文档库 最新最全的文档下载
当前位置:文档库 › 纳米材料导论期末复习

纳米材料导论期末复习

纳米材料导论期末复习
纳米材料导论期末复习

名词解释:

纳米:纳米是长度单位,10-9米,10埃。

纳米材料:指在三维空间中至少有一维处于纳米尺寸范围或由它们作为基本单元构成的材料。

布朗运动:在显微镜下观察到悬浮在水中的花粉颗粒作永不停息的无规则运动。其他的微粒在水中也有同样此现象。

原子团簇:是由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。

纳米技术:纳米技术则是指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。

均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。

真空蒸镀:是指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。

纳米薄膜材料:是指由尺寸在纳米量级颗粒构成的薄膜或是将纳米晶粒镶嵌于某种薄膜中构成的复合膜,以及每层厚度均在纳米量级的单层或多层膜的材料。

超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。

塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。

弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。

热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。

纳米复合材料:增强体为纳米级(1-100nm,纳米颗粒,纳米片,纳米纤维等)

蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。

简述:

1、纳米粒子的基本特性并说明小尺寸效应和表面效应的特点?

物理性质:小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应。小尺寸效应:结晶温度和烧结温度随着纳米颗粒尺寸的减小而降低;

纳米颗粒的蒸汽压随着纳米颗粒尺寸的减小而升高。

表面效应:粒度减小,比表面积及表面原子所占比例都增大;表面原子比内部原子具有更高的比表面能和活性。

2、纳米陶瓷具有较好韧性的原因?

纳米陶瓷有较大的界面,界面的原子排列是混乱的,在外力变形的条件下容易发生迁移。所以具有较好的韧性。

3、制备纳米材料的物理和化学方法有哪些?

物理制备方法:机械粉碎法、蒸发凝聚法、离子溅射法、冷冻干燥法、火花放电法、爆炸烧结法、活化氢熔融金属反应法。

化学制备方法:气相化学反应法、沉淀法、水热合成法、喷雾法、溶胶-凝胶法。

4、真空蒸镀和溅射制膜的原理?

蒸镀原理:在高真空中,将源物质加热到高温,相应温度下的饱和蒸气向上散发,基片设在蒸气源的上方阻挡蒸气流,蒸气则在基片上形成凝固膜。

溅射原理:入射离子最初撞击靶体表面上的原子时,产生弹性碰撞,它的动能传递给靶表面的原子,该表面原子获得的动能再向靶内部原子传递,经过一系列的碰撞过程即级联碰撞,其中某一个原子获得指向靶表面外的动量,并且具有了克服表面势垒(结合能)的能量,它就可以溢出靶面而成为溅射原子。

5、纳米薄膜材料的物理制备方法?

物理气相沉积法(PVD)、真空蒸发、磁控溅射、离子束溅射、分子束外延(MBE)。

6、纳米固体材料中有哪些结构缺陷?

点缺陷、线缺陷、面缺陷。

其中点缺陷包括:空位、空位对、空位团、溶质原子、杂质原子等。

线缺陷包括:位错、刃型位错、螺型位错、混合型位错等。

面缺陷包括:层错、相界、晶界、三叉晶界、孪晶界等。

7、纳米固体材料界面结构研究方法有哪些?

XRD、TEM、正电子湮没、穆斯包尔(MiSssbauer)谱等。

8、纳米薄膜材料的应用?

金属的耐蚀保护膜、多功能薄膜、电子信息材料、硬质薄膜 、 膜分离。

9、霍尔一佩奇Hall-Petch 的概述及物理意义?

式中:σ--强度; H --硬度; d --晶粒尺寸;K --常数 物理意义:用来描述指出晶粒越细小则强度越高。

10、常见的陶瓷材料有哪些类型和陶瓷材料的优缺点以及陶瓷基纳米复合材料的增强机理?

常见的陶瓷材料有:氧化物 氮化物 硼化物 碳化物等 。

陶瓷优点:综合机械性能好、耐磨、耐热耐腐蚀。

缺点:脆性大。

陶瓷基纳米复合材料的增强机理 :1)、纳米级弥散相阻止晶粒长大-----细晶强化。 2)、在弥散相内或周围存在高的局部应力,使冷却期间产生位错,纳米级粒子钉扎或进入位错区使基体晶粒内形成亚晶界,使基体晶粒再细化;3)、局部拉应力引起穿晶断裂和裂纹偏转而产生韧化,晶界相的改变和对高温力学性能影响的减小及高温牵制位错运动,使改善了高温力学性能。

论述: 纳米材料具有哪些特殊的力学和热学性能?

力学性能:具有超塑性、 超延展性,高强度——硬度、高扩散性、高塑性——韧性、低密度、低弹性模量。

热学性能:纳米微粒的熔点、烧结温度、晶化温度均比普通粉体低;高比热、高热膨胀系数和低热导率;在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低。

d K +0y σσ=d K H H +0y =

试述纳米固体材料的力学、热学性能与常规材料相比有哪些区别?

纳米固体材料的力学性能常规材料相比:○1常规多晶材料的屈服强度或硬度与晶粒尺寸之间的关系满足霍尔-佩奇(Hall-Petch)公式,而对于纳米固体材料的硬度与晶粒尺寸存在反常关系(正Hall-Petch关系(K>0)、反Hall-Petch关系(K<0)、正-反混合Hall-Petch关系、斜率K变化、偏离Hall-Petch关系。)○2纳米固体材料塑性、冲击韧性和断裂韧性与粗晶材料相比有很大改善。一般材料在低温下常常表现为脆性,但是纳米材料在低温下却显示良好的塑性和韧性。○3减少了纳米固体材料应力集中,降低微裂纹的产生和扩展。○4具有超塑性。

纳米固体材料的热学性能常规材料相比:○1纳米材料熵对比热的贡献比常规材料大得多。○2纳米晶材料晶粒尺寸热稳定的温度范围较窄,纳米相材料颗粒尺寸热稳定的温度范围较宽。○3纳米晶体比常规晶体热膨胀系数几乎大1倍。

新材料科学导论期末复习题(有答案版)

一、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有 光,电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚 合度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示 为增强体与基体的互补。(ppt-复合材料,15页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高 分子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977年,美国化学家MacDiarmid,物理学家Heeger和日本化学家Shirakawa首次发现掺杂碘的聚乙炔具有金 属的导电特性,并因此获得2000年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

同济大学复试材料科学导论总结2

第二篇 材料的物性 8.理解物性的基本概念 1.波粒二象性:波粒二象性(wave-particle duality )指的是所有的基本粒子或量子不仅可以部分地以粒子的术语来描述,也可以部分地用波的术语来描述。 2.常规情况下,有两类决定材料物性的主导因素: 一类是原子系统,通常作为经典粒子处理,反映了位置序或粒子序(性)的效应;另一类是电子系统,通常表现出明显的量子力学特征,反映了动量序或德布罗意波序(性)的效应。 3.经典电导理论和量子力学理论的区别 1. 经典电导理论认为在外电场的作用下所有的自由电子都对电流有贡献;而量子力学理论认为只有费米能级附近的电子才对电流有贡献。 2. 根据量子力学理论,在理想周期性排列的晶格对能带中,电子的能量状态形成能带,能带之间是禁带,能带中的电子可以在晶格中自由运动,因此理想周期性排列的晶格对能带中电子没有散射作用,这是与经典电导理论不相同的。 4.金属自由电子理论: 金属的高导电性是由于那些处于紧靠费米能的半占有状态上的电子漂移形成(外加电压对大多数电子不产生净效应,因为它们可能跃迁到的较高能态均已被填满)。金属的功函数是从高的占有能级上取出一个电子所需的能量,在绝对零度时,即为费米能。在室温,只有很少的一些电子被激发到高于费米能,因此功函数在一个宽的温度范围内几乎是恒定的。 自由电子理论能满意地解释绝大多数金属的导电性,但不能正确解释绝缘体。 5.能带的概念: 能带理论就是认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动;结果得到:共有化电子的本征态波函数是Bloch 函数形式,能量是由准连续能级构成的许多能带。 固体的导电性能由其能带结构决定。对一价金属,价带是未满带,故能导电。对二价金属,价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电,绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。半导体的禁带宽度从0.1~4电子伏,绝缘体的禁带宽度从4~7电子伏。在任何温度下,由于热运动,满带中的电子总会有一些具有足够的能量激发到空带中,使之成为导带。由于绝缘体的禁带宽度较大,常温下从满带激发到空带的电子数微不足道,宏观上表现为导电性能差。半导体的禁带宽度较小,满带中的电子只需较小能量就能激发到空带中,宏观上表现为有较大的电导率。 根据电子能带结构,说明导体、半导体和绝缘体之间电导率差异的原因。 85u 1.导体中含有未满带,在外场作用下,未满带上的电子分布发生偏移,从而改变了原来的中心堆成的形态,占据不同状态的电子所形成的运动电流不能完全抵消,未抵消的部分就形成了电流。 2.从能带结构模型来看,在绝缘体和半导体中,能量较低的、被价电子所充满的价带与能量较高的未填充电子的导带之间,在原子平衡间距处没有交叠,即价带与导带之间被能量为Eg 的禁带所隔开。绝缘体的禁带宽度较宽而半导体的比较窄。由于绝缘体的电子能带结构特征在常温下几乎很少有电子可能被激发越过禁带,因此电导率很低。 3.半导体的能带结构与绝缘体相同,所不同的是它的禁带比较窄,电子跳过禁带不像绝缘体那样困难。如果存在外界作用(比如热、光辐射等),介带中的电子就有可能跃迁到导带中去。纯半导体的导电过程是依靠电子从充满价带激发到空的导带中实现的,价带失去电子同时形成电子空穴,因此导带中的电子浓度与价带中的空穴浓度相等,在室温下,半导体材料的导电性是由于晶体点阵中原子的振动使电子受到了激发进入导带中而引起的,这种空带中的电子导电和价带的空穴导电同时存在而引起的。 6.宏观和介观不均匀 宏观不均匀性:这类材料如不同相的混合物,也包括一部分人工复合材料。 介观不均匀性:在大于晶格常数的尺度内,晶粒生长、失衡分解和共析现象常造成这类静态的不均匀性,多晶陶瓷、玻璃陶瓷等复合材料常具有结构不均匀性,这类不均匀性也常被称为微结构、超微结构和纳米结构。 7.复相不均匀研究结构包括哪几方面? 确定材料中所有存在的相,以及每相的含量和性质特征 。 确定各相的结构形貌特征,如尺寸、形状、晶粒取向和分布。 确定材料中晶界和其他结构缺陷如位错、微裂纹和包裹物的特征。 8.费米子和玻色子 费米子:粒子遵从泡利不相容原理,因而不能有2个粒子处于同一量子态Ei ,系统的波函数必然是反对称的,满足这些要求的粒 子称为费米子。(电子、质子、中子等)费米狄拉克分布: 玻色子:粒子不受泡利不相容原理的约束,因此系统对于能够处于相同量子态Ei 的粒子数目没有限制,描写粒子系统的波函数必然是对称的,满足这些要求的粒子称为玻色子。(光子)波色-爱因斯坦分布: 10.声子:能量为h ω/π的晶格震动的简正模能量量子,称为声子。

纳米材料学教案

《纳米材料》教学大纲 一、课程基本信息 课程编号:2 中文名称:纳米材料 英文名称:Nano-materials 适用专业:化学工程与工艺 课程类别:专业选修课 开课时间:第5学期 总学时:32 总学分:2 二、课程简介(字数控制在250以内) 《纳米材料》是化学工程与工艺专业的一门专业选修课,本课程系统地讲授各类纳米材料的概念、制备方法、结构和性能特征以及表征技术和方法,在此基础上,对其发展前景进行了展望。通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 三、相关课程的衔接 与相关课程的前后续关系。 预修课程(编号):高等数学B1(210102000913)、高等数学B2(210102000713)、物理化学A1(2)、物理化学A2(2),无机化学(A1)(2)、无机化学(A2)(2)。 并修课程(编号):无特别要求 四、教学的目的、要求与方法 (一)教学目的 通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 (二)教学要求 掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状,对未来发展前景有一定的认识。

(三)教学方法 本课程遵循科学性、系统性、循序渐进、少而精和理论联系实际的教学原则,结合最新的研究成果着重讲述有关纳米材料的基本理论、理论知识的应用。本课程以课堂讲授教学为主,教学环节还包括学生课前预习、课后复习,习题,答疑、期末考试等。 五、教学内容(实验内容)及学时分配 (1学时) 第一章绪论(2学时) 1、教学内容 1.1纳米科技的基本内涵 1.2纳米科技的研究意义 1.3纳米材料的研究历史 1.4纳米材料的研究范畴 1.5纳米化的机遇与挑战 2、本章的重点和难点 本章重点是纳米科技与纳米材料的基本概念。 第二章纳米材料的基本效应(2学时) 1、教学内容 2.1 小尺寸效应 2.2 表面效应 2.3 量子尺寸效应 2.4宏观量子隧道效应 2.5 库仑堵塞与量子隧穿效应 2.6 介电限域效应 2.7 量子限域效应 2.8 应用实例 2、本章的重点和难点 重点:纳米材料的表面效应、小尺寸效应及量子尺寸效应。难点:宏观量子隧道效应。 第三章零维纳米结构单元(4学时) 1、教学内容 3.1 原子团簇

新材料科学导论期末复习题(有答案版)

、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有光, 电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚合 度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示为 增强体与基体的互补。(ppt-复合材料,15 页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高分 子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977 年,美国化学家MacDiarmid ,物理学家Heeger 和日本化学家Shirakawa 首次发现掺杂碘的聚乙炔具 有金属的导电特性,并因此获得2000 年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释 1.高分子的柔顺性

材料科学导论章节备课教案

材料科学导论 Introduction of Materials Science 课程代码:01110610 学分:1.5 总学时:32学时讲课学时:28学时 实验学时:4 学时课程性质:专业基础课 适用专业:材料物理、材料化学 先修课程:高等数学(上、下)、工程化学、物理化学B、工程力学B,08100011/08100021/ 08100200/ 08110422/ 08100192 开课学期:第五学期其他:学位课 一、课程性质及作用 本课程是材料物理与化学专业的专业基础课,是研究材料的化学成分、加工过程与其组织、结构变化与性能之间关系、原理及其变化规律的一门学科。本课程从材料内部的微观结构出发,研究材料微观原子键合、聚集行为,晶体结构特点,以及不完整晶体的缺陷类型及其规律特性(位错),具体到材料类领域主要的概念、结论和规律。让学生理解并掌握不同原子键合原理、特点,理解空间点阵、晶胞等晶体学基础概念,理解典型金属晶体结构及其参数,在此基础上,了解离子晶体、共价键晶体、晶态高分子的典型结构特点;主要讨论并理解基体缺陷的类型、产生、运动及其相互作用,了解其对于晶体组织和性能有关影响。为学习后续专业课程奠定坚实的理论基础。 二、本课程与其它有关课程的联系 学习本课程前,学生应先修先修高等数学(上、下)、工程化学、物理化学B、工程力学B等基础课,并安排一次认识实习、金工实习,以增加感性认识。学生通过对本课程的学习,将为学习扩散与相变,材料物理性能,材料化学等其他专业课程打下坚实的基础。 三、课程内容及课时安排 绪论(2学时) 材料在国民经济中的地位和作用; 工程材料及其分类; 材料科学的研究内容与任务; 学习本课程的目的和方法。 第一章原子结构与键合(4学时) 1、原子结构 物质的组成、原子的结构、原子的电子结构、元素周期表 2、原子间的键合 金属键、离子键、共价键、范德华力、氢键 第二章固体结构(14学时) 1、晶体学基础 晶体的特性、空间点阵和晶胞、晶体、晶系与布拉菲格子、晶面指数和晶向指数、

纳米材料导论期末复习重点

名词解释: 1、纳米:纳米是长度单位,10-9米,10埃。 2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。 4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。 5、布朗运动:悬浮微粒不停地做无规则运动的现象。 6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。 7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。 8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。 9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。 10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。 11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。 HAII-Petch公式: σ--强度;H--硬度;d--晶粒尺寸;K--常数 纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。 14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。 15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。 大题: 纳米粒子的基本特性? (1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。 (2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性) (3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。 (4)宏观量子隧道效应:宏观物理量具有的隧道效应。 纳米陶瓷具有较好韧性的原因? (1)纳米陶瓷材料有纳米相,具有纳米材料相关的性能,而纳米材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移,从而表现出优良的韧性,因而纳米陶瓷也具有较好的韧性; (2)纳米级弥散相阻止晶粒长大,起到细晶强化作用,使强度、硬度、韧性都得到提高;(3)纳米级粒子的穿晶断裂,并由硬粒子对裂纹尖端的反射作用而产生韧化。

东北大学《材料科学导论》期末考试必备真题集(含答案)18

东北大学继续教育学院 材料科学导论复习题 一、选择填空,在给出的a、b、c、d选项中选择一或多个你认为最合适的答案, 使得题目中给出描述完整准确。 1、材料的性质是在元器件或设备实现预期的使用性能而得到利用的。即材料的使用性能取决于( b )。 a 材料的组成 b 材料的基本性能 c 材料的结构 d 材料的合成与加工工艺 2、钢铁、有色金属、玻璃、陶瓷、高分子材料等的原材料多数来自( d )、为矿物资源,形成于亿万年之前,是不可再生的资源。因此,在材料生产中必须节省资源、节约能源、回收再生。 a 工业 b 农业 c 材料加工行业 d 采掘工业 3、高分子材料、金属材料和无机非金属材料,不论其形状大小如何,其宏观性能都是由( b )。 a 它的化学成分所决定的 b其化学组成和组织结构决定的。 c 其加工工艺过程所决定的 d其使用环境所决定的 4、如果使用温度是室温,就可以优先考虑高分子材料,因为在相同密度的材料中它们是 b、d 的。 a 最容易得到 b最便宜 c 最常见 d 加工最方便 5、根据其性能及用途的不同,可将陶瓷材料分为( a、c )和两大类。 a 结构材料用陶瓷 b特种陶瓷 c功能陶瓷 d 传统陶瓷 6、金属材料与无机非金属材料成型加工时由于工艺条件的不同也会造成制品性能的差异。因此,材料的( a、d )的总和决定了制品性能。 a 内在性能 b成型加工 c附加性能 d 成型加工所赋予的附加性能 7、材料的化学性能是指材料抵抗各种介质作用的能力。它包括溶蚀性、耐腐蚀性、抗渗

入性、抗氧化性等,可归结为材料的( c )。 a 有效性 b 实用性 c 稳定性 d 可用性 8、切削物体或对物体进行塑性变形加工的工具材料可分为高碳钢、高速钢、超硬质合金、金刚石等材料,其中可列入超硬质材料范畴的是( c、d )。 a高碳钢 b高速钢 c超硬质合金 d金刚石 9、纳米材料通常定义为材料的显微结构中,包括( a、b、c、d )等特征尺度都处于纳米尺寸水平的材料,通常由直径为纳米数量级的粒子压缩而成。 a 颗粒直径 b 晶粒大小 c 晶界 d 厚度 10、天然矿物原料一般杂质较多,价格较低;而人工合成原料( a、b )。此外,对环境的影响也是选用原材料时必须考虑的因素之一。 a 纯度较高 b价格也较高 c难以得到 d 以上所有 11、电化学腐蚀必须要有一个阴极与一个阳极。在纯金属中( a )或( b )可以构成阴极。 a 晶界 b 晶粒 c 环境的介质 d 更小的不均匀物种 12、腐蚀一旦发生,材料或制品就会( d );所以腐蚀是材料设计和选择时不得不考虑的重要因素。 a大受影响 b性能显著下降 c服务寿命缩短 d 以上所有 13、晶体的宏观形貌可以是( d )。 a一维的 b 二维的 c 三维的 d 上述所有 14、范德华键是永远存在于分子间或分子内非键结合的力,是一种( a )。

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

同济大学复试材料科学导论总结4

同济复试材料导论资料 22.材料表征 1、分析方法综述 SEM的优点: (一)能够直接观察样品表面的结构,样品的尺寸可大至120mm ×80mm×50mm。 (二)样品制备过程简单,不用切成薄片。 (三)样品可以在样品室中作三度空间的平移和旋转,因此,可以从各种角度对样品进行观察。 (四)景深大,图象富有立体感。扫描电镜的景深较光学显微镜大几百倍,比透射电镜大几十倍。 (五)图象的放大范围广,分辨率也比较高。可放大十几倍到几十万倍,它基本上包括了从放大镜、光学显微镜直到透射电镜的放大范围。分辨率介于光学显微镜与透射电镜之间,可达3nm。 (六)电子束对样品的损伤与污染程度较小。 (七) 在观察形貌的同时,还可利用从样品发出的其他信号作微区成分分析。 SEM的缺点: ①异常反差。由于荷电效应,二次电子发射受到不规则影响,造成图像一部分异常亮,另一部分变暗。 ②图像畸形。由于静电场作用使电子束被不规则地偏转,结果造成图像畸变或出现阶段差。 ③图像漂移。由于静电场作用使电子束不规则偏移引起图像的漂移。 ④亮点与亮线。带电样品常常发生不规则放电,结果图像中出现不规则的亮点和亮线。 TEM:由于电子的德布罗意波长非常短,透射电子显微镜的分辨率比光学显微镜高的很多,可以达到0.1~0.2nm,放大倍数为几万~百万倍。因此,使用透射电子显微镜可以用于观察样品的精细结构,甚至可以用于观察仅仅一列原子的结构。透射电子显微镜在材料科学、生物学上应用较多。由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更薄的超薄切片,通常为50~100nm。所以用透射电子显微镜观察时的样品需要处理得很薄。常用的方法有:超薄切片法、冷冻超薄切片法、冷冻蚀刻法、冷冻断裂法等。对于液体样品,通常是挂预处理过的铜网上进行观察。 原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。优点:AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。缺点:成像范围太小,速度慢,受探头的影响太大。 XRD:可以做定性,定量分析。即可以分析合金里面的相成分和含量,可以测定晶格参数,可以测定结构方向、含量,可以测定材料的内应力,材料晶体的大小等等。 一般主要是用来分析合金里面的相成分和含量。 热重分析:在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。影响热重法测定结果的因素,大致有下列几个方面:仪器因素,实验条件和参数的选择,试样的影响因素等等。热重分析法可以研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;研究物质的热稳定性、分解过程、脱水、解离、氧化、还原、成份的定量分析、添加剂与填充剂影响、水份与挥发物、反应动力学等化学现象。 质谱(MS)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱仪器一般由样品导入系统、离子源、质量分析器、检测器、数据处理系统等部分组成。 红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。 2.X射线分析 ①X射线光电子能谱:由于它可以更准确地测量原子的内层电子束缚能及其化学位移,所以它不但为化学研究提供分子结构和原子价态方面的信息,还能为电子材料研究提供各种化合物的元素组成和含量、化学状态、分子结构、化学键方面的信息。它在分析电子材料时,不但可提供总体方面的化学信息,还能给出表面、微小区域和深度分布方面的信息。另外,因为入射到样品表面的X射线束是一种光子束,所以对样品的破坏性非常小。这一点对分析有机材料和高分子材料非常有利。 ②X射线荧光法:用放射性同位素作激发源,照射待测样品,使受激元素产生二次特征X射线(即荧光),使用X射线荧光仪测量并记录样品中待测元素的特征X射线照射量率,从而确定样品的成分和目标元素含量的方法。方法操作简单,速度快,可以原位测量。 ③X射线衍射分析:建立在X射线与晶体物质相遇时能发生衍射现象的基础上的一种分析方法。应用这种方法可进行物相定性分

材料科学导论(A)卷答案

材料科学导论(A)卷答案 一、选择填空 1、(d) 2、(a) 3、(b) 4、(c) 5、(d) 6、(a,d) 7、(d) 8、(a,b) 9、(d) 10、(b) 二、判断对错题 1、(R) 2、(R) 3、(F) 4、(F) 5、(R) 6、(R) 7、(F) 8、(F) 9、(R) 10、(R) 三、填空题 1、(立体变化的) 2、(复合化功能化智能化低维化) 3、(94),(72) 4、(材料本身的结构) 5、(3000),(200),(100) 6、(螺杆或柱塞) 7、(重金属、轻金属、贵金属和稀有金属) 8、(便于成型或组装) 9、(绝缘材料) 10、(温度) 四、简答及名词解释 1、简述包装材料及其分类。 现代包装种类很多,根据包装分类的角度不同,可形成多样化的分类方法。如按内外层次分有内包装和外包装;按包装功能分有防水包装、防潮包装、防霉包装、防辐射包装、防盔包装、防伪包装等;按流通中的作用分有工业包装、商业包装和消费包装等。这里以包装

所用材料不同来叙述材料在包装工业中的作用。 包装材料是指用于制造包装容器和包装运输、包装装潢、包装印刷等有关材料和包装辅助材料的总称。根据包装所用材料的不同,可分为纸质包装,如纸板包装、瓦楞纸包装;木质包装,如木箱包装、木桶包装;玻璃包装;陶瓷包装:金属包装;塑料包装,如塑料薄膜包装、塑料容器包装,以及复合材料包装等。 2、复合材料的结构物特征与类别 复合材料中至少包括基体相和增强相两大类。基体相起粘结、保护增强相并把外加载荷造成的应力传递到增强相上去的作用。基体相可以由金属、树脂、陶瓷等构成,在承载中,基体相承受应力作用的比例不大;增强相是主要承载相,并起着提高强度(或韧性)的作用,增强相的形态各异,有纤维状、细粒状、片状等。工程上开发应用较多的是纤维增强复合材料。 复合材料通常有如下几种分类方法。按基体材料类型可分为:树脂基、无机非金属材料基和金属基复合材料三大类;按增强体类型可分为:颗粒增强型、纤维增强型和板状复合材料三大类。 按用途可分为:结构复合材料与功能复合材料两大类。结构复合材料指以承受载荷为主要目的,作为承力结构使用的复合材料。功能复合材料指具有除力学性能以外其他物理性能的复合材料,即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能、摩擦性能、阻尼性能以及化学分离性能等的复合材料。以增强纤维类型分:碳纤维复合材料、玻璃纤维复合材料、有机纤维复合材料、复合纤维复合材料。 3、简述智能材料原理与种类 智能材料系指对环境可感知响应,并且有功能发现能力的新材料。它是在原子、分子水平上进行材料控制、在不同层次上赋予自检测(传感功能)、自判断、自结论(处理功能)和自指令、自执行(执行功能)所设计出的新材料。它是受集成电路启迪并且仿照生物体所具有的功能而设计的三维组件模式的融合型材料,使无生命的材料变得似乎有了“感知”和“知觉”。众所周知,生命实际上是蛋白质的存在形式,细胞为生体材料的基础,而细胞本身就有传感、处理和执行三种功能,故它可以作为智能材料的蓝本。从这一角度出发,智能材料也可叫仿生智能材料。 仿生智能材料主要有金属系、无机非金属系和高分子系智能材料。 4、、简述包装用塑料材料与种类 包装用塑料材料受到众多限制,目前用于包装的塑料主要有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚酰胺(PA,俗称尼龙)、聚对苯二甲酸乙二醇酯(PET,俗

复旦大学材料科学导论课后习题答案(搭配_石德珂《材料科学基础》教材)

材料科学导论课后习题答案 第一章材料科学概论 1.氧化铝既牢固又坚硬且耐磨,但为什么不能用来制造榔头? 答:氧化铝脆性较高,且抗震性不佳。 2.将下列材料按金属、陶瓷、聚合物和复合材料进行分类: 黄铜、环氧树脂、混泥土、镁合金、玻璃钢、沥青、碳化硅、铅锡焊料、橡胶、纸杯答:金属:黄铜、镁合金、铅锡焊料;陶瓷:碳化硅;聚合物:环氧树脂、沥青、橡胶、纸杯;复合材料:混泥土、玻璃钢 3.下列用品选材时,哪些性能特别重要? 答:汽车曲柄:强度,耐冲击韧度,耐磨性,抗疲劳强度; 电灯泡灯丝:熔点高,耐高温,电阻大; 剪刀:硬度和高耐磨性,足够的强度和冲击韧性; 汽车挡风玻璃:透光性,硬度; 电视机荧光屏:光学特性,足够的发光亮度。 第二章材料结构的基础知识 1.下列电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金

属? (1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2 (2) 1s2 2s2 2p6 3s2 3p6 (3) 1s2 2s2 2p5 (4) 1s2 2s2 2p6 3s2 (5) 1s2 2s2 2p6 3s2 3p6 3d2 4s2 (6) 1s2 2s2 2p6 3s2 3p6 4s1 答:惰性元素:(2);卤族元素:(3);碱族:(6);碱土族:(4);过渡金属:(1),(5) 2.稀土族元素电子排列的特点是什么?为什么它们处于周期表的同一空格内? 答:稀土族元素的电子在填满6s态后,先依次填入远离外壳层的4f、5d层,在此过程中,由于电子层最外层和次外层的电子分布没有变化,这些元素具有几乎相同的化学性质,故处于周期表的同一空格内。 3.描述氢键的本质,什么情况下容易形成氢键? 答:氢键本质上与范德华键一样,是靠分子间的偶极吸引力结合在一起。它是氢原子同时与两个电负性很强、原子半径较小的原子(或原子团)之间的结合所形成的物理键。当氢原子与一个电负性很强的原子(或原子团)X结合成分子时,氢原子的一个电子转移至该原子壳层上;分子的氢变成一个裸露的质子,对另外一个电负性较大的原子Y表现出较强的吸引力,与Y之间形成氢键。 4.为什么金属键结合的固体材料的密度比离子键或共价键固体高?

内蒙古大学材料科学导论期末复习计算

例题 : Cu 晶体的空位形成能Ev 为0.9ev/atom ,或 1.44×10-19 J/atom ,材料常数A 取作1,玻尔兹曼常数k =1.38×10 - 23 J/K ,计算:(已知Cu 的摩尔质量为MCu =63.54g/mol , 500℃下Cu 的密度ρCu =8.96 ×106 g/m3 ) 1)在500℃下,每立方米Cu 中的空位数目。 2) 500℃下的平衡空位浓度。 解:首先确定1m3体积内Cu 原子的总数: 236 28036.023108.96108.491063.54Cu Cu N N M m ρ???===? 1)将N 代入空位平衡浓度公式,计算空位数目nv 2)1928232813.5286233 1.4410exp 8.4910exp 1.3810773 8.49108.4910 1.37101.210 /V v E n N kT e m ------?==???=??=???=?2)计算空位浓度 19 13.56231.4410exp 1.4101.3810773v V n C e N -----?====??? 即在500℃时,每106个原子中才有1.4个空位

制作半导体元件时,常在Si表面沉积一薄层硼,然后加热使之扩散.测得1100℃时硼的扩散系数DB=4×10-7m2/s , 硼的薄膜质量M为:M=9.43×1019个原子. 求:扩散时间t=7×107S后表面(x=0)硼的浓度. 解:将已知条件代入 2 Mχ C=exp(-) 4Dt πDt C0 =0.1%C (纲件原始浓度),CS =1%(钢件渗碳后表层C%),渗碳温度为930℃=1.61×10-12m2/s 求:渗碳4小时以后在x=0.2mm处的碳浓度(C)值。 解:先求误差函数β= Dt 2 x = 14400 10 61.12 10 2 12 4 ? ? ? - - ∴β=0.657 查误差函数表可知:erf(β)=erf 0.657=0.647 个原子? ? ???? 19 19 -77 9.4310 C==110π410710

纳米科技概论期末试卷

选择题6题18分,填空题6题24分,名词解释或问答3题18分,简答题2题20分,论述题1题20分 一、选择题 1、纳米(nm)是一个长度单位,它等于10-9米 2、光学显微镜分辨率约为200纳米(nm) 3、属于准一维纳米材料的是碳纳米管 4、扫描隧道显微镜和原子力显微镜的英文缩写为STM和AFM 5、DNA螺旋结构的横向尺寸约为1-3nm 6、纳米粒子粒径从100nm减小至1nm,其表面原子占粒子中原子总数比例将增大 7、平均粒径为40nm的铜粒子的熔点与同一种固体材料的熔点相比降低了300℃左右 8、DNA的直径约2nm左右,SARS病毒约60--120nm,艾滋(AIDS)病毒约100nm 9、属于液相制备方法的是溶胶-凝胶法(Sol-gel) 10、一个C60分子的结构是由12个五边形和20个六边形组成的球体 二、填空题 1、最早明确提出纳米尺度上科学和技术问题的是理查德·费曼 2、纳米科学技术(NST)的英文全称为:Nano-science and technology 3、当纳米粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象以及纳米半导体粒子能隙的调制现象,均被称为量子尺寸效应 4、为制造具有特定功能的纳米产品,其技术路线可分为“自上而下”和“自下而上”两种方案。其中“自下而上”是指以原子、分子为基本单位,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的器件或产品的方式 5、纳米结构自组装体系英文全称为Nanostructured Self-assembling system 6、从学科角度层面上划分,纳米科学技术主要包括纳米(体系)物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工与测量学、纳米力学等7个既相对独立又相互渗透的学科 7、碳材料有非晶碳(无定形碳)和晶态碳材料之分。其中晶态碳材料包括石墨、金刚石、富勒烯、碳纳米管;其中C-60的发现开创了碳科学的新领域,同时,三位科学家也因此分享了1996年诺贝尔化学奖 8、宏观尺度的下限是肉眼所能分辨的最小尺寸,而微观尺度的上限约为原子分子的大小,即0.1nm左右

纳米材料导论复习题

《纳米材料导论》复习题2013.12 第一章 1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性:1)在常态下对动植物体友好的金,在纳米态下则有剧毒;2)小于100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存;3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 纳米技术对环境的危害性:美国研究人员证明,足球烯分子会限制土壤细菌的生长,而巴基球则对鱼类有毒,这说明纳米技术对生态平衡和生态安全都有一定的破坏性。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1纳米~100纳米范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-7)到十亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望。 5、纳米材料有哪 4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、名词解释:STM、AFM、SEM、TEM 答:STM扫描隧道显微镜AFM原子力显微镜 SEM扫描电子显微镜XRFX射线荧光分析 TEM透射电子显微镜 7、简述STM和AFM的工作原理及对纳米技术的影响 答:STM工作原理:扫描隧道显微镜是一种利用量子力学的隧道效应的非光学显微镜它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持恒定的电流,依此来观测物体表面的形貌 STM对纳米技术的影响:它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率此外扫描隧道显微镜在

相关文档
相关文档 最新文档