文档库 最新最全的文档下载
当前位置:文档库 › OWTS振荡波电缆局放检测和定位技术基本原理研究

OWTS振荡波电缆局放检测和定位技术基本原理研究

OWTS振荡波电缆局放检测和定位技术基本原理研究
OWTS振荡波电缆局放检测和定位技术基本原理研究

OWTS振荡波电缆局部放电检测和定位技术基本原理研究

冯义1 刘鹏1程序1 涂明涛1王鹏2周作春2刘庆时2李华春3姜绿先3陈平3

1.北京市电力公司试验研究院

2.北京市电力公司生产技术部

3.北京市电力公司电缆公司

摘要 随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的OWTS振荡波电缆局部放电检测和定位技术,能够有效检测和定位10kV配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进一步推广应用、改进创新提供技术参考。

关键字 OWTS 电缆 局部放电检测和定位

0前言

近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘击穿,造成重大事故。

北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在10kV电缆故障中占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进先进技术及时检测出电缆潜伏性缺陷的要求也越来越迫切。

根据2007年北京市电力公司对新能源电网公司开展国际对标的重要成果并参考国内外相关文献资料,采用OWTS振荡波电缆局部放电检测和定位技术对10kV配电电缆进行测试,能够及时发现和定位潜伏性局部放电缺陷且不会对电缆造成伤害,可以大大提高供电可靠性。

1 OWTS振荡波电源技术

电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆投运后,这些空间电荷常造成电缆的绝缘击穿事故[1、2]。采用超低频(0.1Hz)电源进行试验,要求试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷[3]。

振荡波电压是近年来国内外研究较多的一种用于XLPE电力电缆局部放电检测和定位的电源。该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各种缺陷,且试验不会对电缆造成伤害[4]。

OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0—28kV的直流电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05μF—2μF。

图1 OWTS振荡波电缆局部放电检测和定位装置 2抗干扰技术

由于电缆的电容量大(近

F

μ

级),局部放电要求严(几

pC),而电力电缆局部放电测量中不

可避免的存在着环境噪声和外部干扰,局部放电信号往往湮没于这些噪声和干扰中,使测量变得非常困难,抗干扰手段的提高显得尤为重要。这些干扰按其时域和频域特征的不同,可分为窄带干扰、脉冲型干扰和背景噪声三类。由于干扰强弱、频域特性的不同,抗干扰技术要有一定的针对性[5、6]。

(1)对于窄带干扰,由于其频域特征与局部放电信号的频域特征有较大差异,而且频带十分窄,故大多采用频域滤波的方法进行抑制。

(2)对于脉冲型干扰,由于它和局部放电信号非常相似,从单个波形上很难将它们区分开来。目前主要采取时延鉴别法进行鉴别。时延鉴别法是利用外来干扰脉冲及发射波到达测量点的时间差与内部放电及反射波到达测量点的时间差的不同进行鉴别。

(4)对于背景噪声,由于其在时域中表现为无规律的随机脉动,在频域中则表现为在整个频带上均匀分布,因而单从频域或时域都不能有效地抑制。在小波去噪算法提出之前,往往采用时域平均的方法来抑制这种随机性的背景噪声,但效果并不理想。小波去噪算法的出现可以比较有效地解决这个问题[7、8]。

OWTS振荡波电缆局部放电检测和定位装置具有带通滤波、小波分析、时延分析等抗干扰功能,可根据信号特点,方便的进行放电脉冲的取舍,如图2所示。该装置还可以生成清晰的局部放电图形(如电压波形与局部放电信号关系图、三维谱图等),以便确定局部放电的类型,如图3所示。

(a)带通滤波功能(b)小波分析功能

图2 OWTS软件抗干扰功能

(a)电压波形与放电关系 (b)三维谱图分析

图3 OWTS软件图形显示功能

3定位技术

对于电力电缆局部放电的定位,早期就有对电缆实行扫描式检测查找局部放电点的技术,现在实际中采用的是70年代发展起来利用局部放电脉冲在电缆上的传播特性,用10MHz以上的高频扫描示波器进行定位测量的方法,该法也叫行波法或TDR法,其原理如图4所示。

b)c)

t1

t2

t

图4 行波法定位原理

a)接线图 b)检测阻抗上的脉冲信号示意图 c)脉冲波在电缆上的传播

CDO--示波器 PDS—局部放电测试仪

其中,Ck 为高压电容,Zk 为检测阻抗,同时也做匹配阻抗,消除脉冲在高压端的反射。设在0t 时,在电缆x 处发生放电,送出的两个脉冲按相反方向沿电缆传播,1t 时刻第一个脉冲到达测试仪,第二个脉冲在电缆远端反射后在

2t 时刻到达测试仪(如图4)。由于电缆中电脉冲的传播速度相对于确定的电缆绝缘型式是已知的常数,所以根据式(1)就可以算出放电点离电缆近端(高压端)的距

离x 。 2V

x L τ=? (1)

其中L 为电缆长度,V 为脉冲波在电缆中的速度,τ为两个脉冲的时延,即

21t t τ=?。 OWTS 振荡波电缆局部放电检测和定位装置采用该原理对电力电缆局部放电进行定位,如图5所

示。

(a)单个脉冲分析及定位情况 (b)放电量及放电位置 图5 脉冲分析及定位情况

4典型案例分析

利用该装置对某10/8.7kV XLPE 三芯电缆进行局部放电检测和定位,该电缆全长383米,距离测试端100米处有一个热缩中间接头。

检测发现该电缆在1.7U 0时放电量达到10000pC 左右,0.5U 0时放电量达到1000pC 左右,定位发现放电缺陷就在接头处。测试情况如图6所示。

(a)方波标定 (b)加压至9kV 时电缆局部放电与施加电压的关系

(c)单个脉冲分析及定位情况 (d)放电量及放电位置

图6 某10kV电缆现场测试情况

经过解体分析,该电缆内、外半导电管端口不整齐有突起,且端部未缠绕半导电带形成坡口,外屏蔽层剥离不整齐,有突起是造成严重局部放电的原因,如图7所示。

(a) (b)

(c) (d)

图7 电缆解体图片

(a)外屏蔽剥削不整齐,有突起,未打磨;(b)黑色热缩管是半导电材料,红色热缩管是绝缘材料。黑色热缩管端部不整齐,且未用半导电带做过渡形成坡口,热缩管表面有凹陷,不平滑。(c)里层黑色热缩管与电缆导体接触,表面有凹陷,不平滑。(d)内、外半导电热缩管的端部均没有用半导电带缠绕形成坡口。

5 小结

实践证明,OWTS振荡波电缆局部放电检测和定位装置通过采用振荡波电源技术、时延鉴别等抗干扰技术、行波法定位技术可以在现场有效检测出10kV配电电缆的局部放电水平并对其进行准确定位,从而避免因为安装工艺或电缆劣化导致的突发性事故的发生,值得进一步推广应用。

参考资料:

[1] 饶强,交联聚乙烯新的试验方法[J],广西电业,2004(8):107-109

[2] 罗俊华等,35kV及以下XLPE电力电缆试验方法的研究[J],电网技术,2000.24

[3] 张平康,韩伯锋,XLPE电缆的试验方法[J],高电压技术,2004.30(增)

[4] 杨连殿等,振荡波电压在XLPE电力电缆检测中的应用[J],高电压技术,2006.03

[5] 邱昌容等. 《绝缘测试技术进展》. 第二届全国电气绝缘测试技术会议论文集,pp1~15,October 1991,桂林.

[6] 胡龙龙. 数字信号处理方法在局部放电信号提取中的应用,硕士学位论文,西安:西安交通大学,2002.

[7] Xu Y.S.,Weaver J.B.,Healy D.M.,Jr.,and Lu J. Wavelet Transform Domain Filters:A Spatially Selective Noise Filtration Technique. IEEE Transaction on Image Processing,V ol.3,No.6,November 1994

[8] Donoho D.L. and Johostone I.M. Ideal Spatial Adaptation via Wavelet Shrinkage. Biometrika,V ol.81,1994

冯义,男,电力工程技术,工程师,2004年西安交通大学电气工程及自动化专业硕士研究生毕业,现从事变电设备状态监测技术管理工作。

电缆接头局放在线监测系统

系统功能 ●能检测放电量、放电相位、放电次数等基本局部放电参数, 并可按照客户要求,提供有关参数的统计量。 ●最小测量放电量:5mV;表贴电极传感器的频率范围: 800kHz~500MHz;电感传感器的频率范围为500kHz~20MHz;放电脉冲分辨率:10μs。 ●能显示工频周期放电图、二维(Q-φ,N-φ,N-Q)及三维 (N-Q-φ)放电谱图。 ●可记录测量相序、放电量、放电相位、测量时间等相关参 数,可提供放电趋势图并具有预警和报警功能,可对数据库进行查询、删除、备份及打印报表等。 ●系统能够识别常见现场放电信号类型:如电晕放电、被测 电缆外部的放电、内部的放电。 ●系统应有录波功能,保存原始测试数据,及回放测试状态 时原始数据,三相电缆交叉互联下可进行放电源判相,以便离线后能清楚分析原始数据。 系统特点 ●抗干扰能力强,系统采用宽频带检测技术,应用双传感器 定向耦合脉冲信号并利用宽频差动电流脉冲时延鉴别法进行在线的干扰抑制,以剔除最难消除的随机脉冲型干扰

(发明专利);再加上设置阀值电压、小波分析等其他综合抗干扰措施,使测量结果准确可靠。 ●采用虚拟仪器技术,将硬件模块与计算机结合,利用 LabVIEW编写软件,通过界面操作,实现各种功能,并便于进一步开拓。 ●电缆接头在线检测系统分布式结构,即电缆接头局放信号 通过分布在各个监测点的高速采集模块对信号进行选通、放大、采集,转换成数字信号,经过局域网TCP/IP通信协议,把数据传送到数据服务器,由数据服务器统一对信号进行计算、分析操作。 ●本监测方法可根据用户要求应用于在线监测或便携式带 电检测。 软件界面

高压电缆局放试验过程步骤及注意事项

试验过程 1、闭上总电源开关、闭上控制电源开关。 2、确认屏蔽室大门已关闭,系统处于通电状态。 3、根据电缆长度和截面,选择好适当的电抗器,高压抽头。当电抗器内电动切换抽头开关已处于完毕定(流)状态时,蜂鸣器应停止声响,表明高压抽头已就绪。 4、选择合适的电压测量量程。 5、检查“调谐速度”,将它调整到最大值的约30%。 6、接通高压电源主回路。 7、升压,以升高“励磁变压器的输出电压”直到所需试验电压值的1%处,例如:试验电压为10KV,那么励磁变压器的输出电压即为0.1KV。 8、在该励磁电压下,调节高压电抗器间隙位置,使试验回路达到谐振。应注意高压输出电压,输出值达到最高时,说明回路已达到谐振状态。 9、当试验回路处于谐振状态时,再按下“升压”按钮以升高输出电压至试验电压值。 10、当试验时间到,按下“降压”按钮,降低输出电压至最小值,再按下“高压分”按钮,试验系统便切断回路高压电源。注意:切勿在试验电压很高情况下直接按下“高压分”按钮,以防造成试品击穿。 11、试验结束后,断开调压器上的“空开”,必要时应断开整个设备电流的进线开关,以保证操作人员的安全。 试验前准备工作: 剥电缆头:1)半导体屏蔽剥(10kV)100~150mm长,(35kV)剥500~700mm长;要求:剥切口要光滑,不允许有尖端点。2)屏蔽铜带剥切长度要比半导体屏蔽长约100mm。3)铠装钢带要剪平并清理干净。 变压器油(氟里昂)准备:过滤、干燥,击穿场强应在40KV 以上。 注意事项:1、做试验时不能随意开操作室的门和窗,此时,如有放电,将会出现滤电的现象,导致出现误导数据。2、试验电缆两端都应浸入到油杯中,高压引到电缆上的叫近油杯,油杯内有弹性铜针。另一短为远油杯,无弹性铜针。3、油要浸过半导体屏蔽约5~10mm,以免放电,远油杯端电缆端部要离油杯底部约10mm。

振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局部放电检测和定位技术基本原理研究 随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何 准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故 的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化 预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的振荡波电缆局部 放电检测和定位技术,能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进 一步推广应用、改进创新提供技术参考。 近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供 电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结 构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝 缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生 局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘 击穿,造成重大事故。 根据北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在 10kV 电缆故障中 占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来 越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进先进技术及时检测出电缆潜 伏性缺陷的要求也越来越迫切。 根据 2007 年北京市电力公司对新能源电网公司开展国际对标的重要成果并参考国内外相关文 献资料,采用振荡波电缆局部放电检测和定位技术对配电电缆进行测试,能够及时发现和定位潜伏 性局部放电缺陷且不会对电缆造成伤害,可以大大提高供电可靠性。 振荡波电源技术 电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直 流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电 压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆 投运后,这些空间电荷常造成电缆的绝缘击穿事故[1、2]。采用超低频(0.1Hz)电源进行试验,要求 试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷[3]。 振荡波电压是近年来国内外研究较多的一种用于 XLPE 电力电缆局部放电检测和定位的电源。 该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各 种缺陷,且试验不会对电缆造成伤害[4]。 OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0—28kV的直流 电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05 μF—2μF。

局部放电缺陷检测典型案例和图谱库

电缆线路局部放电缺陷检测典型案例 (第一版) 案例1:高频局放检测发现10kV电缆终端局部放电 (1)案例经过 2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。 2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。 (2)检测分析方法 测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。 信号采集单元主要有高频检测通道、同步输入及通信接口。高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。 利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。 图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号 将传感器放置不同距离时耦合的脉冲信号如图1-3所示。距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来

10kV 电缆振荡波局放测试系统测试要求

10kV电力电缆 阻尼振荡波局部放电检测试验方案 (试行)

10kV 电力电缆振荡波局部放电检测试验方案 一、试验标准和目的 根据要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。 二、试验仪器 ONSITE MV 10 型电缆振荡波局放检测系统 三、试验内容 10kV 电缆振荡波局部放电检测基本原理如图1所示: 图1 电缆振荡波局放测试原理 用交流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。 振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C 和δtan 值可通过振荡波的时间和频率特性来计算。 LC f π2/1=

1、被测电缆要求及测试前准备 1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏; 2)尽量将电缆接头处PT、避雷器等其它设备拆除; 3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够; 4)收集电缆长度、型号、类型、投运日期等电缆参数; 5)电缆长度L:电缆一侧测量方式:50m≦L≦6km; 电缆两端测量方式:L>6km。 6)测试用电缆用发电机、10KV放电棒、接地线、220V电源插盘。 2、振荡波局部放电试验 2.1 电缆局放校准。 采用ONSITE MV 10型电缆振荡波局部放电测试和定位仪,图2所示为校准界面: 图2 局放校准界面 测试要求: 1)将局放校准仪连线的接线端分别夹在被测电缆的线芯和屏蔽上; 2)注意在高压测试开始时将校准器连线拆除; 3)局放校准仪的输出频率设定在100Hz; 4)校准区间从100pC~100nC均要校准。

电力电缆局放及环流在线监测系统技术方案

上海宜商实业发展有限公司 电缆终端接头局部放电及护套环流在线监测 系统 技术方案

目录 一、概述 (2) 二、国内外现状和发展趋势 (3) 三、系统指标及功能 (3) 1.技术指标 (3) 2.系统功能特点 (4) 四、技术方案 (4) 1.系统结构图 (4) 2.前端采集单元介绍 (5) 五、现有工作基础、装备水平及实验测试能力 (11) 六.售后服务及培训 (11)

一、概述 由于交联聚乙烯(XLPE)电缆具有绝缘性能好、易于制造和安装方便、供电安全可靠、有利于美化城市等优点,在60年代初问世以来的40余年中得到了迅速发展。在中低压领域几乎替代了油浸纸绝缘电缆,并已在高电压等级中使用。近十年来,我国城市电网中大量采用XLPE电力电缆输配电。但是这种电缆的绝缘结构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因,在绝缘与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生局部放电(PD),同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘击穿,造成严重事故。 我公司生产的电缆接头局放测量系统已应用到国内多个供电局,因该系统结构复杂、成本较高,所以目前主要是便携式的带电监测方式应用。经过多年的技术积累,我们已完成对国内近千个110KV、220kv、330KV电缆接头的带电检测。通过对这些数据的对比分析,发现电缆接头处的局放水平与监测的脉冲幅值有密切的联系;在此基础上,拟对原有的局放测量系统进行简化设计,只以接头处接地线上的脉冲幅值大小和接地电流值所为主要监测参量,进行实时监测,从而以较低成本,并有效方便的实现对电缆接头局放水平的在线监测。 当电缆线芯中有电流流过时,将会使金属护套上产生感应电势。在护套开路时,这个感应电势可能会很大,有时不但会危及人身安全,还会击穿金属护套的外护层,尤其是电缆线路发生过电压及短路故障时, 在金属护套上会形成很高的感应电压, 使电缆外护套绝缘发生击穿, 故应在金属护套的一定位置采用特殊的连接方式和接地方式这些不同类型的接地电流成分不仅可以反映电力电缆金属护层自身的状态,也可以反映主绝缘的品质状态(如老化以及缺陷等)引起的局部放电在内的多类故障。

长电力电缆振荡波局部放电检验测试验方案计划

国家电网合肥供电公司 10kV长电力电缆阻尼振荡波 测试方案 安徽立翔电力技术服务有限公司 二零一七年七月

目录 一、试验标准和目的............................................................................................................... - 2 - 二、试验仪器........................................................................................................................... - 2 - 三、试验内容........................................................................................................................... - 3 - 1、术语及定义.................................................................................................................. - 3 - 2、试验原理介绍.............................................................................................................. - 3 - 3、被测电缆要求及测试前准备...................................................................................... - 5 - 4、绝缘电阻测试.............................................................................................................. - 5 - 5、测试电缆中间接头位置及电缆长度.......................................................................... - 5 - 6、振荡波局部放电试验.................................................................................................. - 6 - 6.1 电缆局放校准...................................................................................................... - 6 - 6.2 振荡波局放测试.................................................................................................. - 6 - 1)试验接线步骤:................................................................................................... - 6 -2)加压测试程序....................................................................................................... - 7 -3)测试要求及注意事项:....................................................................................... - 7 - 7、振荡波局放诊断评价.................................................................................................. - 8 - 1)绝缘电阻:........................................................................................................... - 8 -2)电缆局部放电量:............................................................................................... - 8 - 8、电缆振荡波局放异常处理决策.................................................................................. - 8 - 1)绝缘电阻异常情况处理措施............................................................................... - 8 -2)电缆振荡波局放量超标异常情况处理措施....................................................... - 8 - 9、试验时间:1.5~2.5 小时/段..................................................................................... - 9 - 四、人员安排:....................................................................................................................... - 9 - 五、安全措施:....................................................................................................................... - 9 -

(整理)35kv及以下交联电缆局放、耐压及故障定位试验系统 - 上海蓝波

PDT-1200kVA/120kV局部放电试验系统 电脑控制台使用说明书 上海蓝波高电压技术设备有限公司 一.系统简介

串联谐振试验装置的自动控制及测量系统由两大部分组成: 1.上位机;2.下位机及执行机构。上位机包括操作台、工业控制计算机以及操作软件。下位机包括PLC 及其扩展模块;执行机构由继电器、开关、接触器等器件构成。上下位机之间由光纤相连。 上位机能够接收下位机发送的状态信息,实时采集各个模拟量,并给下位机发送动作指令。操作人员通过操作上位机实现对整个系统的控制。 二.软件安装 1.概述 软件部分由四方面组成:操作系统,DAQBench控制器,ActiveX组件,控制软件。 在安装完Windows XP操作系统后,首先应该安装DAQBench控制器和ActiveX组件,最后安装控制软件。 2.安装DAQBench控制器 打开安装光盘,运行\\DAQBench\DISK1\SETUP.EXE,SN:A04-65534559。 3.安装ActiveX组件 打开安装光盘,运行\\ActiveX Register\ActiveX Register.exe。 4.安装控制软件 打开安装光盘,复制“SRS Tester”文件夹到硬盘驱动器。 全部安装完毕后,打开“SRS Tester”文件夹,运行“NSRS.exe”。 三.软件界面介绍 图1是系统的主界面,显示试验的相关数据信息,接受用户的操作。

图1 1.1 数显表 1.1.1 输出电流表 显示电抗器输出高压电流,其中包括了负载电流、高压滤波器电流,电流值是通过串接在励磁变压器次级低压端与接地端之间的电流互感器来测量的。精度为±5%。1.1.2 高压输出表 显示电抗器输出端的高压电压值,是通过电容分压器低压端耦合至测量回路来测量的,高压电压表精度为±3%。 1.1.3 励磁电压表 显示励磁变压器的输出电压,这个数值是参考值,试验员可以在远低于试验电压(相当于1%试验电压)的水平下稍加励磁,并将试验系统调至谐振状态,然后,升高励磁电压,直至所需试验电压。 1.1.4 间隙表 该表以百分数的形式来显示电抗器铁芯气隙位置,当该表指示在10%以下或90% 以上时,应控制调谐速度在25%以下,以防止损坏驱动系统。

电缆局部放电试验方法

如对您有帮助,请购买打赏,谢谢您! 电缆局部放电试验方法 [ 作者:admin 转贴自:中国电力试验设备网点击数:505 更新时间:2008-8-29 ] 对于制造中没有包上屏蔽的电缆线,可用图(1)的牵引试验装置对局部放电定位和检测。 图(1)未加屏蔽的电缆芯用牵引法对局部放电定位 其原理是把不屏蔽的电缆芯子通过一个紧贴着试验的管状电极,电极上施加试验电压,并把电极连到试验回路。管子都浸在绝缘液中(如离子水),并把这区域中不会发生干扰试验的边缘放电,液体不断循环与过滤。电缆芯接地,从缆盘经管状电极被匀速牵引至第二个电缆盘。 如放电脉冲正好被检测仪观察到,放电在图中A处开始出现,在B处开始消失,这两位置都在芯子表面的C处标记离A、B为已知距离I1、I2,这些长度沿芯子标出,则放电就可确定在电缆A、B之间。 至于成品电缆则不能用这种办法定位和检测。 在长电缆的测试时,要考虑到行波及其在端部的反射和衰减。可归纳以下几点: 1)在没有反射波的情况下,放电所产生的电压行波在进行中其幅值虽有很大衰减,但波形与放电量成正比的面积基持不变。 2)在有反射波的情况下,传输波和反射波在检测仪的响应上要形成交迭。在检测仪具有α响应时总是形成正迭加,时则既可能正送加,也可能负迭加,而负迭加是局部放电测试的大忌,应尽量避免。因此,如没有附加措施(例如迭器)的话。应尽量采用具有α响应的检测仪。 至于检测短电缆,可以当作集中参数元件考虑。测试就没有什么困难了。 现在的问题是究竟多少长度的电缆可视作短电缆?说法很不统一,第二个问题是这个电缆长度和检测仪有没有关系?为此,IEC最近对此作了比较具体的规定: 1、首先用可调脉冲间隔的双脉冲发生器(模拟电缆上两个交迭的脉冲波)对检测仪测试其交迭响应特性,即所谓At/A t交线。(其中t为双脉冲峰与峰间的时间间隔,A100是t达到相当大,不会产生交迭效应时的脉冲响应检测量,先定t时的脉冲检测量)。 绘制At/A100~t曲线的测试电路图见图(2)。 根据检测仪响应特性的不同,大体上可作出三种类型的交迭响应特性,见图(3)-(5)。 上图中不同的t值对应于脉冲传播的电缆长度。I1k=0.5·tk·U,I1=0.5 t1·U,·I2=0.5·t2·U (U约170~200m/μs) 图(2)双脉冲发生器的连接图 图(3)α响应检测仪的双脉冲响应关系 图(4)α响应检测仪的双脉冲响应 图(5)严重β响应检测仪的双脉冲响应 由图(3)-图(5)可知: ①所谓短电缆,应按1≤1k作为判断依据,它与检测仪响应特性有关,1k可短至100米以下,也可长达1000米以 ②当1≤2I1,可1≥2 I2,时,虽然按长电缆考虑,但因无负交迭,所以也可以与1≤1k的短电缆一样当作集中参数试,而不必在电缆端部接匹配的特性阻抗。 ③测试长度I在2I1≤I≤2 I2范围内的长电缆时,如无附加措施,则应在电缆端部接匹配特性阻抗以抑制反射。或者用α响应的检测仪以免迭加(图4-25) 。 ④检测仪的β响应愈是显著(见图5),则2I1≤I≤2 I2的I范围愈是大。 局部放电检测仪的响应特性与频带选择有关,故使用时选择放大器频带时应考虑这些因素。 2、根据At/A100~t图,确定电缆长度所处的范围后,选择合适的测试电路。 (1)对于I≤Ik,或I≤2 I1,或I≥2 I2的情况,可采取终端不接匹配阻抗的路:(图(6)-图(8)) (2)对于长度在2Ik≤I≤2 I2范围内的长电缆,必须在电缆终端采取消除终端反射波的终端匹配阻抗(或用反射抑见图(9)。

文高线42-45#- 振荡波测试报告 (局放)

电缆振荡波局部放电试验报告 测试地点: 垫江XX小学 被测线路: 35KV文高线 测试单位: 重庆XX有限公司 使用设备:德国OHV M60 测试人员:张工 日期:2018年9月10 日

10KV 电缆阻尼振荡波局部放电试验报告 测试日期: 2018/09/10 测试单位:重庆硕远科技有限公司投运时间: 位置: 垫江县宝鼎中学电容:159.5 nF - 159.8 nF (? 159.6 nF)近末端:35KV文高线42号频率: :338.0 Hz - 338.3 Hz (? 338.2 Hz)远末端:35KV文高线45号温度: 23℃ U0: 26kV 电缆规格:3*300 测试依据: 6-35KV电缆振荡波局部放电测试方法DL/T 1576-2016 通过TDR分析电缆三相约4组接头,分别为205米,312米,395米及575米

TDR校验结果 通过TDR校验得到电缆的长度为750米,远端波形反射明显,波速为172m/us 背景信号:(0U0) 187PC

加压窗 1U0下波形 1.5U0下波形 AB相在升压到1U0时能看到明显的放电信号,分布在一三象限,局放特征较为相似

局放测试结果:PRPDA/局放检测 升压次数: 分析区域1 从0.05 ms到 1.54 ms同时相位角从 3.0°到93.0° 分析区域2 从3.03 ms到 4.52 ms同时相位角从183.0°到273.0°一三象限放电信号很集中,放电信号随电压的升高而增大

局放测试结果:局放位置映像 结论: 典型的柱状集中现象,根据《DL/T1576-2016 6kv~35kv 电缆振荡波局部放电测试方法》标准,两处放电量都超过了临界值,通过校验波形来看,此处均为中间接头的位置电缆振荡波数据分析中发现有明显局放信号,A相电缆,在313米发现了明显的局放点,局放量达到13050pC;B相电缆,在385米发现了明显的局放点,局放量达到1000pC 左右;(详情见测试报告附表位置映像图),并且具有典型的局放柱状特征。根据校准波形分析,此两处正好为中间接头位置,建议对接头立即处理。 由于接头工艺制作问题或者老化导致的放电的产生,应加强对电缆施工工艺的把控,严谨对于中间接头和终端头的制作。

电缆接头局部放电在线监测系统

电缆接头局部放电在线监测系统 一、 前言 随着我国城市规模的扩大,电缆线路占城市供电线路的比例愈来愈大,供电的重要性也愈加明显,保证城市用电安全是电力部门的首要任务。电缆线路的故障多发生在电缆接头上。而电缆接头的故障多数起因于电缆接头产生了局部放电。通常电缆接头产生局部放电时,它会逐步发展成为电弧,然后击穿闪络,造成系统跳闸。 对运行中的电缆接头进行局部放电在线监测,是电缆状态维修技术开展的依据。监测电缆接头的局部放电,可防患于未然,避免电缆接头事故扩大,造成停电事故的产生。 武汉利捷电子技术有限责任公司结合变压器局部放电在线监测技术实践经验,对电磁波 在电缆的传播规律进行了系列研究,研制了电缆接头局部放电在线监测系统。 二、 电缆接头局部放电检测原理 在电缆接头的两端屏蔽层安装两只性能完全一样的高频传感器。传感器中电缆中局部放电信号与干扰信号的极性可以鉴别。 图1 局部放电信号与干扰的鉴别原理 (实线为局部放电信号,虚线为干扰信号) 见图1,当电缆接头内发生局部放电时,局部放电信号从放电源处向两边穿过电缆接头的传感器,其方向是相反的。而外部干扰信号是相同方向的。利用放电脉冲和干扰信号在电缆接头的传播规律,进行极性判别,可将局部放电信号分离出来。 电缆接头 电缆内部放电 干扰信号 2#高频传感器 传感器同名端 1#高频传感器

三、电缆接头局部放电在线监测系统实施方案 1. 电缆进线端接头 对于电缆进线端接头,其特点是:它们主要集中在变电站内,为此,采用集中式监测系统。见图2,电缆接头两侧各安装1只传感器,传感器获取的信号通过同轴电缆进入信号放电和调理单元,然后通过32/1多路模拟开关依次进入A/D 卡进行数字处理。数字化处理后由计算机采用极性判别软件将电缆接头的信息进行数据处理,剔除干扰信号,将局部放电的脉冲个数,幅值,时间记录下来并用3D 图形显示并存储起来。系统主机配备无线接收系统,接收电缆引出端接头的监测数据。 图2 电缆进线端接头局部放电在线监测系统框图 2. 电缆引出端接头 对于电缆引出端接头,其特点由用户的位置确定,方向分散,距离变电站有一定距离(可离变电站几百米或更远)。为此对于电缆引出端接头,采用嵌入式单元进行数据采样、数据处理及传输系统等任务。无线数据传输至变电站内的监测系统主机。见图4。 #1 ABC A/D 卡 #2 ABC #3 ABC #4 ABC #5 ABC …… ABC #N ABC 主机 多路模拟开关 无线数据 接收系统 系统 信号放大、调理单元 1 2 1 2 1 2 1 2 1 2 1 2 1 2 电缆接头

电缆局部放电试验学习资料

电缆局部放电试验学习资料保定华电电气有限公司

电缆局部放电试验学习资料 目录 一、电工原理的有关基本概念 1.什么叫交流电? 2.什么叫正弦电流和电压及其有效值? 3.放电脉冲信号基本特征 4.什么叫容抗、感抗? 5.什么叫电场强度、击穿场强? 二、局部放电的基本概念 1. 什么叫局部放电 2. 局部放电的基本名词概念 3. 局部放电出现的部位 4. 局部放电产生的危害 5. 局部放电产生的过程 三、局部放电测试方法 1.局部放电测试原理 2. 局部放电测试设备 3.局部放电测量步骤 4.产品标准对局部放电考核指标要求的变化 5. 典型的放电谱图

一、电工原理的有关基本概念 1.什么叫交流电? 在实际电路中(如仪器设备的工作回路、电力传输线路)电流、电压都随着时间而变动,有时不仅大小随时间在变动,而且方向也可能不断反复交替地变动着。工程上所常遇到的变动电流,其方向和大小均随时间作周期性变化,这种电流称为周期电流。 图1中的曲线就表示一种周期电流,通常把这种曲线称为波形。 图1:周期电流i 的波形 周期电流经过一定时间T ,电流的变动就完成一个循环,故T 称为周期;周期以秒(s )为单位。单位时间内电流变动所完成的循环(或周期)数称为频率,用字母f 表示。根据这个定义,频率恰好是周期的倒数,即 T f 1 频率的单位为1/秒,又称为赫兹(Hz ),简称赫。 大小和方向都随时间变动,而在一定周期内平均值等于零的周期电流称为交变电流,简称交流。当然如果上述是电压波形时我们称为交变电压,也简称交流电。 变动电流或电压在任何一个时刻的值叫它们的瞬时值,瞬时值是时间的函数。在交流电路中,欧姆定律仍然适用。 2.什么叫正弦电流和电压及其有效值? 电力工程中所用的交变电流和电压是按照正弦规律变动的,换句话説,这些交

工业以太网交换机在电缆局放在线检测系统的应用

工业以太网交换机在电缆局放在线检测系统的应用 摘要:交联聚乙烯(XLPE)电缆局放在线监测系统监测点越来越多,针对系统的扩展本文提出基于工业以太网交换机,模块化设计,采用光纤进行主网冗余连接,辅助采用交换机的串口完成采集系统的电源控制,通过TCP/IP协议通过远程控制各采集系统,完成电缆局放在线监测系统的升级,该系统结构简单,成本低,对于长距离、多回路的高压电缆局放检测积极意义。 关键词:电缆局放;工业以太网交换机;FPGA;信号采集 1.引言 目前国内城市供电电缆化率在逐步提高,每回电缆长度也越来越长,电压等级也由原来的10kV提高到220kV,甚至更高,但对于电力隧道和管井内主干电缆的管理还处于计划检修阶段,一般采用定期进行主绝缘和交叉互联系统的预防性试验以及测温测负荷的方法对电缆的运行状况进行检查。近几年国内外已积极开发电缆在线监测设备和研究开发监测技术,通过检测参量进行分析与诊断。 XLPE电缆在运行的故障前期,有明显的特征局部放电信号,通过收集不同的特征局部放电信号,分析局部放电信号中所携带的电缆老化信息来得到电缆的老化状态,研制出一种局部放电检测系统,通过对一回或多回电缆同时在接头附近多点进行监测,并进行数据处理分析,对电缆接头绝缘进行绝缘诊断。系统中应用了工业以太网交换机,对系统结构升级优化。 2.系统原理 系统采用模块化设计,其单点测试系统原理如图1所示。 图1系统原理图 通过安装在电缆接头两端本体上的高频电流大传感器和安装在交叉互联线上的高频电流小传感器,来耦合电缆接头处的脉冲电流信号;耦合到的脉冲信号通过同轴电缆传送至前端处理采集单元即检测装置,对模拟信号经过放大、模拟数字转换后变成数据信号再通过光

高压电力电缆局放测试的方法

https://www.wendangku.net/doc/e6271484.html, 高压电力电缆局放测试的方法 高压电力电缆局放测试的方法首先是交流耐压试验电源处理,交流耐压试验电源处理用到的装置是串联谐振 1、交流耐压试验电源处理 高压电缆交流耐压采用的是变频谐振装置产生试验电源,变频柜是装置的核心部件,变频柜通过晶闸管的整流和逆变获取试验所需的频率,在电源变换过程中引入了大量的高频脉冲电流成份。

https://www.wendangku.net/doc/e6271484.html, . 变频谐振系统输出的电源不能直接作为电缆局放试验的电源直接施加于被试对象进行局部放电测试,必须采取有效措施对试验电源进行预处理,通过设置串联电抗、防晕导线、均压环进行对试验电源质量进行改善,其电气原理所下图所示。 . 2、电缆终端局放测试回路 电缆终端的局放测试回路如下图,当被试电缆内部发生了局部放电时,耦合电容瞬时对电缆终端充电,形成高频的脉冲充电电流波形,脉冲电流的幅值、发生的频度反映了电缆

https://www.wendangku.net/doc/e6271484.html, 内部局部放电的严重程度,通道1、通道2两个传感器将局放信号传送至局放诊断系统进行分析处理。 . 在电缆的中间接头,测试原理如图所示,一侧电缆的铠装与电缆导体之间存在电容Ca,另一侧电缆的导体与铠装之间存在电容Cb,如果在电缆的中间接头发生局部放电,那么形成两个电容C1和C2,此时Ca和Cb就会通过导体向C1和C2充放电,从而形成局放电流回路,在两侧电缆屏蔽层桥接一个高频低阻的电容臂C0和高频电流传感器,就可以检测到局放的脉冲电流信号。 .

https://www.wendangku.net/doc/e6271484.html, . 3、高压电缆局放测试的技术难点 a) 测试系统灵敏度要求高 高压电缆发生局放时产生的脉冲信号微弱,要求传感器及测试系统有相当高的检出灵敏度。 b) 现场干扰因素复杂 在现场实施电缆局放试验时干扰信号会严重影响电缆局放的检测和诊断,主要有临近试验现场的运行设备产生的电晕或者局部放电信号、交流耐压试验装置自身的局部放电信号、交流耐压试验回路的引线产生的电晕信号三个方面的因素。 因此甄别并排除干扰信号、提取有效的信息并根据其特征诊断电缆的绝缘状态是一项具有挑战性的技术难题。 c) 对测试人员的要求高 高压电缆局放的信号主要集中在0-30MHz范围内,信号频带较宽,加上现场存在一定的干扰信号,测试人员通过信号抑制、识别、分类、提取、判断等技术手段,准确的解析复杂的电子信号成份实现电缆的状态诊断。这项技术要求测试人员熟练使用示波器、频谱仪、滤波器等电子设备,并具备高频电子信号分析判断能力。u d) 国家标准及行业标准没有明确的指引 高压电缆局放测试是目前国内比较新的技术应用课题,国内仅有北京供电局进行过类似尝试,佛山局在这一技术领域走在了国内前列。 4、局放诊断判据

电力电缆局放在线监测系统使用说明书

电力电缆局放在线监测系统使用说明书电力电缆局放在线监测系统 使用说明书 目录 安全规程...................................................................... .................................................... 1 1. 概 述 ..................................................................... ....................................................... 2 1.1 相关概 述 ..................................................................... .............................................. 2 1.2 系统功 能 ..................................................................... . (2) 1.3 系统工作环 境 ..................................................................... (3) 1.4 系统工作过 程 ..................................................................... ....................................... 3 1.5 技术原理综

电缆局放试验的特点和要求

电缆局放试验的特点和要求 一、电缆局放试验的特点(与其它高压输变电设备产品相比) (1)试品电容量大。整盘电缆的出厂试验电容量更可观。 例如:变压器,套管,绝缘子等大都是nF级电容,高压电容器有uF级的电容,但属集中参数。 电缆:35kV,630mm25km 1.4μF/5km 110kV,1600mm210km 2.85μF/10km 220kV,2000mm210km 2.25μF/10km 500kV,2500mm210km 2.04μF/10km 试品电容大,导致:1.高压试验容量巨大,普通试验变压必须改为采用串联谐振电抗;2.局放检测灵敏度降低。(图1) (2)电缆试品占空间大 以110kV电缆为例,电缆螺旋状卷绕在外缘直径5米的大铁盘上。试验时带2个水终端长达约3米。500kV电缆水终端长达6米多。电缆卷绕后如螺旋卷天线,试品展开空间又大,都是易受空间电磁场感应影响的因素。这样对屏蔽室要求高。 (3)电缆的等效电路是电容分布参数电路 分布参数试品在进行脉冲电流的检测中有高频脉冲的传播,反射,叠加等传输特性反映到显示器上,影响检测结果。 应用电缆上局放脉冲的传播特性来进行局放故障定位。(图2) (4)交联聚乙烯是优质绝缘材料。 用于500kV级的交联乙烯电缆最大工作场强可达3.1kV/mm(35kV电缆): 5.3kV/mm,(110kV电缆):10.1kV/mm,(220kV电缆):13.5kV/mm,(500kV 电缆但它又易受局部放电作用的发生劣化。 这样电缆局放试验标准的允许放电量要求比其它设备或其它品种绝缘低好多,所以要求试验灵敏度高,即背景噪声水平小。 这样将全面要求:屏蔽室,接地,电源,设备性能都精确优良。 目前,国外正在开发800kV/1000kV级XLPE电缆的应用,这就需要更高参数,极低背景噪声水平的局放屏蔽试验系统。 总之:在技术上,高压交联电缆的局放检测,公认是各种试品局放试验中要求最高的。 二、电缆局放试验设备的要求 (1)串联谐振电抗器(图3) 电缆局放试验用可调高压串联谐振电抗器代替普通变压器,试验时供电抗(L)调到与试品电缆电容(C)谐振。从而电抗与电缆的无功功率相互补偿(抵消),电源网络只需承担电抗器,电缆和回路有功损耗部分(R=R LR+R CR+R1)该损耗功率为电抗器输出功率的1/Q倍 对交联电缆,Q=40-80 因而,达到了节能,节约投资,缩小设备体积。当然,该串联谐振设备应在额定工作电压下无局放(例为<2PC)

局放试验与耐压试验的区别pdf

局放试验与耐压试验的区别 电缆的耐压试验,主要是为了检验电缆的主绝缘是否合格。如果绝缘不击穿,电缆就是合格的。然而,电缆的缺陷,在制造过程中虽然能够被发现,也能够被消除。但是,电缆在电场的作用下,绝缘的薄弱地方就会被激发,出现局部的放电现象。而这个放电现象,是我们在制造电缆的过程中不容易发现的。所以,测量电缆的局部放电,是电缆试验的重要项目,是评定电缆绝缘性能的有效方法。测试绝缘内部局部放电的主要目的是: 1、判断电缆在工作电压下有无明显的局部放电存在,考核绝缘内部的游离性能(沈阳电缆厂通常把局放的测试叫做测游离); 2、测量绝缘内部局部放电的起始电压,或局部放电的熄灭电压值; 3、测量在规定电压下的局部放电强度。 我国最早的塑力电缆标准是1975年的1kV电力电缆。随着我们国家的科学进步和综合国力的增强,对中高压电力电缆的需求越来越大。因此,国家质量技术监督局在1991年首次发布了12706标准。在GB12706.3—1991标准中,把电缆的局部放电试验列为成品电缆的出厂例行试验。但是,1991年我在长春结束了《东北区网阻燃电缆技术研讨会》之后,来到了××电缆厂(××省电缆行业的老大哥,他们企业的试验中心,就是××省的电缆检测中心)。在当时,他们从俄罗斯原子能院引进的电子加速器还没有投入生产,束下装置还没有调试,门式收线也没有安装完毕。当时,他们的交联生产线就是过氧化

物蒸汽交联(化学交联方法之一,在工艺上也叫湿法交联),在当时生产10kV交联电缆。我转了一圈子,没有看到局放设备。在当时,可能好些个电缆厂都是那样的。因此,1992年,国家对交联电缆生产线进行了整顿验收。历史进入到上世纪90年代以后,受到引进热和辐照热的冲击,上世纪50年代的蒸汽交联工艺终于被淘汰了。而且,局放试验,也被确定为交联电缆生产的必备条件。 在阴雨连绵的时候,我们经常的会看见电杆上的瓷瓶子发出蓝色的光环,这就是放电。在电缆行业和电力行业,我们管它叫电晕。但是,电缆在绝缘里面的放电,我们是看不见的,这就是局部放电。我经常讲过,低压电缆的设计主要是考虑电缆的机械和物理性能,电性能不是主要考虑的指标。因为,低压电缆的绝缘,从满足电性能来讲,是富富有余的。用术语说,就是裕度很大。而中高压电缆与低压电缆相比,就不一样了。我们都知道,空气在6kV(交流)情况下就会被电场游离。电缆在负荷状态下,是有电场存在的。导体的毛刺、内外屏蔽的尖角、交联度的均匀性、半导体的吸潮、绝缘的杂质(杂质有时候是我们看不见的。尤其是超高压电缆的绝缘【超净料】,杂质就是我们看不到的分子链的支链)以及电缆结构中的缝隙等因素,都是导致电缆放电的因素。电缆由导体向绝缘频繁的放电或者放电量很大,电缆的绝缘就会产生电树枝,最后导致电缆击穿。说到这里,我们可以得出结论:局放试验与耐压试验的机理虽然不同,但都是电缆绝缘最重要的电性能指标。电缆的局放试验,考核的是电缆的电老化性能。也就是说,考核的是电缆的寿命。耐压试验,考核的是电缆能

相关文档
相关文档 最新文档