文档库 最新最全的文档下载
当前位置:文档库 › 红外发射与接收(附电路图)

红外发射与接收(附电路图)

红外发射与接收(附电路图)
红外发射与接收(附电路图)

红外发射与接收资料

注意:TI公司给2012年电子设计大赛提供的部分元件如下:

1波长600-1000nm的LED及相应光电接收元件

2光敏元件

3高亮度LED元件

4无线通信模块(如CC11xx,CC24xx,CC25xx系列)

请大家引起足够的重视。。。。

一、编码解码芯片PT2262/PT2272芯片原理简介

PT2262/2272是台湾普城公司生产的一种CMOS工艺制造的低功耗低价位通用编解码电路,PT2262/2272最多可有12位(A0-A11)三态地址端管脚(悬空,接高电平,接低电平),任意组合可提供531441地址码,PT2262最多可有6位(D0-D5)数据端管脚,设定的地址码和数据码从17脚串行输出,可用于无线遥控发射电路。编码芯片PT2262发出的编码信号由:地址码、数据码、同步码组成一个完整的码字,解码芯片PT2272接收到信号后,其地址码经过两次比较核对后,VT脚才输出高电平,与此同时相应的数据脚也输出高电平,如果发送端一直按住按键,编码芯片也会连续发射。当发射机没有按键按下时,PT2262不接通电源,其17脚为低电平,所以315MHz的高频发射电路不工作,当有按键按下时,PT2262得电工作,其第17脚输出经调制的串行数据信号,当17脚为高电平期间315MHz的高频发射电路起振并发射等幅高频信号,当17脚为低平期间315MHz的高频发射电路停止振荡,所以高频发射电路完全收控于PT2262的17脚输出的数字信号,从而对高频电路完成幅度键控(ASK调制)相当于调制度为100%的调幅。

[1]PT2262特点

1、CMOS工艺制造,低功耗

2、外部元器件少

3、RC振荡电阻

4、工作电压范围宽:2.6-15v

5、数据最多可达6位

6、地址码最多可达531441种

[2]应用范围

1、车辆防盗系统

2、家庭防盗系统

3、遥控玩具

4、其他电器遥控

在具体的应用中,外接振荡电阻可根据需要进行适当的调节,

阻值越大振荡频率越慢,编码的宽度越大,发码一帧的时间越长。网站上大部分产品都是用2262/1.2M=2272/200K组合的,

少量产品用2262/4.7M=2272/820K。

地址码和数据码都用宽度不同的脉冲来表示,两个窄脉冲表示“0”;

两个宽脉冲表示“1”;一个窄脉冲和一个宽脉冲表示“F”也就是地址码的“悬空”。

上面是我们从超再生接收模块信号输出脚上截获的一段波形,可以明显看到,

图上半部分是一组一组的字码,每组字码之间有同步码隔开,所以我们如果用单片机软件解码时,程序只要判断出同步码,然后对后面的字码进行脉冲宽度识别即可。

图下部分是放大的一组字码:一个字码由12位AD码(地址码加数据码,

比如8位地址码加4位数据码)组成,每个AD位用两个脉冲来代表:

两个窄脉冲表示“0”;两个宽脉冲表示“1”;

一个窄脉冲和一个宽脉冲表示“F”也就是地址码的“悬空”

2262每次发射时至少发射4组字码,2272只有在连续两次检测到相同的地址码加数据码才会把数据码中的“1”驱动相应的数据输出端为高电平和驱动VT端同步为高电平。

因为无线发射的特点,第一组字码非常容易受零电平干扰,往往会产生误码,

所以程序可以丢弃处理。

PT2272解码芯片有不同的后缀,表示不同的功能,有L4/M4/L6/M6之分,

其中L表示锁存输出,数据只要成功接收就能一直保持对应的电平状态,

直到下次遥控数据发生变化时改变。M表示非锁存输出,

数据脚输出的电平是瞬时的而且和发射端是否发射相对应,可以用于类似点动的控制。后缀的6和4表示有几路并行的控制通道,

当采用4路并行数据时(PT2272-M4),对应的地址编码应该是8位,

如果采用6路的并行数据时(PT2272-M6),对应的地址编码应该是6位。

[3]PT2262/2272芯片的地址编码设定和修改:

在通常使用中,我们一般采用8位地址码和4位数据码,这时编码电路PT2262和解码PT2272的第1~8脚为地址设定脚,有三种状态可供选择:悬空、接正电源、接地三种状态,3的8次方为6561,所以地址编码不重复度为6561组,只有发射端PT2262和接收端PT2272的地址编码完全相同,才能配对使用,遥控模块的生产厂家为了便于生产管理,

出厂时遥控模块的PT2262和PT2272的八位地址编码端全部悬空,

这样用户可以很方便选择各种编码状态,用户如果想改变地址编码,

只要将PT2262和PT2272的1~8脚设置相同即可,

例如将发射机的PT2262的第1脚接地第5脚接正电源,其它引脚悬空,

那么接收机的PT2272只要也第1脚接地第5脚接正电源,

其它引脚悬空就能实现配对接收。当两者地址编码完全一致时,接收机对应的D1~D4端输出约4V互锁高电平控制信号,同时VT端也输出解码有效高电平信号。

用户可将这些信号加一级放大,便可驱动继电器、功率三极管等进行负载遥控开关操纵。

我们网站提供的遥控类产品上一般都预留地址编码区,采用焊锡搭焊的方式来选择:

悬空、接正电源、接地三种状态,出厂是一般都悬空,

便于客户自己修改地址码。这里我们以常用的超再生插针式接收板A-L4的跳线区为例:

网友可以看到,跳线区是由三排焊盘组成,中间的8个焊盘是PT2272解码芯片的第1~8脚,最左边有1字样的是芯片的第一脚,最上面的一排焊盘上标有L字样,表示和电源地连同,如

果用万用表测量会发现和PT2272的第9脚连同;最下面的一排焊盘上标有H字样,表示和正电源连同,

如果用万用表测量会发现和PT2272的第18脚连同.所谓的设置地址码就是用焊锡将上下相邻的焊盘用焊锡桥搭短路起来,例如将第一脚和上面的焊盘L用焊锡短路后就相当于将

PT2272芯片的第一脚设置为接地,同理将第一脚和下面的焊盘H用焊锡短路后就相当于将PT2272芯片的第一脚设置为接正电源,如果什么都不接就是表示悬空。

设置地址码的原则是:同一个系统地址码必须一致;

不同的系统可以依靠不同的地址码加以区分。至于设置什么样的地址码完全随客户喜欢。

PT2262和PT2272除地址编码必须完全一致外,振荡电阻还必须匹配,

否则接收距离会变近甚至无法接收,随着技术的发展市场上出现一批兼容芯片,

在实际使用中只要对振荡电阻稍做改动就能配套使用,根据我们网站的实际使用经验,

下面的参数匹配效果较好:

2262 IR是2262系列用于红外遥控的专用芯片,可以按照下面的图纸进行接线,

可以通过调整发射端Rosc电阻的大小使接收距离最远,发射端电阻的调整范围390~420K。

和PT2262/2272芯片完全兼容的SC系列芯片,这种芯片可以直接替代PT系列芯片,外围无需作任何改动,但是价格要比PT系列便宜很多

远红外线加热技术原理

首先介绍一下热传递的三个方式 热高温低。这是一个原则。方法有三种传热方式(传导,对流和辐射)。传热实际执行的形式,这三种方法的组合比例。 ①传导传热(需要介质) 热逐渐铁棍的一端被加热时,并最终变得炙手可热。它被称为传导传热,热传输是通过这种方式的材料。热导率是由不同的材料。金属是热的良导体。气体一般是低的热传导体。因此有许多小孔的材料,热传导变得较低。 ②对流传热(需要介质) 当从底部加热液体和气体,例如水和空气的对流换热,温暖的一部分上升,因为它的密度,扩大减轻。另一方面,冷上部下降。多次执行这些操作,总的温度上升。在这种方式中,移动液体和气体的传热方法被称为对流。 ③辐射传热(不需要介质) 传热的方法,不需要介质,被称为辐射传热,太阳能经过太空真空,又经过地球大气层,热直接到达地球温暖地面。这种方式的传热方式就是辐射传热,热量被直接吸收材料在电磁波的形式和材料的温度升高。 远红外线的传热形式是辐射传热,由电磁波传递能量,因为没有介质,中间不需要损耗能量。在远红外线照射到被加热的物体时,一部分射线被反射回来,一部分被穿透过去。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吕量吸收远红外线,这时,物体内部分子和原子发生“共振"——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热的目的。

烧烤炉的远红外加热方式有两种:一是燃气远红外加热方式:另一种是电热管远红外加热方式。只是能源不同,而产生的远红外线都是同一种特殊物质。远红外线本身是一种能量传递的电磁波。在红色光谱的外侧,介于红色与不可见光谱之间,所以谓之远红外线。波长在0.47—400微米之间。远红外线的传热形式是辐射传递热能,由电磁波传递能量。在远红外线照射到被加热的物体时,一小部分射线被反射回来,绝大部分渗透到被加热的物体之中。由于远红外线本身是一种能量,当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体内分子或原子吸收远红外线能量,产生强烈的振动并处使物体内部分子和原子发生“共振.物体分子或原子之间的高速磨擦产生热量而使其温度升高。从而达到了加热的目的。 科学实验证明,远红外线加热时不需要传热介质。其具有很强的穿透能力,这样,远红外线加热与常规传导方式相比,具有热传递直接简单,生产热效率高,卫生环保,杀菌消毒,烧烤食物快捷,干净,卫生,质量佳,口感好。大大节省能源,制造简单,易推广等优点。 辐射传递的热量与温度成四次方正比,加热时不需要传热介质,具有一定的穿透能力,这样,远红外线加热与常规传导方式相比,具有生产效率高,干燥质量好,省能量,安全,卫生,设备简单,易推广等优点。 参考:中国远红外网https://www.wendangku.net/doc/e07486868.html, (注:文档可能无法思考全面,请浏览后下载,供参考。)

红外接收发射(电路图和PCB)

学年论文 (课程论文、课程设计) 题目:红外发射接受 作者: 所在学院:信息科学与工程学院专业年级:电子信息工程08-1班指导教师:王建英 职称:讲师 2009年1月7日

实验目的: 1. 学会熟练操作Altium Designer 6软件。 2. 学会用Altium Designer 6软件进行电子线路设计并运用软件分析各种参数。 3.熟练掌握基本红外发射接收的设计、分析及运。 4. 学会红外发射接收电路基础的电路设计并进行研究分析。 实验要求: 1.了解红外发射接收的基本电路结构。 2.概述音频放大器的构造及功能。 3.用Multisim完成对电压和功率放大器的电路设计。 4.对电路的各部分功能作简要解释。 5.要求所设计的电路实现对电压和功率的放大功能。 6.对电路进行调与仿真,得到重要性能参数且要求要有电路的输入与输出波形。 7.对放大器的一些性能指标进行研究分析。(对输入输出波形研究以及对频率效应的研究等等)。 8.得出实验结论。 实验内容: 一、实验原理图

红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VDD、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。

红外遥控器电路(接收电路)

电子技术基础课程设计任务书2014-2015学年第一学期第18周-19周

目录 1、总体方案的设计与选择........................... 错误!未定义书签。 1.1、选题及要求 (1) 1.2、原理与方案 (1) 1.2.1、红外线与红外接收二极管 (1) 1.2.2、红外接收电路 (1) 1.2.3、电源电路 (3) 1.2.4、红外接收总电路 (3) 1.2.5、元器件的选择 (4) 1.2.3方案确定 (4) 2、总电路图,印刷图及相关说明 (5) 2.1、原理图 (5) 2.2、清单图 (5) 2.3、PCB (6) 2.4、PCB三维图 (6) 2.5、PCB板3D显示图 (7) 3、计算机仿真及相关说明 (9) 3.1、仿真电路图 (9) 3.2、仿真过程 (9) 4、电路制作与调试 (11) 4.1、元件确定 (11) 4.2、元件检测 (11) 4.3、仪表仪器 (11) 4.4、电路板制作 (11) 4.5、电路板调试 (13) 4.6、调试常见故障与处理方法 (15) 5、心得体会 (16) 6、参考文献 (17)

引言 随着时代的发展,人民的生活水平不断提高,各种家用电器设备也随之进入千家万户,一些家用电器开关在使用的时候非常麻烦,为了方便大家使用,现在社会上也设计出了各种各样的控制开关,其中包括红外遥控开关,红外遥控是目前家用电器中用的较多的遥控方式。 红外遥控有以下特点: 1、抗干扰能力强。由于其无法穿透墙壁,故不同房间的家用电器可以使用通用的遥控器而不会产生相互的干扰; 2、电路调试简单,操作简单; 3、成本低,符合大众消费观念。 由于其抗干扰能力强,操作简单等诸多有点,红外遥控已经广泛应用于彩色电视机、DVD、空调、组合音响等各种家用电器上。 基于红外遥控发射与接收原理,我们小组设计了一款简易红外遥控电路,通过这个设计,不仅可以明白红外遥控的工作原理,还能在之后自己DIY红外遥控开关。相信通过这个设计也能让其他人对红外遥控开关的工作原理有进一步的了解。

红外无线通信装置(非常详细的原理)

西南科技大学 自动化专业方向设计报告 设计名称:红外光通信装置 姓名:杨 * * 学号: 2 0 1 0 5 7 8 9 班级:自动 1 0 0 4 班 指导教师:武丽 起止日期: 2013年10月15日--11月9日 西南科技大学信息工程学院制

方向设计任务书 学生班级:自动1004 学生姓名:杨* * 学号:20105789 设计名称:红外光通信装置 起止日期:2013年10月15日---11月9日指导教师:武丽 方向设计学生日志

红外光通信装置 摘要:基于2013年电子设计大赛红外光通信装置题目的要求,设计了具有实际运用价值的红 外光无线扩音装置。该装置由音频放大滤波电路,SPWM音频信号比较调制器,红外载波信号发生器,红外接收器,功率放大电路,LC低通滤波等模块构成。由模拟电路搭建的红外光通信信道传送经过处理的连续的音频信号,并由后级电路还原传送出来的音频信号,让喇叭发出原始音频信号。该系统能够完整的将频率范围为300Hz-8KHz的音频信号通过红外光传送4m以 外并接收还原。 关键词:红外光通信;音频传送;SPWM载波 Design of Infrared Communication Device Abstract:The infrared communication device is based on the National Undergraduate Electronic Design Contest of 2013 , but it has more practical application value . This appliance contains an amplifier , SPWM modulator audio signal comparator , an infrared carrier signal generator , IR receiver , Power amplifier circuit , LC low-pass filter . The analog circuit structures of the infrared light transmitted through the communication channel continuous audio signal processed by the post-stage circuit to restore the audio signal sent out , so that the original audio signal horn . The system can be a complete frequency range of 300Hz-8KHz audio signals transmitted by infrared light and receive reduction up to 4m , temperature detection and transmission display . Keyword: Infrared light transmission ; Audio transmission ; SPWM 0 引言 现在市面上使用较为广泛的无线技术有红外光无线以及无线电技术。无线电技术是通过无线电波传播声音或其他信号的技术,无线电波是在自由空间(包括空气和真空)传播的射频频段的电磁波,频率为300MHz-300GHz的电磁波称为微波,也称为“超高频电磁波”。其特点是:只能进行可视范围内的通信;大气对微波信号的吸收与散射影响较大;主要用于几公里范围内,不适合铺设有线传输介质的情况,而且只能用于点到点的通信,速率也不高,一般为几百Kbps。红外是一种无线通讯方式,可以进行无线数据的传输。自1974年发明以来,得到很普遍的应用,如红外线鼠标,红外线打印机,红外线键盘等等。

38khz红外发射与接收解析

38khz红外发射与接收 38khz红外发射与接收 红外线遥控器在家用人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红,橙,黄,绿,青,蓝,紫,如图1所示. 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线.红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的. 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境. 人们见到的红外遥控系统分为发射和接收两部分.发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示. 常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同.一般有透明,黑色和深蓝色等三种.判断红外发光二极管的好坏与判断普通二极管一样的方法.单只红外发光二极管的发射功率约100mW.红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定. 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度.红外接收二极管一般有圆形和方形两种.由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路.然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示.红外线一体化接收头是集红外接收,放大,滤波和比较器输出等的模块,性能稳定,可靠.所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高. 图3是常用两种红外接收头的外形,均有三只引脚,即红外接收头的主要参数如下: 工作电压:4.8~5.3V 工作电流:1.7~2.7mA 接收频率:38kHz 峰值波长:980nm 静态输出:高电平 输出低电平:≤0.4V 输出高电平:接近工作电压 3.红外线遥控发射电路 红外线遥控发射电路框图如图4所示. 框图4是目前所有红外遥控器发射电路的功能组成,其中的编码器即调制信号,按遥控器用途的编码方式可以很简单,也可以很复杂.例如用于电视机,VCD,DVD 和组合音响的遥控发射的编码器,因其控制功能多达50种以上,此时的编码器均采用专用的红外线编码协议进行严格的编程,然而对控制功能少的红外遥控器,其编码器是简单而灵活.前者编码器是由生产厂家的专业人员按红外遥控协议进行编码,而后者适用于一般图4中编码器的编码信号对38kHz的载波信号进行调制,再经红外发射管D向空间发送信号供遥控接收端一体化接收头接收,解调输出,再作处理.

红外遥控原理及解码程序

红外遥控系统原理及单片机 红外线遥控是目前使用最广泛的一种通信和遥控手段。由于红外线遥控装置具有体积小、功耗低、功能强、成本低等特点,因而,继彩电、录像机之后,在录音机、音响设备、空凋机以及玩具等其它小型电器装置上也纷纷采用红外线遥控。工业设备中,在高压、辐射、有毒气体、粉尘等环境下,采用红外线遥控不仅完全可靠而且能有效地隔离电气干扰。 1 红外遥控系统 通用红外遥控系统由发射和接收两大部分组成。应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。 图1 红外线遥控系统框图 2 遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成两大类,这里我们以运用比较广泛,解码比较容易的一类来加以说明,现以日本NEC 的uPD6121G组成发射电路为例说明编码原理(一般家庭用的DVD、VCD、音响都使用这种编码方式)。当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。这种遥控码具有以下特征:采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周

期为1.125ms的组合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表示二进制的“1”,其波形如图2所示。 图2 遥控码的“0”和“1” (注:所有波形为接收端的与发射相反)上述“0”和“1”组成的32位二进制码经38kHz的载频进行二次调制以提高发射效率,达到降低电源功耗的目的。然后再通过红外发射二极管产生红外线向空间发射,如图3示。 图3 遥控信号编码波形图 UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码,能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额128种不同组合的编码。 遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4为发射波形图。

哈工程电子电路综合实验-红外发射接收系统教学教材

电子电路综合设计实验报告 设计实验选题七(接收部分) ---基于单片机的红外遥控收发系统的设计实现 姓名:周迪 学号:2010042105 2013年4月17日~~2013年4月24日

摘要 红外线是现代社会中已经极为常见,在遥测、遥控等领域中,往往使用微机与单片机组成多机通信系统来完成测控任务。其中,常用的方法是使用微机的RS-232C串行接口进行串行数据通信。由于受环境的影响以及RS-232C串行接口电气性能的限制,加上连接线长、接线麻烦等缺点,其通信的空间范围总是受到限制,并使人们感到不便。因此,人们想到了无线传输。常用的无线传输方式有无线短波传输和红外线传输,但这两种方式都有一定的局限性,如短波方式易受外界电磁场的干扰,线外线传输方式不能隔墙传输等等,本文将介绍采用最新的无线长波收发模块638以及三态编解码芯片MC145026/ MC145027来设计无线数据通信装置的方法。该装置具有抗干扰性能好、穿透性强、传输距离远等特点。由于串行接口传输速度慢,信号处理电路复杂,外接模块困难。因此,本装置选用并行接口通信,从而使得电路简单易做、可靠性高。 本设计是以STC89C51单片机为控制核心,本装置主要由数据编解码和发射接收两大模块组成,设计系统组成图如下: 发射部分电路模块:STC889C51单片机作为主控核心,采用三态编解码芯片MC145026作为编码芯片,CD4011逻辑器件作为反相用途,采用单段的数码管显示发射的数字,采用八位按键输入,采用MAX232作为电平转换电路作为单片机与PC机之间的程序下载用途。 接收部分电路模块:STC889C51单片机作为主控核心,与MC145026配对使用的三态编解码芯片MC145027作为解码芯片。74LS02逻辑器件作为反相用途,采用单段的数码管显示发射的数字,八位的发光二极管显示顺序,638作为红外的接收头,采用MAX232作为电平转换电路作为单片机与PC机之间的程序下载用途。 实现方法:本实验采用单片机控制,发射部分的数据经过调制编码后送入电光变换电路经过红外发射管转换为红外光脉冲发射出去,为了增加抗干扰能力将编码的信号调制在较高的频率载波上发射。在接受部分接收头将接收到的光信号装换为电信号,经过解调将发射数据解调出来,输入单片机进行控制。 实现功能:无线数据的发射与接收 特点及水平:实现无线数据传输,在三米近距离的范围内可以收到发射数据 关键词:单片机;可靠性;MC145026;MC145027;无线数据传输。

红外发射与接收电路

红外发射与接收电路实验 报告 (应电0612 学号01) 一、实验目的 制作一个简易红外发射与接收电路。要求自行装配、接线调试,并能检查和发现问题(使用万用板布线),掌握其基本原理与工作情况,并根据原理、现象和测量数据进行分析问题所在,加以解决。 二、实训材料清单及工具仪器: 万用表、示波器、电铬铁、镊子、拔线钳、螺丝刀等常用工具。 元件名称元件标号封装号 1N4001 D7 D3 1N4001 D9 D3 1N4001 D8 D3 1N4007 D3 D3 1N4007 D4 D3 1N4007 D2 D3 1N4007 D1 D3 2K R1 AXIAL-0.3 4.7K R8 AXIAL-0.3 5.1v D6 D3 10K R2 AXIAL-0.3 10K R11 AXIAL-0.3 10K R9 W3296 10uF/25V C2 EC1.5 20K R3 AXIAL-0.3 20K R5 AXIAL-0.3 27K R4 AXIAL-0.3 104 C6 CM150 104 C4 CM150 104 C3 CM150 510 R6 AXIAL-0.3 510 R10 AXIAL-0.3 510R R7 AXIAL-0.3 561 C5 CM150 4700uF/25V C1 EC4-6 9013 Q3 90XX 9013 Q2 90XX 9013 Q1 90XX

LED D5 LED NE555 IC2 DIP-8 NE555 IC1 DIP-8 RED LED LED RELAY3 ZJCA SRD 三、实验要求 使用万用板布线,红外发射的频率为38KHz,载波为250Hz。接收管经过射极放后驱动继电器。要求通电后继电器吸合,阻断红外发射信号继电器断开,信号通后继电器又吸合。通过继电器实现红外信号控制其他器件。 四、实验原理图 红外发射电路 红外接收电路 五、电路PCB板

红外线发射与接收电路图

红外线发射与接收电路图 由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455KHZ的方波信号。经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。再经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。由单片机的异步串行口TX输出的串行数据信号,送到与非门74HC00的输入端。与非门的另一输入端接38KHZ的载波信号。与非门的输出信号用来控制三极管的开通或关断,从而控制红外发射管发送信息。这样就达到了用串行口TX输出的串行数据信号直接调制载波,进行红外数据传输的目的。发射电路的调制采用的是时分制幅度键控调制方式。因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。所以单片机TXD 发送的编码应是反码。 据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于1200b 设计中采用一种高效能的红外接收器——德律风根TFMS5380。德律风根所开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。同一组件内已装上了接收二级管和前置放大器。TFMS5380特点:(1)单一的接收器和前置放大器的组合。(2)超敏感度和传送距离。(3)内置PCM频率过滤器。(4)无外置组件需要。(5)特强光及电场干扰屏蔽。(6) TTL及CMOS兼容,适用于微处理器操作控制。(7)可选频率由30KHZ至56KHZ。(8)低功耗。(9)ISO9000认可。TFMS5380适用于数据传送、电视机、录像机、组合音响及

卫星接收器等。TFMS5380的内部框图及构成的接收电路。如图3所示。 红外二极管就和普通的发光二极管原理一样,就是在半导体PN结区域电子和空穴复合发光。发光的波长和半导体的禁带宽度有关。 光敏红外二极管和普通的光敏二极管也是一样的。在PN结附近由于光照产生的激子被结电场拉开成为电子-空穴对,分别流向不同的电极。一般光敏管反向偏置,有光时反向电阻会变化。 一般红外管用来通信,比如电视机的遥控器。或者测距,比如自动冲水马桶

红外接收电路设计

基于单片机的主从红外通信系统的研究与设计2009-11-17 21:24出处:中华电子网作者:刘永春、王秀碧、陈彬【我要评论】[导读]发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。 1、引言 红外通信是目前比较常用的一种无线数据传输手段,其具有无污染、信息传输稳定、信息安全性高以及安装使用方便等优点,并且可以在很多场合应用,如家电产品,工业控制、娱乐设施等领域。红外通信是利用950nm近红外波段的红外线作为传递信息的载体,通过红外光在空中的传播来传递信息,由红外发射器和接收器实现。发射端将二进制数字信号调制成某一频率的脉冲序列,经电光转换电路,驱动红外发射管以光脉冲的形式发送到空中。接收端将接收到的光脉冲转换成电信号,再经解调和译码后恢复出原二进制数字信号。本文设计了一种基于单片机PIC18F248的主从式红外通信系统,主要设计了红外接口电路以及主机和从机通信软件流程。 2、系统硬件电路设计 在主从式红外通信系统中,主机及从机的红外发射电路相同,红外线的载波频率都为38KHz,在同一时间内,可以是主机发射,从机接收;或者从机发射,主机接收。 2.1 红外发射电路设计 红外发射器电路主要由单片机,驱动管Q1和Q2、红外发射管D1等组成,电路如下: 红外发射器工作原理为:单片机通过I/O端口控制整个发射过程。其中,红外载波信号采用频率为38KHz的方波,由PIC18F248的CCP模块的PWM功能实现,并由CCP1端口传输到三极管T2的基极。待发送到数据由单片机的TX端口以串行方式送出并驱动三极管Q1,当TX为“0”时使Q1管导通,通过Q2管采用脉宽调制(PWM)方式调制成38KHz的载波信号,并由红外发射管D1以光脉冲的形式向外发送。当TX为“1”时使Q1管截止,Q2管也截止,连接Q1和Q2的两个上拉电阻R1和R3把三极管的基极拉成高电平,分别保证两个三极管可靠截止,红外发射管D1不发射红外光。因此通过待发送数据的“0”或“1”就可控制调制后两个脉冲串之间的时间间隔,即调制PWM的占空比。比如若传送数据的波特率为1200bps,则每个数位“0”就对应32个载波脉冲调制信号。红外发射管D1采用TSAL6200红外发射二极管,其实现将电信号转变成一定频率的红外光信号,它发射一种时断时续的高频红外脉冲信号,由于脉冲串时间长度是恒定的,根据脉冲串之间的间隔大小就可以确定传输的数据是“0”还是“1”。 2.2 红外接收电路设计 红外接收电路主要采用Vishay公司的专用红外接收模块HS0038B。接收电路及

红外遥控器的基本原理

红外遥控器的基本原理红外线的特点人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,红光的波长范围为0.62μm~0.7μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光。 常用的红外发光二极管发出的红外线波长为940nm 左右,外形与普通φ5mm 发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。红外遥控器的协议鉴于家用电器的品种多样化和用户的使用特点,生产厂家对红外遥控器进行了严格的规范编码,这些编码各不相同,从而形成不同的编码方式,统一称为红外遥控器编码传输协议。了解这些编码协议的原理,不仅对学习和应用红外遥控器是必备的知识,同时也对学习射频(一般大于300MHz)无线遥控器的工作原理有很大的帮助。 到目前为止,笔者从外刊收集到的红外遥控协议已多达十种,如:RC5、SIRCS、SONy、RECS80、Denon、NEC、Motorola、Japanese、SAMSWNG 和Daewoo 等。我国家用电器的红外遥控器的生产厂家,其编码方式多数是按上述的各种协议进行编码的,而用得较多的有NEC协议。 红外遥控器的结构特征红外遥控发射器由键盘矩阵、遥控专用集成电路、激励器和红外发光二极管组成。遥控专用集成电路(采用A T89S52 单片机)是发射系统的核心部分,其内部由振荡电路、定时电路、扫描信号发生器、键输入编码器、指令译码器、用户码转换器、数码调制电路及缓冲放大器等组成。它能产生键位扫描脉冲信号,并能译出按键的键码,再经遥控指令编码器得到某键位的遥控指令(遥控编码脉冲),由38KHZ 的载波进行脉冲幅度调制,载有遥控指令的调制信号激励红外二极管发出红外遥控信号。 在红外接收器中,光电转换器件(一般是光电二极管或光电三极管,我们这里用的是PIN 光电二极管)将接收到的红外光指令信号转换成相应的电信号。此时的信号非常微弱而且干扰特别大,为了实现对信号准确的检测和转换,除了高性能的红外光电转换器件,还应合理地选择并设计性能良好的电路形式。最常用的光电转换器件是光电二极管,当光电二极管PN 结的光敏面受到光照射后,PN 结的半导体材料吸收光能,并将光能转换为电能。当光电二极管上加有反向电压时,二极管中的反向电流将随入射光照强度的变化而变化,光的辐照强度越大,其反向电流越大。也就是说,光电二级管的反向电流随入射的光脉冲作同频率的变化。 红外遥控器的应用红外遥控器由于受遥控距离、角度等影响,使用效果不是很好,如采用调频或调幅发射接收编码,则可提高遥控距离,并且没有角度影响。红外遥控发射和接收模块可以用在室内红外遥控中,它不影响周边环境、不干扰其它电器设备。由于其无

红外遥控一体化接收头原理及应用电路

红外遥控一体化接收头原理及应用电路2 一.一体化红外线接收头的原理 二. 红外遥控一体化接收头型号:SH-0038应用电路集 三. 红外遥控一体化接收头型号:RPM-638应用电路集 四.一体化红外线接收头的管脚排列及检测 红外遥控一体化接收头原理图及应用 一体化红外接收头型号:SFH506-38、RPM-638 红外接收电路通常由红外接收二极管与放大电路组成,放大电路通常又由一个集成块及若干电阻电容等元件组成,并且需要封装在一个金属屏蔽盒里,因而电路比较复杂,体积却很小,还不及一个7805体积大! SFH506-38与RPM-638是一种特殊的红外接收电路,它将红外接收管与放大电路集成在一体,体积小(大小与一只中功率三极管相当),密封性好,灵敏度高,并且价格低廉,市场售价只有几元钱。它仅有三条管脚,分别是电源正极、电源负极以及信号输出端,其工作电压在5V左右.只要给它接上电源即是一个完整的红外接收放大器,使用十分方便。 它的主要功能包括放大,选频,解调几大部分,要求输入信号需是已经被调制的信号。经过它的接收放大和解调会在输出端直接输出原始的信号。从而使电路达到最简化!灵敏度和抗干扰性都非常好,可以说是一个接收红外信号的理想装置。 一体化红外接收头,如图5所示外形及管脚:型号区别: 5所示:型号:SH0038 图5 红外接收头 红外接收头的种类很多,引脚定义也不相同,一般都有三个引脚,包括供电脚,接地和信号输 出脚。根据发射端调制 一. 红外遥控一体化接收头型号:SH0038 应用电路集 1. 用红外接收头、CD4069 制作的遥控灯原理图 红外遥控的发射和接收电路图 2. 用红外接收头、CD4011制作的遥控灯原理图 红外遥控接收头内部电路 3. 用红外接收头、CD4541制作的单路遥控原理图 4. 一体化红外接收头遥控开关接收电路 5. 用一体化红外接收头制作的遥控开关电路 一体化红外接收头原理: 没有人时,遥控接收头低电平脉冲信号由C1送入Q1,Q1将信号放大,由D1,C2滤波使Q2b极电压升高,Q2导通,Q3断开,继电器不吸合,K2断开,无12V送入报警器,报警器不报警;当有人进如时,将红外线阻断,接收器收不到遥控器发来的信号,Q1b极为高电平,Q1截止,Q2也截止,Q2C极为高电平,此时Q3导通,继电器吸合,K2闭合将12V送入报警或语音电路,发出报警声,同时R5对C4充电,达到Q4的导通电压时,Q4导通,Q3截止,继电器断开,报警结束,同时K1闭合,将C4放电,报警时间可由R5和C4决定。 6. 用一体化红外接收制作的感应式自动洗手器

红外线遥控原理

红外线遥控原理 1、红外遥控系统 通用红外遥控系统由发射和接收两大部分组成,应用编/解码专用集成电路芯片来进行控制操作,如图1所示。发射部分包括键盘矩阵、编码调制、LED红外发送器;接收部分包括光、电转换放大器、解调、解码电路。图1 2、遥控发射器及其编码 遥控发射器专用芯片很多,根据编码格式可以分成脉冲宽度调制和脉冲相位调制两大类。 编码原理:日本NEC的UPD6121G 当发射器按键按下后,即有遥控码发出,所按的键不同遥控编码也不同。 这种遥控码具有以下特征: 1) 采用脉宽调制的串行码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组 合表示二进制的“0”;以脉宽为0.565ms、间隔1.685ms、周期为2.25ms的组合表 示二进制的“1”。图2 2) 上述“0”和“1”组成的42位二进制码经38kHz的载频进行二次调制以提高发射效率, 达到降低电源功耗的目的。然后再通过红外发射二极管(二极管HSR7021-2.3-21)产生红外线向空间发射图3 图3遥控型号编码波形图 3)UPD6121G产生的遥控编码是连续的32位二进制码组,其中前16位为用户识别码, 能区别不同的电器设备,防止不同机种遥控码互相干扰。该芯片的用户识别码固定 为十六进制01H;后16位为8位操作码(功能码)及其反码。UPD6121G最多额 128种不同组合的编码。 4)遥控器在按键按下后,周期性地发出同一种32位二进制码,周期约为108ms。一

组码本身的持续时间随它包含的二进制“0”和“1”的个数不同而不同,大约在45~63ms之间,图4。 图4遥控信号的周期性波形 5)当一个键按下超过36ms,振荡器使芯片激活,将发射一组108ms的编码脉冲,这 108ms发射代码由一个起始码(9ms),一个结束码(4.5ms),低8位地址码(9ms~18ms),高8位地址码(9ms~18ms),8位数据码(9ms~18ms)和这8位数据的反码(9ms~18ms)组成。如果键按下超过108ms仍未松开,接下来发射的代码(连发代码)将仅由起始码(9ms)和结束码(2.5ms)组成。 代码格式(以接收代码为准,接收代码与发射代码反向) ①位定义 ②单发代码格式

红外监控摄像头原理

红外热像仪监控头 一、红外基本原理 1、红外线概述 1800年,英国物理学家威廉.赫胥尔利用棱镜和温度计从热的观点来研究各种色光时,发现了红外线。在光带红光外的这个所谓热量最多的高温区,总是位于光带最边缘处红光的外面。于是赫胥尔宣布有一种人眼看不见的“热线”。这种看不见的“热线”位于红色光外侧,叫做红外线。 自然界中的一切物体,只要它的温度高于绝对温度(-273℃)就存在分子和原子无规则的运动,其表面就不断地辐射红外线。红外线是一种电磁波,它的波长范围为0.78 ~ 1000μm,不为人眼所见,它反映物体表面的红外辐射场,即温度场。物体温度不同,其辐射出的红外线能量不同,温度越高,辐射出的红外线能量越大。 2、SAT红外热像仪 红外热像仪是一种以红外探测器为核心的特殊摄像机,它是探测目标的红外线能量、根据目标的温度分布来成图象的。 SAT系列红外热像仪均采用非制冷焦平面红外探测器中世界最先进的法国Sofradir公司的产品,该红外探测器采用由多晶硅材料制备的单片式电阻型微测辐射热计技术,该项技术由法国国家红外实验室转移至Sofradir公司生产,探测器列阵规模320×240,像元中心距45μm,填充因子大于80%,噪声等效温差(NETD)达到100mK(典型值),器件的性能指标达到了当今世界先进水平,为欧美军方大批采用。 为森林监控专用型红外热像仪,它采用法国Sofradir公司生产的320×240非制冷焦平面红外探测器。 具有76800个探测器单元,同时测量全画面中76800个像数点的温度数据,并把温度分布热图象转化为标准视频信号显示在监视器上,也可远传至后台系统。其红外热图象是以不同的颜色显示画面中不同的温度数值,有十字光标始终自动捕捉画面中温度最高的物体并显示温度数据,当画面中有超过设定温度的便立即启动声光报警。事先,可设定的报警灵敏度,能实现任意设定温度段异常的精确报警。 它具有如下特点:

最新红外线发射与接收电路图

红外线发射与接收电路图 1 2 由455KHZ的晶振CRY,反相器74HC04及电阻、电容构成的振荡器产生455 3 KHZ的方波信号。经脉冲分频器74LS92,六分频成为75.83KHZ的脉冲信号。再4 经过D触发器构成的2分频/整形电路变成38KHZ的方波信号。由单片机的异步5 串行口TX输出的串行数据信号,送到与非门74HC00的输入端。与非门的另一输6 入端接38KHZ的载波信号。与非门的输出信号用来控制三极管的开通或关断,从7 而控制红外发射管发送信息。这样就达到了用串行口TX输出的串行数据信号直8 接调制载波,进行红外数据传输的目的。发射电路的调制采用的是时分制幅度键9 控调制方式。因单片机在复位后,TXD脚为高电平,为满足同步的要求,采用低10 电平同步脉冲,经与非门(U3)后变成高电平同步脉冲。所以单片机TXD发送的11 编码应是反码。 12 13 据说,发送数据"0"的载波脉冲个数不少于14个,这样发送速率不高于120 14 0b 15 16 设计中采用一种高效能的红外接收器——德律风根TFMS5380。德律风根所17 开发的微型接收器TFMS5380是近期市场上最高效能的红外接收器。同一组件内18 已装上了接收二级管和前置放大器。TFMS5380特点:(1)单一的接收器和前置放19 大器的组合。(2)超敏感度和传送距离。(3)内置PCM频率过滤器。(4)无外置组20 件需要。(5)特强光及电场干扰屏蔽。(6)TTL及CMOS兼容,适用于微处理器操21 作控制。(7)可选频率由30KHZ至56KHZ。(8)低功耗。(9)ISO9000认可。TFMS5 22

38kHz 红外发射与接收复习进程

38k H z红外发射与接 收

38kHz 红外发射与接收 红外线遥控器在家用电器和工业控制系统中已得到广泛应用,了解他们的工作原理和性能、进一步自制红外遥控系统,也并非难事。 1.红外线的特点 人的眼睛能看到的可见光,若按波长排列,依次(从长到短)为红、橙、黄、绿、青、蓝、紫,如图1所示。 由图可见,红光的波长范围为0.62μm~0.76μm,比红光波长还长的光叫红外线。红外线遥控器就是利用波长0.76μm~1.5μm之间的近红外线来传送控制信号的。 红外线的特点是不干扰其他电器设备工作,也不会影响周边环境。电路调试简单,若对发射信号进行编码,可实现多路红外遥控功能。 2.红外线发射和接收 人们见到的红外遥控系统分为发射和接收两部分。发射部分的发射元件为红外发光二极管,它发出的是红外线而不是可见光,如图2所示。

常用的红外发光二极管发出的红外线波长为940nm左右,外形与普通φ5mm发光二极管相同,只是颜色不同。一般有透明、黑色和深蓝色等三种。判断红外发光二极管的好坏与判断普通二极管一样的方法。单只红外发光二极管的发射功率约100mW。红外发光二极管的发光效率需用专用仪器测定,而业余条件下,只能凭经验用拉距法进行粗略判定。 接收电路的红外接收管是一种光敏二极管,使用时要给红外接收二极管加反向偏压,它才能正常工作而获得高的灵敏度。红外接收二极管一般有圆形和方形两种。由于红外发光二极管的发射功率较小,红外接收二极管收到的信号较弱,所以接收端就要增加高增益放大电路。然而现在不论是业余制作或正式的产品,大都采用成品的一体化接收头,如图3所示。红外线一体化接收头是集红外接收、放大、滤波和比较器输出等的模块,性能稳定、可靠。所以,有了一体化接收头,人们不再制作接收放大电路,这样红外接收电路不仅简单而且可靠性大大提高。 图3是常用两种红外接收头的外形,均有三只引脚,即电源正VD D、电源负(GND)和数据输出(Out)。接收头的引脚排列因型号不同而不尽相同,图3列出了因接收头的外形不同而引脚的区别。 红外接收头的主要参数如下:

红外触摸屏的原理简述

红外触摸屏的原理简述 红外触摸屏技术是在屏幕四周安装红外发射管和红外接收管,形成红外光矩阵,然后分别在横、竖两个方向上不断的扫描并探测,当触摸物阻挡红外光时进行位置判断的坐标定位技术。一般是在显示器的前而安装一个电路板框架,在电路板上四边安装对应红外发射管和红外接收管,如下图所示,白色的是红外发射管,黑色的是红外接收管,通过电路驱动红外发射管发出红外光,位置相对的接收管接收红外光信号。用户在触摸屏幕时,手指就会挡住经过该位置的横竖方向的外线,光信号的改变引起光电探测电路输出的电信号发生变化,通过对电信号处理可以对触摸点在屏幕的位置进行定位。任何对红外光不透明的触摸物体都可阻断红外线实现触摸定位。本文由红外线供应网提供 红外触摸屏的原理是在屏幕四边放置红外发射管和红外接收管,微处理器控制驱动电路依次接通红外发射管并检查相应的红外接收管,以形成横坚交叉的红外光阵列,得到定位的信息。本论文中以Philips公司的ARM7芯片LPC2132为微处理器,通过对移位锁存器74HC595的控制对红外发射管的逐个扫描,同时微处理器通过12C总线寻址每个相应的红外接收管,得到相应的光强值。微处理器根据接收到的被遮挡前后的光强信号得到触摸的位置信息,并通过串口将该信息传送给主机。控制方式如下图所示: 微处理器电路: 微处理器在红外触摸屏硬件系统中起着核心的作用: 1、完成对红外发射电路的驱动; 2、完成对红外接收电路的驱动; 3、完成对是否被触摸的判断以及触摸位置信息的计算; 4、将触摸位置信息通过中P1传送给主机; 5、调试整个程序的运行。 本论文中采用Philips公司的ARM7芯片LPC2132作为微处理器。该芯片是基于一个支持实时仿真和嵌入式跟踪的32/16位ARM7TDMI微控制器,并带有64kB的嵌入的高速Flash存储器。具有EmbeddedICE-RT和嵌入式跟踪接口,可实时调试;多个串行接口,包括2个16C550工业标准DART,2个高速I2C接口 SP1;多个32位定时器、1个10位8路ADC, 10位DAC,PWM通道和47个GP10以及多达9个边沿或电平触发的外部中断。 这部分电路中主要包括驱动红外发射部分,驱动红外接收部分,出口通信部分,JTAG调试部分。驱动红外发射部分是由芯片上的第4脚,第44脚,第48脚来完成的,它们分别用于控 制红外发射管亮暗状态的信号:DS、 SH -CP、ST - CP。电路原理理如下图所示:

相关文档