文档库 最新最全的文档下载
当前位置:文档库 › 人教版八年级初二数学下学期勾股定理单元测试综合卷检测试题

人教版八年级初二数学下学期勾股定理单元测试综合卷检测试题

人教版八年级初二数学下学期勾股定理单元测试综合卷检测试题
人教版八年级初二数学下学期勾股定理单元测试综合卷检测试题

人教版八年级初二数学下学期勾股定理单元测试综合卷检测试题

一、解答题

1.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题

问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC,其顶点A,B,C都在格点上,同时构造长方形CDEF,使它的顶点都在格点上,且它的边EF经过点A,ED经过点B.同学们借助此图求出了△ABC的面积.

(1)在图(1)中,△ABC的三边长分别是AB=,BC=,AC=.△ABC 的面积是.

(2)已知△PMN中,PM=17,MN=25,NP=13.请你根据启航小组的思路,在图(2)中画出△PMN,并直接写出△RMN的面积.

2.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.

(体验)(1)从特殊入手许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:

的大小的形状

直角三角形

直角三角形

请仔细体会其中的道理,并填空:_____,_____;

(2)猜想一般结论在中,设,,(),

①若为直角三角形,则满足;

②若为锐角三角形,则满足____________;

③若为钝角三角形,则满足_____________.

(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面

(如图1),设,,,请帮助小慧说明为锐角三角形的道理.

(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()

A.一定是锐角三角形

B.可能是锐角三角形或直角三角形,但不可能是钝角三角形

C.可能是锐角三角形或直角三角形或钝角三角形

3.如图,在△ABC中,D是边AB的中点,E是边AC上一动点,连结DE,过点D作DF⊥DE交边

BC于点F(点F与点B、C不重合),延长FD到点G,使DG=DF,连结EF、AG.已知

AB=10,BC=6,AC=8.

(1)求证:△ADG≌△BDF;

(2)请你连结EG,并求证:EF=EG;

(3)设AE=x,CF=y,求y关于x的函数关系式,并写出自变量x的取值范围;

(4)求线段EF长度的最小值.

4.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.

(1)求证:∠ABE=∠CAD;

(2)如图2,以AD为边向左作等边△ADG,连接BG.

ⅰ)试判断四边形AGBE的形状,并说明理由;

ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).

5.(已知:如图1,矩形OACB的顶点A,B的坐标分别是(6,0)、(0,10),点D是y轴上一点且坐标为(0,2),点P从点A出发以每秒1个单位长度的速度沿线段AC﹣CB 方向运动,到达点B时运动停止.

(1)设点P运动时间为t,△BPD的面积为S,求S与t之间的函数关系式;

(2)当点P运动到线段CB上时(如图2),将矩形OACB沿OP折叠,顶点B恰好落在边AC上点B′位置,求此时点P坐标;

(3)在点P运动过程中,是否存在△BPD为等腰三角形的情况?若存在,求出点P坐标;若不存在,请说明理由.

6.已知:四边形ABCD是菱形,AB=4,∠ABC=60°,有一足够大的含60°角的直角三角尺的60°角的顶点与菱形ABCD的顶点A重合,两边分别射线CB、DC相交于点E、F,且

∠EAP=60°.

(1)如图1,当点E是线段CB的中点时,请直接判断△AEF的形状是.

(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.

7.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…

(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;

(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.

8.如图,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是边AB的高线,动点E从点A 出发,以每秒1个单位的速度沿射线AC运动;同时,动点F从点C出发,以相同的速度沿射线CB运动.设E的运动时间为t(s)(t>0).

(1)AE=(用含t的代数式表示),∠BCD的大小是度;

(2)点E在边AC上运动时,求证:△ADE≌△CDF;

(3)点E在边AC上运动时,求∠EDF的度数;

(4)连结BE,当CE=AD时,直接写出t的值和此时BE对应的值.

9.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0. (1)求直线AB 的解析式及C 点坐标;

(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标; (3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.

10.如图,△ABC 中,∠ACB =90°,AB =5cm ,BC =3cm ,若点P 从点A 出发,以每秒2cm 的速度沿折线A ﹣C ﹣B ﹣A 运动,设运动时间为t 秒(t >0). (1)若点P 在AC 上,且满足PA =PB 时,求出此时t 的值; (2)若点P 恰好在∠BAC 的角平分线上,求t 的值;

(3)在运动过程中,直接写出当t 为何值时,△BCP 为等腰三角形.

11.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.

(1)求证: AD=BE.

(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.

(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).

12.如图,在四边形ABCD 中,=AB AD ,=BC DC ,=60A ∠?,点E 为AD 边上一点,连接CE ,BD . CE 与BD 交于点F ,且CE ∥AB .

(1)求证:CED ADB ∠=∠; (2)若=8AB ,=6CE . 求BC 的长 .

13.如图,己知Rt ABC ?,90ACB ∠=?,30BAC ∠=?,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .

(1)直接写出BC =__________,AC =__________; (2)求证:ABD ?是等边三角形;

(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;

(4)P 是直线AC 上的一点,且1

3

CP AC =

,连接PE ,直接写出PE 的长. 14.如图,△ABC 中,90BAC ∠=?,AB=AC ,P 是线段BC 上一点,且045BAP ?<∠

(2)设∠BAP 的大小为α.求∠ADC 的大小(用含α的代数式表示).

(3)延长CD 与AP 交于点E,直接用等式表示线段BD 与DE 之间的数量关系.

15.(1)如图1,在Rt ABC ?中,90ACB ∠=?,60A ∠=?,CD 平分ACB ∠. 求证:CA AD BC +=.

小明为解决上面的问题作了如下思考:

作ADC ?关于直线CD 的对称图形A DC '?,∵CD 平分ACB ∠,∴A '点落在CB 上,且

CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可. 请根据小明的思考,写出该问题完整的证明过程.

(2)参照(1)中小明的思考方法,解答下列问题:

如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.

16.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=?,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在

ABD 内部,90EAP ∠=?,2AE AP ==,当E 、P 、D 三点共线时,7BP =.

下列结论:

①E 、P 、D 共线时,点B 到直线AE 的距离为5; ②E 、P 、D 共线时, 13ADP ABP S S ??+=+;

=5

32

ABD S ?+③;

④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为

5+232-;

⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得

AN BN =,连接 ED ,则AN ED ⊥.

其中正确结论的序号是___.

17.在ABC ?中,90ACB ∠=?,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线

AB 于点H .

(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?

如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.

18.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、

BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.

(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=?,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转

90?);

(3)在(2)的问题中,15ACM ∠=?,1AM =,求BM 的长.

19.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ?中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ?=-

(1)在ABC ?中,若90ACB ∠=?,81AB AC ?=,求AC 的值.

(2)如图2,在ABC ?中,12AB AC ==,120BAC ∠=?,求AB AC ?,BA BC ?的值.

(3)如图3,在ABC ?中,AO 是BC 边上的中线,24ABC S ?=,8AC =,

64AB AC ?=-,求BC 和AB 的长.

20.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD

()1如图1,若2BD =,4DC =,求AD 的长;

()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .

①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这

个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法

想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.

想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.

请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)

②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关

系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.

【参考答案】***试卷处理标记,请不要删除

一、解答题

1.(1)13,17,10,11

2

;(2)图见解析;7. 【分析】

(1)利用勾股定理求出AB ,BC ,AC ,理由分割法求出△ABC 的面积. (2)模仿(1)中方法,画出△PMN ,利用分割法求解即可. 【详解】

解:(1)如图1中,AB =22AE BE +=2232+=13,BC =22BD CD +=2214+=17,AC =22AF CF +=

2213+=10,

S △ABC =S 矩形DEFC ﹣S △AEB ﹣S △AFC ﹣S △BDC =12﹣3﹣32﹣2=112

, 故答案为13,17,10,11

2

. (2)△PMN 如图所示.

S △PMN =4×4﹣2﹣3﹣4=7, 故答案为7. 【点睛】

此题重点考查学生对勾股定理的应用,熟练掌握勾股定理是解题的关键. 2.【体验】 (1)

,5;(2)②

;③

;【探索】

为锐角三

角形;道理见解析;【应用】.

【解析】

【分析】

本题从各个角度证明了勾股定理,运用图形与证明结合,依次证明即可,具体见详解.

【详解】

体验:(1)

如上图,

(2)

根据大角对大边,若为直角三角形,则满足,那么锐角、钝角如下;②;

③.

【探索】

在中,,

在中,,

在中,,

∴,

∴为锐角

同理,和都为锐角.

∴为锐角三角形.

【应用】

根据【探索】中的方法,进行探究可以发现,可能是锐角三角形或直角三角形或钝角三角形,故答案选C

【点睛】

本题考查了勾股定理的证明及应用,以及三角形的边与边的关系,能利用数形结合是解答此题的关键.

3.(1)见解析(2) 见解析(3) 见解析(4)5

【解析】

【分析】

(1)由D 是AB 中点知AD =BD ,结合DG =DF ,∠ADG =∠BDF 即可得证; (2)连接EG .根据垂直平分线的判定定理即可证明.

(3)由△ADG ≌△BDF ,推出∠GAB =∠B ,推出∠EAG =90°,可得EF 2=(8-x )2+y 2,EG 2=x 2+(6-y )2,根据EF =EG ,可得(8-x )2+y 2=x 2+(6-y )2,由此即可解决问题. (4)由EF =2

2EC CF +=2247(8)()33x x -+-=225

(4)259

x -+知x =4时,取得最小值. 【详解】

解:(1)∵D 是边AB 的中点, ∴AD =BD ,

在△ADG 和△BDF 中,

∵AD BD ADG BDF DG DF =??

∠=∠??=?

, ∴△ADG ≌△BDF (SAS ); (2)如图,连接EG .

∵DG =FD ,DF ⊥DE , ∴DE 垂直平分FG . ∴EF =EG .

(3)∵D 是AB 中点, ∴AD =DB , ∵△ADG ≌△BDF , ∴∠GAB =∠B ∵AB =10,BC =6,AC =8. ∴2AB = 2BC + 2AC ∴∠ACB =90°,

∴∠CAB +∠B =90°,∠CAB +∠GAB =90°, ∴∠EAG =90°, ∵AE =x ,AC =8, ∴EC =8-x , ∵∠ACB =90°,

∴EF 2=(8-x )2+y 2, ∵△ADG ≌△BDF , ∴AG =BF , ∵CF =y ,BC =6, ∴AG =BF =6-y , ∵∠EAG =90°, ∴EG 2=x 2+(6-y )2, ∵EF =EG ,

∴(8-x )2+y 2=x 2+(6-y )2, ∴y =

473x -,(74<x <25

4

). (4)∵EC =8-x ,CF =y =43x -7

3

∴EF

=

=

=

∵(x -4)2≥0, ∴

225

(4)259

x -+≥25, ∴当x =4时,EF 取得最小值,最小值为5. 故线段EF 的最小值为5. 【点睛】

本题是三角形综合题,主要考查勾股定理以及逆定理、全等三角形的判定和性质等知识,解题的关键学会添加常用辅助线,构造直角三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.

4.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)

.

【解析】 【分析】

(1)只要证明△BAE ≌△ACD ;

(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可; ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可; 【详解】

(1)证明:如图1中,

∵△ABC是等边三角形,

∴AB=AC,∠BAE=∠C=60°,

∵AE=CD,

∴△BAE≌△ACD,

∴∠ABE=∠CAD.

(2)ⅰ)如图2中,结论:四边形AGBE是平行四边形.

理由:∵△ADG,△ABC都是等边三角形,

∴AG=AD,AB=AC,

∴∠GAD=∠BAC=60°,

∴△GAB≌△DAC,

∴BG=CD,∠ABG=∠C,

∵CD=AE,∠C=∠BAE,

∴BG=AE,∠ABG=∠BAE,

∴BG∥AE,

∴四边形AGBE是平行四边形,

ⅱ)如图2中,作AH⊥BC于H.

∵BH=CH=1 (1) 2

k+

1113 1(1),31) 222

DH k k AH BH k =-+=-==+

∴222

AH DH k k1

AD=+=++

∴四边形BGAE的周长=2

2k k1

k+++,△ABC的周长=3(k+1),

∴四边形AGBE与△ABC的周长比=

2

21

33

k k k

k

+++

+

【点睛】

本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.

5.(1)S=

24(06)

464(616)

t

t t

<

?

?

-+<<

?

(2)

10

,10

3

??

?

??

(3)存在,(6,6)或(6,1027)

-,(6,272)

+

【解析】

【分析】

(1)当P在AC段时,△BPD的底BD与高为固定值,求出此时面积;当P在BC段时,底边BD为固定值,用t表示出高,即可列出S与t的关系式;

(2)当点B的对应点B′恰好落在AC边上时,设P(m,10),则PB=PB′=m,由勾股定理得m2=22+(6-m)2,即可求出此时P坐标;

(3)存在,分别以BD,DP,BP为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P坐标即可.

【详解】

解:(1)∵A,B的坐标分别是(6,0)、(0,10),

∴OA=6,OB=10,

当点P在线段AC上时,OD=2,BD=OB-OD=10-2=8,高为6,

∴S=

1

2

×8×6=24;

当点P在线段BC上时,BD=8,高为6+10-t=16-t,

∴S=

1

2

×8×(16-t)=-4t+64;

∴S与t之间的函数关系式为:

240t6

S

4t64(6t16)

<≤

?

=?

-+<<

?

()

(2)设P(m,10),则PB=PB′=m,如图1,

∵OB′=OB=10,OA=6,

∴AB′22

OB OA

-

',

∴B′C=10-8=2,

∵PC=6-m,

∴m2=22+(6-m)2,

解得m=10 3

则此时点P的坐标是(10

3

,10);

(3)存在,理由为:

若△BDP为等腰三角形,分三种情况考虑:如图2,

①当BD=BP1=OB-OD=10-2=8,

在Rt△BCP1中,BP1=8,BC=6,

根据勾股定理得:CP1=22

8627

-=,

∴AP1=10?27,

即P1(6,10-27),

②当BP2=DP2时,此时P2(6,6);

③当DB=DP3=8时,

在Rt△DEP3中,DE=6,

根据勾股定理得:P3E=22

8627

-=,

∴AP3=AE+EP3=27+2,

即P3(6,27+2),

综上,满足题意的P坐标为(6,6)或(6,10-27),(6,27+2).

【点睛】

本题是四边形综合题,考查了矩形的性质,坐标与图形性质,等腰三角形的性质,勾股定理等知识,注意分类讨论思想和方程思想的运用.

6.(1)△AEF是等边三角形,理由见解析;(2)见解析;(3)点F到BC的距离为3﹣.

【解析】

【分析】

(1)连接AC,证明△ABC是等边三角形,得出AC=AB,再证明△BAE≌△DAF,得出AE =AF,即可得出结论;

(2)连接AC,同(1)得:△ABC是等边三角形,得出∠BAC=∠ACB=60°,AB=AC,再证明△BAE≌△CAF,即可得出结论;

(3)同(1)得:△ABC和△ACD是等边三角形,得出AB=AC,∠BAC=∠ACB=∠ACD=

60°,证明△BAE≌△CAF,得出BE=CF,AE=AF,证出△AEF是等边三角形,得出∠AEF =60°,证出∠AEB=45°,得出∠CEF=∠AEF﹣∠AEB=15°,作FH⊥BC于H,在△CEF 内部作∠EFG=∠CEF=15°,则GE=GF,∠FGH=30°,由直角三角形的性质得出FG=2FH,GH=FH,CF=2CH,FH=CH,设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,得出EH=4+x=2x+3x,解得:x=﹣1,求出FH=x =3﹣即可.

【详解】

(1)解:△AEF是等边三角形,理由如下:

连接AC,如图1所示:

∵四边形ABCD是菱形,

∴AB=BC=AD,∠B=∠D,

∵∠ABC=60°,

∴∠BAD=120°,△ABC是等边三角形,

∴AC=AB,

∵点E是线段CB的中点,

∴AE⊥BC,

∴∠BAE=30°,

∵∠EAF=60°,

∴∠DAF=120°﹣30°﹣60°=30°=∠BAE,

在△BAE和△DAF中,

∴△BAE≌△DAF(ASA),

∴AE=AF,

又∵∠EAF=60°,

∴△AEF是等边三角形;

故答案为:等边三角形;

(2)证明:连接AC,如图2所示:

同(1)得:△ABC是等边三角形,

∴∠BAC=∠ACB=60°,AB=AC,

∵∠EAF=60°,

∴∠BAE=∠CAF,

∵∠BCD=∠BAD=120°,

∴∠ACF=60°=∠B,

在△BAE和△CAF中,

∴△BAE≌△CAF(ASA),

∴BE=CF;

(3)解:同(1)得:△ABC和△ACD是等边三角形,

∴AB=AC,∠BAC=∠ACB=∠ACD=60°,

∴∠ACF=120°,

∵∠ABC=60°,

∴∠ABE=120°=∠ACF,

∵∠EAF=60°,

∴∠BAE=∠CAF,

在△BAE和△CAF中,

∴△BAE≌△CAF(ASA),

∴BE=CF,AE=AF,

∵∠EAF=60°,

∴△AEF是等边三角形,

∴∠AEF=60°,

∵∠EAB=15°,∠ABC=∠AEB+∠EAB=60°,

∴∠AEB=45°,

∴∠CEF=∠AEF﹣∠AEB=15°,

作FH⊥BC于H,在△CEF内部作∠EFG=∠CEF=15°,如图3所示:

则GE=GF,∠FGH=30°,

∴FG =2FH,GH=FH,

∵∠FCH=∠ACF﹣∠ACB=60°,

∴∠CFH=30°,

∴CF =2CH,FH=CH,

设CH=x,则BE=CF=2x,FH=x,GE=GF=2FH=2x,GH=FH=3x,

∵BC=AB=4,

∴CE=BC+BE=4+2x,

∴EH =4+x=2x+3x,

解得:x=﹣1,

∴FH=x=3﹣,

即点F到BC的距离为3﹣.

【点睛】

本题是四边形综合题目,考查了菱形的性质、等边三角形的判定与性质、全等三角形的判

定与性质、含30°角的直角三角形的性质等知识;本题综合性强,熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.

7.(1)不存在,见解析;(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数,见解析. 【分析】

(1)根据题意可知,这n 组正整数符合规律m 2-1,2m ,m 2+1(m≥2,且m 为整数).分三种情况:m 2-1=71;2m=71;m 2+1=71;进行讨论即可求解;

(2)由于(m 2-1) 2+(2m ) 2=m 4+2m 2+1=(m 2+1) 2,根据勾股定理的逆定理即可求解. 【详解】

(1)不存在一组数,既符合上述规律,且其中一个数为71. 理由如下:

根据题意可知,这n 组正整数符合规律21m -,2m ,21m +(2m ≥,且m 为整数). 若2171m -=,则272m =,此时m 不符合题意; 若271m =,则35.5,m =,此时m 不符合题意; 若2171m +=,则270m =,此时m 不符合题意, 所以不存在一组数,既符合上述规律,且其中一个数为71.

(2)以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数. 理由如下:

对于一组数:21m -,2m ,21m +(2m ≥,且m 为整数). 因为2

2

2

4

2

2

2

(1)(2)21(1)m m m m m -+=++=+

所以若一个三角形三边长分别为21m -,2m ,21m +(2m ≥,且m 为整数),则该三角形为直角三角形.

因为当2m ≥,且m 为整数时,2m 表示任意一个大于2的偶数,21m -,21m +均为正整数,

所以以任意一个大于2的偶数为一条直角边的长,一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数. 【点睛】

考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.注意分类思想的应用

8.(1)t ,45;(2)详见解析;(3)90°;(4)t 1+1,BE . 【解析】 【分析】

(1)根据等腰直角三角形的性质即可解决问题; (2)根据SAS 即可证明△ADE ≌△CDF ;

(3)由△ADE ≌△CDF ,即可推出∠ADE =∠CDF ,推出∠EDF =∠ADC =90°; (4)分两种情形分别求解即可解决问题. 【详解】

(1)由题意:AE =t .

∵CA =CB ,∠ACB =90°,CD ⊥AB ,∴∠BCD =∠ACD =45°. 故答案为t ,45.

(2)∵∠ACB =90°,CA =CB ,CD ⊥AB ,∴CD =AD =BD ,∴∠A =∠DCB =45°. ∵AE =CF ,∴△ADE ≌△CDF (SAS ).

(3)∵点E 在边AC 上运动时,△ADE ≌△CDF ,∴∠ADE =∠CDF ,∴∠EDF =∠ADC =90°.

(4)①当点E 在AC 边上时,如图1.在Rt △ACB 中,∵∠ACB =90°,AC =CB ,AB =2,CD ⊥AB ,∴CD =AD =DB =1,AC =BC 2=.

∵CE =CD =1,∴AE =AC ﹣CE 2=-1,∴t 2=-1.

∵BC =22112+=

,∴BE =22EC BC +=12+=3;

②当点E 在AC 的延长线上时,如图2,AE =AC +EC 2=+1,∴t 2=+1.

∵BC =22112+=

,∴BE =22EC BC +=12+=3;

综上所述:满足条件的t 2121,BE 3 【点睛】

本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.

9.(1)y =-2x +12,点C 坐标(4,4);(2)画图形见解析,点D 坐标(-4,0);(3)点P 的坐标(143

-,643) 【分析】

(1)由已知的等式可求得m 、n 的值,于是可得直线AB 的函数解析式,把点C 的坐标代入可求得a 的值,由此即得答案;

(2)画出图象,由CD ⊥AB 知1AB CD k k =-可设出直线CD 的解析式,再把点C 代入可得CD 的解析式,进一步可求D 点坐标;

(3)如图2,取点F (-2,8),易证明CE ⊥CF 且CE =CF ,于是得∠PEC =45°,进一步

相关文档