 在航标监控系统中的应用等[7]。基于Visual Basic 6.0平台,本文借助GE 和GIS 技术,构建了基于GE &GIS 平台的校园三维仿真模型,并在模型中实现空间数据和属性数据的集成和交互,实现/图数0同步查询和管理,从而为管理者提供决策依据。本系统采用GE &GIS 技术作为开发平台,结合VB6.0集成开发环境进行了模型的构建。考虑到数据范围,本文采用ACCESS 数据库。 2 系统需求分析 目前,大部分高校的校园信息是相互独立的,这主要是由于其管理模式造成的。该管理模式现状是:学生信息由学生工作处管理,校园建筑信息由学校总务处管理,因此未进行有效的集成管理。这种管理模式不利于实现学生档案信息与校园地图实体的关联及动态查询更新。为了提高学校整体管理效率,校园地理信息系统应该寻找一种有效的方式,能集中管理多种信息,并能进行扩充。 我们通过用户访谈和问卷调查的形式[8,9]了解到,用户对该系统的功能需求主要有以下方面:1三维可视化展示校园信息,能详细直观地表达校园的各项空间信息和属性信息;o实现属性信息和地图上图元的定位互查;?实现出发地和目的地两点间的路径分析,从而得出最优路径;?实现学生信息的定位管理和 # 961#

AutoCAD根据二维图画三维图的思路和方法

AutoCAD根据二维图画三维图的思路和方法 用Auto CAD进行二维绘图,对具有机械制图基础的人来说,一般都比较容易掌握。但对三维建模,特别是自学者,却总觉得不知从何下手。有鉴于此,特撰本教程,以冀对初学者有所帮助。 本教程旨在介绍由三视图绘制三维实体图时,整个建模过程的步骤和方法。 一、分析三视图,确定主体建模的坐标平面 在拿到一个三视图后,首先要作的是分析零件的主体部分,或大多数形体的形状特征图是在哪个视图中。从而确定画三维图的第一步――选择画三维图的第一个坐标面。这一点很重要,初学者往往不作任何分析,一律用默认的俯视图平面作为建模的第一个绘图平面,结果将在后续建模中造成混乱。 看下面几例:图1

图1 此零件主要部分为几个轴线平行的通孔圆柱,其形状特征为圆,特征视图明显都在主视图中,因此,画三维图的第一步,必须在视图管理器中选择主视图,即在主视图下画出三视图中所画主视图的全部图线。

图2 此零件的特征图:上下底板-四边形及其中的圆孔,主体-圆筒及肋板等,都在俯视图,故应在俯视图下画出三视图中的俯视图。 图3是用三维图模画三维图,很明显,其主要结构的形状特征――圆是在俯视方向,故应首先在俯视图下作图。

图3 二、构型处理,尽量在一个方向完成基本建模操作 确定了绘图的坐标平面后,接下来就是在此平面上绘制建模的基础图形了。必须指出,建模的基础图形并不是完全照抄三视图的图形,必须作构型处理。所谓构型,就是画出各形体在该坐标平面上能反映其实际形状,可供拉伸或放样、扫掠的实形图。 如图1所示零件,三个圆柱筒,按尺寸要求画出图4中所示6个绿色圆。与三个圆筒相切支撑的肋板,则用多段线画出图4中的红色图形。其它两块肋板,用多段线画出图中的两个黄色矩形。

计算机图形学与三维建模实验报告

计算机图形学实验报告 openGL的基本使用 1.项目代码: // : 定义控制台应用程序的入口点。 #include"" #include #include<> #include #include #include using namespace std; //#include"" 编程宝典第8版库函数 //#include"" GLfloat x=,y=,z=;//用于平移的变量 GLfloat i=,j=,k=;//用于缩放的变量 int d=1;//用于是否判断旋转的开关 GLfloat angle=;//旋转角度的变量 void myDisplay(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 创建透视效果视图

glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective, , , ; glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt, , , , , , , , ; glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // 定义4光源,从4个方向入射,第一个是白光,其他为红绿蓝{ GLfloat sun_light_position[] = { , , , }; GLfloat sun_light_position1[] = { , , , }; GLfloat sun_light_position2[] = { , , , }; GLfloat sun_light_position3[] = { , , , }; GLfloat sun_light_ambient[] = { , , , }; GLfloat sun_light_diffuse[] = { , , , }; GLfloat sun_light_diffuse1[] = { , , , }; GLfloat sun_light_diffuse2[] = { , , , }; GLfloat sun_light_diffuse3[] = { , , , }; GLfloat sun_light_specular[] = { , , , }; glLightfv(GL_LIGHT0, GL_POSITION, sun_light_position); glLightfv(GL_LIGHT0, GL_AMBIENT, sun_light_ambient); glLightfv(GL_LIGHT0, GL_DIFFUSE, sun_light_diffuse);

三维可视化建模技术在地质勘查中的应用

三维可视化建模技术在地质勘查中的应用 摘要:根据地质勘查的数据特点,利用三维可视化建模技术。实现了以真三维模型来恢复地表以下地质体的结构、形态特征以及空间展布,能对其进行旋转、漫游、切片分析、虚拟钻探等操作,动态地研究其内部细节,了解目标对象与周围地质环境之间的关系,为地质信息的进一步定量分析、探索与利用提供了强有力的支持。 关键字:地质勘查三维可视化建模技术虚拟钻探 引言 在地质勘查工作中,地质工作者越来越迫切地希望建立一套完善的地质体三维可视化与分析系统,实现对地质体信息的三维可视化仿真,丰富地质勘查成果的表现形式,为地质信息的进一步定量分析、探索与利用提供强有力的支持。随着计算机软件和硬件的飞速发展,针对地质体的三维建模与可视化,综合运用三维仿真、数学地质、计算机图形学、虚拟现实、科学计算可视化、计算机软件开发等成熟的理论方法与技术,实现复杂地质条件下的三维地质建模。 二.三维地质建模数据来源与特点分析 在三维地质建模中,用来反映地质体特征的数据来源多种多样,包括地质勘探数据、地球物理勘探数据、地球化学勘探数据、工程地质数据等等。 由于地质原始数据的多源性、离散性和定性特征在很大程度上阻碍了三维地质建模研究的发展。因此,在三维地质建模工作中需要耦合多源信息,对场区地质构造进行分析、解译,将定性描述的数据定量化,尽量以数值型数据和图形数据来进行表达,将离散不确定的数据通过各种插值拟合的手段转化为连续确定的数据,为三维地质建模提供合适的数据源。 三.三维地质建模的难点与关键技术问题分析 通过对三维地质建模数据来源与特点的分析可知,建立一个客观准确的三维地质模型必须满足三个条件:足够多的原始地质采样数据、能够真实反映复杂地下空间关系的地质解译分析、合适的数据结构。就目前复杂地质体的三维建模主要面临的困难可归纳为以下3点: (1)原始地质数据获取艰难。地质体通常位于地表以下,人们无法直接全面地观察到地质体的各种特征,往往只能通过物探、化探等手段获得地质体的部分特征信息,并通过对这些信息的分析、解释、推断来获得地质体的基本信息。 (2)地下地质体及其空间关系极其复杂。地质条件和地质作用复杂多变,在其影响下,地层被切割成不连续的空间分布,岩体内复杂的岩性变化,以及地

CAD三维建模实例

CAD三维建模实例操作一-----创建阀盖零件的三维模型将下面给出的阀盖零件图经修改后,进行三维模型的创建。阀盖零件图如图1所示。 ●图形分析: 阀盖零件的外形由左边前端倒角30度的正六边体,右边四个角R=12mm的底座,中间有一个倒45度角和R=4mm连接左右两边。该零件的轴向为一系列孔组成。根据该零件的构造特征,其三维模型的创建操作可采用: (1)拉伸外轮廓及六边形; (2)旋转主视图中由孔组成的封闭图形; (3)运用旋转切除生成30度和45度、R4的两个封闭图形,生成外形上的倒角;(4)运用差集运算切除中间用旋转生成的阶梯轴(由孔组成的图形旋转而成),来创建该零件中间的阶梯孔,完成三维模型的创建。 如需室内设计学习指导请加QQ技术交流群:106962568 庆祝建群三周年之际,如今超级群大量收人!热烈欢迎大家! ●零件图如图1所示。

图1 零件图 具体的操作步骤如下: 1.除了轮廓线图层不关闭,将其他所有图层关闭,并且可删除直径为65mm的圆形。然后,结果如图2所示。 图2 保留的图形 2.修改主视图。将主视图上多余的线条修剪,如图3所示。 3.将闭合的图形生成面域。单击“绘图”工具条上的“面域”按钮,框选所有的视 图后,按回车键,命令行提示:已创建8个面域。

4.旋转左视图。单击“视图”工具条上的“主视”按钮,系统自动将图形在“主视平面”中显示。注意:此时,显示的水平线,如图4 a)所示。输入“RO”(旋转)命令,按回车键,再选择右边的水平线(即左视图)的中间点,输入旋转角度值90,按回车键,完成左视图的旋转如图4 b)所示。在轴测图中看到旋转后的图形如图4 c)所示。 图4 a)旋转前图4 b)放置后 提示:图中的红色中心线是绘制的, 用该线表明二视图的中心是在一条 水平线上。 图4 c)轴测视图 5.移动视图将两视图重合的操作如下: ①单击“视图”工具条上的“俯视”按钮,系统自动将图形转换至俯视图中,如图5所示。 图5 俯视图显示图6 标注尺寸 ②单击“标注”菜单,选择“线性”标注,标注出二图间的水平距离,如图6所示。标注尺寸的目的是便于将图形水平移动进行重合。

地学三维GIS动态可视化系统的研究

地学三维GIS动态可视化系统的研究 卜丽静,王家海,张正鹏 辽宁工程技术大学测量工程系,辽宁阜新(123000) 摘 要:地学三维GIS已成为地质研究的重要手段,但目前对3D GMS系统的研究还不够成熟,特别是能适用于地质研究的地学三维模型还有待于进一步改进。对此本文在分析地学三维模型的基础上提出了三维GIS可视化系统的设计方案,重点介绍了针对地质三维空间分析方面的功能。 关键词:3D GMS;三维模型;空间分析 0 引言 随着科学可视化技术和地质信息计算机模拟技术的发展3D地学模拟系统(3D Geosciences Modeling System,3D GMS)已成为矿产资源勘探技术的重要发展方向。由于地质结构的复杂性和数据的有限性,导致了三维可视化模型的形成的复杂性,因此地学三维GIS构模方法的研究是当前研究的热点及难点。本文就此在对三维空间数据模型进行总结分析的基础上,采用ATP构模法并对地学三维GIS动态可视化系统提出了设计方案。 1 三维空间构模原理 三维空间构模的理论方法研究是目前3D GMS领域研究的热点问题。国内外研究学者提出了20余种空间构模方法,可以将其归纳为基于面模型、基于体模型和基于混合模型的3大类构模体系见表1。 表1 3D空间构模法分类[1] Tab.1 The space mold method classification 体模型(volumetric model) 面模型(facial model) 规则体元非规则体元混合模型(mixed model) 不规则三角网(TIN) 结构实体几何(CSG) 四面体格网(TEN) TIN-CSG混合 格网(Grid) 体素(V oxel) 金字塔(Pyramid) TIN-Octree混合或Hybrid模型 边界表示模型(B-Rep) 八叉树(Octree) 三棱柱(TP) Wire Frame-Block混 合 线框(Wire Frame)或相连切片 (Linked Slices) 针体(Needle) 地质细胞(Geocellular)Octree-TEN混合 断面序列(Series Sections) 规则块体(Regular Block) 非规则块体(Irregular Block) 断面-三角网混合(Section-TIN mixed) 实体(Solid) 多层DEMs 3D V oronoi图 广义三棱柱(GTP) 2 国内外经典构模方法评析 现今空间模型的建立多停留在2维或2.5维的基础上,并不是真正意义上的真三维。所

三维地质自动建模与可视化

三维地质自动建模与可视化 北京国遥新天地信息技术有限公司遥感应用第一事业部柳蛟 (转载请注明出处和作者,侵权必究) 一、前言 1.1项目背景 数字城市建设方兴未艾。现在的数字城市建设正处于基础建设阶段,为完成该阶段的任务,必须采集包括地上、地表和地下等部分的三维数据,并实现其可视化。同时,各城市因其所处地质带的不同而不同程度地受到地震、地面沉降、滑坡、岩溶塌陷等地质灾害的影响。为此,一些城市正在进行有关地质灾害的预警和防治工作。其他很多领域,如城建工程、地下工程、水电工程、交通工程、环境工程、资源开发等都贯穿有地质问题。上述工作的开展和问题的解决迫切需要借助三维可视化技术对地质数据进行可视化,从而为相关工作提供帮助。因而,三维城市地质信息可视化受到很多学者和相关工作者的重视。 基于目前地下管网和地下建构筑物信息的基础,增加地质数据的收集整理,并进行直观的可视化三维建模分析,可更好的为地下工程建设,城市规划等问题提供决策信息支持,使地下空间信息管理单位对相关数据进行有效的管理。 基于现有地质数据采集、处理的成果,结合EV-Globe大型三维地理信息平台,从三维地质数据结构、三维地质钻孔数据展示、三维地质自动建模、三维城市地质信息可视化系统的功能设计等方面对三维城市地质信息可视化进行研究和应用。 1.2历史回顾 2002年开始,当时在海外工作的朱焕春博士和李浩博士试图将他们所应用的一些地质体三维可视化技术推广到国内,即便是在发达国家,当时这项技术也才刚刚开始应用。但是,因为这些国家已经具备了调研和开发过程的积累,以及技术市场商业化体制的优势,推广过程相对很快,到2005年,大部分已经全部采用三维可视化资料,包括地质体几何形态、测试资料、监测数据等全部打包在一个三维计算机图形和信息系统中,电子化和图形化为专业

三维可视化与物联网技术在数字校园建设中的应用

三维可视化与物联网技术在数字校园建设中的应用 ——以滨海新区三维可视化数字校园系统建设研究为例 天津市滨海新区塘沽教育中心马连成贺秀芳 摘要: 天津市滨海新区三维可视化数字校园信息管理系统的建设,首次将物联网、三维可视化技术在校园中进行集成应用,通过各类传感器的对接,实现了校园内资产与设备管理、多媒体教室和实验室使用监管、地下管网管理、安全监督管理、应急管理等系统的集成应用和联动管理,并借助三维场景和动态模型表现管理对象的空间位置、属性及其状态信息,为校园各部门管理人员提供可视化管理方式,极大的丰富了数字校园信息管理的内涵,提升了校园管理信息化水平,为校园全方位管理提供决策支撑。 关键字:物联网三维可视化数字校园 三维可视化数字校园信息管理系统主要是通过物联网、数据通信与传感网络、三维可视化与虚拟仿真、智能分析与多维联动、三维GIS 空间信息等最新技术的联合应用,依托于三维可视化综合管理平台,集成各种感知识别设备、现有业务系统和各类数据,完成了对校园校产、校园人员、设备与设施的属性和位置管理,实现了对以上对象的状态进行实时监测、数据分析和报警联动,最后通过三维可视化的方式对便于展示的部分进行位置、属性和状态的综合直观显示。 该系统集成校园现有固定资产、校园OA、校园教务管理系统等业务的接口,真正建立起包括校园环境及建筑监管、校园设备监管、校园运营管理、校园决策辅助等功能在内的全方位、网络化、可视化信息管理系统,最终实现校园管理信息系统的数据交互与共享,为数字校园安全、精细化管理、绿色校园建设提供重要的辅助支撑。本系统建设完成后,还可以与教育局等主管部门进行基于GIS的教育布局分析系统进行对接,不断完善同空间位置相关联的各类管理信息的集成、联动与分析,并形成适合教育系统应用的多层次管理结构。 一、系统结构设计

虚拟场景的三维建模与可视化V1

山西省基础研究计划 项目申报书 项目类别: □自然科学基金□青年科技研究基金项目名称: 三维数字化综采仿真平台 项目申报单位:(盖章) 项目组织单位:(盖章) 申请人: 填报日期: 山西省科学技术厅制

基本信息 项目基本信息项目名称 研究属性 A基础研究 B使用基础研究 指南领域 所属国家或省级重点学科名称 所属国家或省级重点实验室名称 报审学科 学科1 代码1 学科2 代码2 起止年限年月- 年月申请经费 申请者信息姓名性别民族出生年月年月学历学位身份证号码 毕业校名专业 毕业年份学术职务行政职务 通讯地址曾在何国留学或进修 技术职称现主要研究领域 联系电话手机E-mail 申请者所在博士点或硕士点名称 申报单位信息名称单位属性 通讯地址邮编法人代表电话法人代码 联系人电话传真E-mail 开户银行帐号 合作单位1.2.

摘要项目研究内容和意义简介(限400字内) 是针对现代化煤矿开采建立起来的数字化仿真平台,适用于综采的生产作业仿真。为煤矿管理人员提供了可靠的决策支持。实现了矿区布局展示、矿区内部地质构造展示、模拟矿井开采、开采过程实时仿真、机械设备作业实时仿真、安全预警、危险源分析等功能。 在山西整合煤矿大规模开工建设的推动下,煤炭行业固定资产投资增速将从2010年低点20%回升至2011年25%以上,拉动煤机设备行业超预期增长。 机械化率提升空间很大。2015年我国煤炭行业机械化率的目标为75%,相比2010年将提升20%,且不排除机械化率超预期的可能。十二五期间,煤炭机械化开采量CAGR达到12.8%,远超原煤产量CAGR的5.8%,对煤机设备需求形成重要支撑。 而在整个综合采煤过程中每个设备无法实时和准确的表达采煤现实场景,在以往的设计过程中,绝大部分煤机设备都采用二维平面设计,这样容易使产品结构等信息表达有误,不能及时反映采煤面实际采煤状态,同时,由于没有相关联的产品三维装配模型可供分析,给干涉分析及空间设计带来困难。而后续所有的分析,动态仿真等方面都是以三维实体模型为基础,另外还实现了动态交互的设计的设计功能,实现煤机设备的三维可视化和虚拟现实进而提高对采煤设备和实际工况分析,具有很大的实用性于必要性。 关键词(用分号分开,最多4个)山西整合煤矿虚拟现实三维可视化

基于Skyline校园三维可视化的技术发展

基于Skyline校园三维可视化的技术发展本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 0 引言 三维数字校园是运用Sketchup、WebGIS等三维技术构建校园三维虚拟场景。传统的校园宣传工作主要是依赖于照片,文字介绍等,满足不了全方位展现校园特色的需求。以数字化、网络化为特征的信息科学技术成为推动社会可持续发展的强大动力。在这种背景下,数字校园系统将成为校园新的信息源,任何与校园有关的信息都将给予定位并与空间数据联系起来[1]。 三维虚拟校园系统逐步兴起,逐渐成为各大高校宣传校园文化,展示校园风貌的平台。并且三维校园的建立使得我们对校园的观察方式有了很大的改变。逼真的模型和校园场景可以让我们从各个角度欣赏校园的景色。三维数字校园系统还可为参观者提供便利的条件,且对于学校自身的管理和办公效率也有很大的帮助。目前,我国多所大学均已完成数字化校园信息系统建设,使得校园信息化服务水平空前提高。 本文以太原师范学院校园为例,探讨采用

Sketchup建模软件以及Skyline可视化软件实现校园的三维可视化,为后续的三维数字校园做准备。 1 Skyline 简介 Skyline是由美国Skyline公司推出的一套优秀的三维数字地球平台软件。主要包含TerraBuilder、TerraExplorer、TerraGate三个子系统。其中Terraexplore 是一个桌面应用程序,使得用户可以浏览、分析空间数据,并对其进行编辑,添加二维或者是三维的物体、路径、场所以及地理信息文件。Terraexplore与TerraBuilder所创建的地形库相连接,并且可以在网络上直接加入GIS层。在三维GIS与虚拟现实等方面,Skyline系列软件可为用户提供各种解决三维空间应用的决策方案[2]。 2 数据获取 地形图数据的获取建模时需要高精度的地形图作为底图,如DWG格式的地形图数据作为模型构建的基础,如只在影像上画出建筑物的二维平面图,精度不是很高,对于建模精度要求较高的建筑物建模需要地形图作为底图,导入到SketchUp下进行三维建模。 建筑物高度信息获取高度信息是三维模型的一个重要参数,当前主要通过以下几种方式获得建筑物

《GIS三维建模与可视化》本科课程教学大纲

《GIS三维建模与可视化》本科课程教学大纲 一、《GIS三维建模与可视化》课程说明 (一)课程代码:Q1320280 (二)课程英文名称:GIS 3D modeling and visualization (三)开课对象:地理信息科学专业 (四)课程性质和地位: 《GIS三维建模与可视化》是地理信息科学专业的专业选修课。空间信息的存储与管理一直是地理信息系统(GIS)的核心问题,而地理数据模型则是这个核心中的核心,本课程的教学就是以空间数据的模型与空间分析方法为基础,重点讲述基于空间数据结构的三维建模方法与实际应用。 (五)课程教学基本要求:本课程阐述了三维地理数据建模的理论、技术与实现方法,涉及三维数据结构、数据获取、空间建模、空间分析和可视化表达等多个方面,并以geodatabase为例介绍地理数据库的设计与实现。要课程主要集中表达以下几个问题:如何进行三维数据管理、三维空间数据的制作、三维空间表面表面的显示、对三维表面的坡度、坡向、可视域分析、三维可视化表达。 (六)教学内容、学时数、学分数及学时数具体分配 学时数:32学时 学分数:2学分 (七)教学方式 课堂讲授式、上机软件操作、案例演示与讨论。 (八)教学方法 以多媒体理论讲授式、软件操作并部分案例讨论结合为主要形式的课堂教学。 (九)考核方式和成绩记载说明

1.考核要求:考试课 2.考核方式:卷面考试+软件操作相结合 3.考试成绩:严格考核学生出勤情况,达到学籍管理规定的旷课量取消考试资格。综合成绩根据平时成绩和期末成绩评定,平时成绩占15%,期中成绩占15%,期末成绩占70%。 二、讲授大纲与各章的基本要求 第1章绪论 教学要点:通过图片、文字等多媒体的展示,让学生对GIS三维建模与可视化有一个初步的认识和了解,降低学生对本门课程的陌生感,并增加其学习的兴趣和热情。重点要求掌握地理信息科学的历史和发展现状,对前沿问题进行探讨和领会。 教学时数:4学时 教学内容: 第1章绪论 1.1 概述 1.2 三维GIS平台技术现状 1.2.1 平台体系架构 1.2.2 功能层次结构 1.3 三维GIS平台应用及发展趋势 1.3.1 应用现状 1.3.2 发展趋势 1.4 小结 教学重点和难点: 1.三维GIS平台技术现状 2.三维GIS平台应用及发展趋势 第2章三维GIS数据管理 教学要点:对三维空间及三维空间模型进行了解,并重点掌握三维空间数据的管理,进行相关案例、图片、视频等教学方式的展示,加深学生对抽象知识的了解。 教学时数:4学时 教学内容: 第2章三维GIS数据管理 2.1 三维空间数据模型

智慧校园三维可视化管理平台-项目建议

智慧校园三维可视化管控平台 一、建设背景 高等学校是一个大型建设区域,人、财、物及校园环境都在不断的变化之中,各类信息广泛且在动态变化。近年来,为适应社会发展需要,各高校都加大改革力度,开展大规模校园建设、购置设备、引进教师、扩大招生等,所有这些都给学校的运维管理工作带来很大困难,管理工作非常复杂。并且,学校各个机构、建筑等情况的介绍仍停留在传统的文字与图片结合的模式中,忽略了其空间属性及意义,表现方式单一。 二、建设目标 (1)将整个天华学院校区的建筑模型、地形地貌、道路、水系、运动场、树木、路标、路灯、苗圃绿化等“搬迁”到三维虚拟现实场景中,并进行适化的修饰美化,制作成可操作互动的电子沙盘,直观表达校园地理位置、内部功能分区、建筑设施用途,利用直观、可视、互动的三维信息化平台描绘天华学院富有特色的校园风貌。 (2)能够在三维虚拟场景中集成安防摄像头、机房设备、校车位置、智能设施的运行状态集,为实际的全局管控工作提供直观、友好的可视化界面。 (3)系统全面介绍学校情况、教学情况、专业情况,能够在IPAD 上流畅运行,成为对外宣传的亮点窗口。

三、建设内容 3.1 校园三维数虚拟现实场景制作 按照校园实际情况,制作天华学院校区所有建筑、地形地貌、道路、水系、运动场、树木、路标、路灯、花圃绿化等三维模型,构建三维数字化场景。 3.2 重要建筑内部精细化模型制作 对校园内需要重点突出的展示馆、实训室、智能化展厅等重要建筑,按楼层和区块精细制作其内部结构、功能分区、办公家俱、智能设备的三维模型。 3.3 三维可视化管控平台定制开发 系统以三维地理信息技术为基础,按照校园“一张图”的设计理念,在IPAD移动平台上,真实再现天华学院校园各类设施,并实时集成安防系统、机房系统、环控系统、电力系统、校车定位等实时数据,为校园智能化管控工作提供信息支撑、手段支持。

CAD几种常用零件三维实例

CAD 三维建模实例操作一-----创建阀盖零件的三维模型 将下面给出的阀盖零件图经修改后,进行三维模型的创建。阀盖零件图如图1所示。 ● 图形分析: 阀盖零件的外形由左边前端倒角30度的正六边体,右边四个角R=12mm 的底座,中间 有一个倒45度角与R=4mm 连接左右两边。该零件的轴向为一系列孔组成。根据该零件的构造特征,其三维模型的创建操作可采用: (1) 拉伸外轮廓及六边形; (2) 旋转主视图中由孔组成的封闭图形; (3) 运用旋转切除生成30度与45度、R4的两个封闭图形,生成外形上的倒角; (4) 运用差集运算切除中间用旋转生成的阶梯轴(由孔组成的图形旋转而成),来创建该零件中间的阶梯 孔,完成三维模型的创建。 ● 零件图如图1所示。 图1 零件图 ● 具体的操作步骤如下: 1.除了轮廓线图层不关闭,将其她所有图层关闭,并且可删除直径为65mm 的圆形。然后,结果如图2所示。 图2 保留的图形 2.修改主视图。 将主视图上多余的线条修剪,如图3所示。 该图形经旋转 切除生成外形 上的倒角。 图3 修改主视图 3.将闭合的图形生成面域。单击“绘图”工具条上的“面域” 按钮,框选所有的视图后,按回车键,命令行提示:已创建8个面域。 4.旋转左视图。 单击“视图”工具条上的“主视”按钮,系统自动将图形在“主视平面”中显示。注意:此时,显示的水平线,如图4 a)所示。输入“RO ”(旋转)命令,按回车键,再选择右边的水平线(即左视图)的中间点,输入旋转角度值 90,按回车键,完成左视图的旋转如图4 b)所示。在轴测图中瞧到旋转后的图形如图4 c)所示。 该图形放置切除后 生成阶梯孔造型。

相关文档