文档库 最新最全的文档下载
当前位置:文档库 › 磁悬浮技术的来源

磁悬浮技术的来源

磁悬浮技术的来源
磁悬浮技术的来源

磁悬浮技术的来源

在1842年,英国物理学家Earnshaw 就提出了磁悬浮的概念,利用磁力使物体处于无接触悬浮状态,单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态,应当采用可控电磁铁。这一思想成为了之后开展的磁悬浮列车和电磁轴承研究的主导思想。

磁悬浮技术的发展

磁悬浮技术的研究开始于二十世纪二十年代,它的研究源自于德国,但是早期由于现代控制理论,电磁学,电子技术发展的缓慢,导致对其研究的进展相当缓慢,20世纪60年代以来,随着技术的发展,特别是固体技术的发展,国际上开始大规模研究磁悬浮技术,发展最成熟的是磁悬浮列车和磁悬浮轴承。磁悬浮列车根据悬浮原理的不同分为常导型和超导型两大类前者以德国高速常导磁浮列车Transrapid为代表,后者以日本磁悬浮列车为代表磁悬浮轴承大体分为传统的磁悬浮轴承( 需要位置传感器) 和无传感器的磁悬浮轴承。1969年,德国牵引机车公司的马法伊研制出小型磁悬浮列车系统模型在1km轨道上时速达165km。1994年,日本研制的电动磁悬浮列车在74km长的轨道上时速达431km。1999年,日本的超导磁悬浮列车时速达到552km。德国经过20年的努力,技术上已趋成熟,已具有建造运营线路的水平。原计划在汉堡和柏林之间修建的第一条时速为400km的磁悬浮铁路,总长度为248km,预计2003年正式投入营运。但由于资金计划问题,2002年宣布停止了这一计划。我国磁悬浮列车研究工作起步较迟,1989年3月,国防科技大学研制出我国第一台磁悬浮试验样车。1995年,我国第一条磁悬浮列车试验线在西南交通大学成立,并且成功实施了稳定悬浮、导向、驱动控制、载人运行等时速为300km的试验。西南交通大学这条实验线的建成,标志着我国营经掌握了制造磁悬浮列车的技术,上海铺设的磁悬浮铁路,使我国将成为世界上第一个具有磁悬浮运营铁路的国家。

磁悬浮平台

随着现代信息产业高速发展,高精密加工的需求越来越多,例如半导体产业,微电子技术,生物细胞等都需要高精密定位平台,它们的研究需要超精密运动控制性能和超洁净生产环境等,因此,传统的工作平台面临巨大的挑战,传统的工作台部件间的运动副摩擦会导致定位精度低,响应速度缓慢,从而不能顾及工作台运动性能的高精度与运行速度,如果利用气浮支撑定位平台,如荷兰开发的气浮结构定位平台,釆用气压伺服系统与压电驱动器相结合的伺服定位系统,虽然消除了摩擦,但是由于其结构庞大复杂,支撑刚度小,以致平台承载能力和抗冲击能力较低,使得承载能力和抗冲击能力降低,并限制了定位精度的提高,所以这些定位平台都难以满足下一代超精密加工的要求,此外,摩擦非线性也是限制精度的一个重要原因,为了解决这一系列的问题,磁悬浮平台的研究在国内外掀起了高潮,它是一种无接触支撑的技术,在电机绕组产生的励磁磁场与永磁体产生的永磁磁场相互作用下,关键部件既可产生悬浮力又可提供电磁驱动力,其中悬浮力使运动部件相对支承部件始终保持处于无接触悬浮状态,电磁驱动力用以驱动运动部件精确定位的超精密定位系统,这样系统的机械结构变得简单,有精度要求的部件大为减少,因此,磁悬浮定位平台可实现多自由度,大范围的超精密运动且相对运动表面间没有接触,彻底消除了爬行现象,也没有因磨损和接触疲

劳所产生的精度下降和寿命问题,完美的解决了摩擦非线性的问题,具有无需润滑,无声,易控,高效,结构简单等特点,尤其适用于真空工作环境。

磁悬浮平台研发动态

磁悬浮工作台是通过电磁原理将工作台稳定的悬浮于半空中,国内外许多研究者对此进行了深入的研究并且设计了很多不同结构的磁悬浮工作台。

按照磁悬浮定位平台的运动维度可分为: 一维,二维和三维的磁悬浮平台,其中一维磁悬浮平台多是应用在直线电机中,其动子部件采用磁轴承式结构或是导轨式结构实现磁浮支撑,其中导轨式有U型和V型,二维磁悬浮定位平台( 也称为磁悬浮平面电机) 的运用较为广泛,采用z向磁浮支撑加平面电机可实现平面定位运动( x y和Rz) ; 三维磁悬浮平台可实现空间( 6个自由度) 定位运动

根据悬浮力和驱动力是否由同一部件提供,磁悬浮定位平台可分为两类: 一类是悬浮力和驱动力由同一部件提供,故结构简单,但该结构未能完全实现悬浮力和推力间的解耦,悬浮控制和水平推力控制之间相互影响,使各自由度的驱动装置之间产生耦合和诸多不确定性,这就使控制较复杂,例如图1是1995年,美国麻省理工学院设计了世界上第一个由四台直线电机驱动的磁悬浮定位平台,它采用Halbach永磁体阵列方式,与定子线圈既产生水平驱动力,同时也产生悬浮力,最大行程可达50mm×50mm,通过对每台直线电机的控制以及它们之间的协调控制,可以实现六自由度精密运动。还有荷兰埃因霍温大学的学者们设计的TU型六自由度磁浮定位平台,其定子为U形结构,T形动子在U形空间中运动,T形动子上缠有线圈,用以产生水平推力,悬浮力由定子上的3个悬浮线圈产生具体结构如图2所示。另一类是采用两个部件分别来实现悬浮和驱动,既有平面运动部件,又有悬浮运动部件这种结构实现了悬浮力和推力间的解耦,控制较为简单,但由于电磁线圈铁芯与永磁体之间的吸引力,使得系统具有明显的非线性,从而影响定位平台的运动稳定性与定位精度,这种结构有韩国忠州大学KWANG等设计的悬浮定位平台( 如图3) ,还有美国德克萨斯州A&M州立大学机械工程系的学者们研制的六轴三角形结构的磁悬浮定位平台( 如图4) ,xy平面运动范围为100 m,z方向有10 m运动范围,运动精度可达0.01 m。

1997年,美国SvGL,Intel,USAL,荷兰ASML等著名公司合作,采用了纳米级精度的磁悬浮精密平台成功研制出一台波长为13nm的极紫外光刻机,荷兰Delft大学设计了一个由三台直线电机驱动的最大行程为160nm×160nm的磁悬浮定位平台,它运用了基于神经网络观测器的前馈补偿控制,从而来实现精密定位。同时,Delft大学的Auer和Beek设计了一种结构紧凑的悬浮驱动单元,通过实验证明了:铁磁性平台悬浮和移动是可以实现的。

从支撑原理上看,磁悬浮定位平台也可分为排斥式和吸引式,根据电机加载电流的不同,磁

悬浮定位平台可分为直流型和交流型直流型优点是可控性好但效率低,交流型优点是效率高但控制复杂目前国内外基本上是采用Halbach阵列的交流驱动和单向磁场的直流驱动这两种方式,如韩国延世大学的平面电机

以及巴西南大河州联邦大学的平面电机

从相关文献可知,国外在磁悬浮定位平台方面的研究具有一定的基础,取得了一些成果,但实用技术仍然不成熟。

国内,对于磁悬浮定位平台的研究才刚刚起步,中南大学、西安交通大学、中科院长春光学精密机械与物理研究所等单位进行了有关直线行程磁悬浮定位平台的研究。中南大学的段吉安教授等设计了一种新型磁悬浮直线运动平台。西安交通大学的数字控制及装备技术研究所设计了一种推斥型磁悬浮定位平台结构。该平台的悬浮与驱动部分互相独立,控制上采用基于混合灵敏度鲁棒控制理论的鲁棒控制器。中国科学院长春光学精密机械与物理研究所的宋文荣等设计了直线电机驱动的磁悬浮精密定位平台,釆用PID控制。国防科技大学的龙志强和郝阿明等对所设计的磁悬浮定位平台分析了磁悬浮隔振的机理和特性,建立了动态模型,研究了磁悬浮隔振控制算法,进行了隔振效果的计算机仿真。另外,长春理工大学、沈阳工业大学、北华大学等单位也进行了磁悬浮定位平台悬浮位置与水平位移控制算法的研究。但总体來看,对扰动抑制、平稳、快速、精确定位等方面的综合考虑仍显不足,基本处在实验室阶段,距离实际应用还有相当长的距离。

磁浮列车技术的最新发展和方向

磁悬浮列车技术的最新发展和研究方向 【摘要】磁浮列车近年来发展迅速[1],尤其是低速磁浮系统。美国General Atomics(GA)低速磁浮系统进展顺利,日本HSST也已经投入试运行,中国国防科大HSST系统样车已经做成,美国MagneMotion、Maglev2000以及SemiMaglev Urbanaut也是市内低速磁浮系统,正处于设计和试验阶段,Magplane最新设计也有低速系统的设计。开发低速磁浮系统,这是近年来磁浮列车发展的方向[2]~[10]。 【关键词】磁浮列车低速系统电动式永久磁体【Abstract】Maglev has been developed rapidly, especially low-speed systems. U.S General Atomics low-speed urban maglev is getting well on, Japan HSST has been put into operation, also China HSST has done its vehicle. U.S MagneMotion、Maglev2000 and SemiMaglev Urbanaut are also urban low-speed systems.Low-spped is a trend of maglev recently. 【Keywords】Maglev, low-speed maglev, EDS, permanent magnet 1、引言 德国的Transrapid磁浮列车技术已经工程化,日本高速磁浮JR-Maglev技术也走向成熟。磁浮列车的具有不同种类,经过各国科技工程人员主要是美日德中四国的努力,已经把磁浮技术发展到实用化的阶段。特别是中国建成世界上第一条磁浮试验运营线,并且积极推进建设沪杭高速磁浮线路。近年来,美国磁浮列车技术发展很快,主要是General Atomics低速磁浮系统、MagneMotion、Maglev2000和SemiMaglev Urbanaut,均是市内低速磁浮系统。新的磁浮系统的发展有以下几个热点:电动式磁浮系统(气隙大对轨道要求不是很高);永久磁体(磁体性价比高);市内低速磁浮系统(有广阔的市场);高温超导体(超强磁场)。中科院电工所正在研制永久磁体电动式导体板磁浮列车系统。 2、磁悬浮列车的分类 磁浮列车目前有几种不同的分类方法。根据悬浮原理的不同,磁悬浮列车大体上可分为电动悬浮型(EDS)、电磁悬浮型(EMS);根据磁体的不同,又可以分为常导型、超导型、永磁型和混合磁体型;根据速度的不同又可以分为中低速磁浮(小于200km/h)和高速磁浮(500km/h);根据推进方式的不同分为直线同步电机型和直线感应电机型。世界各国主要磁浮系统的比较见下表。 电动型悬浮的机理是:运动磁体和它在导体中感应电流产生的磁场相互作用产生悬浮力,典型代表是日本的JR-Maglev和美国的Magplane磁浮列车。电动型悬浮的特点是:静止或低速运行时不能起浮;当列车运行达到一定速度由于电磁感应的作用开始悬浮;列车运行速度越快,感应的磁场越强,悬浮力越大,所以列车对轨道的要求不是很高。日本的JR-Maglev已经工程化(达到500km/h的速度),Magplane于上世纪70年代用试验线成功地验证了原理可行性,并且设计

磁悬浮技术原理

磁悬浮技术原理 磁悬浮技术原理 空间电磁悬浮技术简介随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 目录 起源 概述 空间电磁悬浮技术 发展历史 国际 中国 中国磁悬浮技术 原理 应用 前景 磁悬浮列车 磁悬浮列车的优点 磁悬浮列车的缺点 起源 概述 空间电磁悬浮技术 发展历史 国际 中国 中国磁悬浮技术 原理 应用 前景 磁悬浮列车 磁悬浮列车的优点 磁悬浮列车的缺点

展开 编辑本段起源 磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 编辑本段概述 利用磁力使物体处于无接触悬浮状态的设想是人类一个古老的梦。但实现起来并不容易。因为磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化技术(高新技术)。随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。 磁悬浮列车原理示意图 . 目前(2009年)国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。编辑本段空间电磁悬浮技术 随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。 电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 磁悬浮列车工作示意图 将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相

挤压机种类及原理【详解】

挤压机种类及原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 挤压机是轻合金(铝合金、铜合金和镁合金)管、棒、型材生产的主要设备。它的产生和发展不过是一个多世纪的时间,却发生了巨大的变化。从几兆牛手动的水压机,发展成为两百兆牛全自动的油压机。挤压机的种类也大大增加。挤压机的能力、数量反映了一个企业的生产技术水平。一个国家拥有挤压机的能力、数量、生产能力和装备水平,反映了一个国家的工业发展水平。 挤压机主要由三大部分组成:机械部分、液压部分和电气部分。 机械部分由底座、预应力框架式张力柱、前横梁、活动横梁、X型导向的挤压筒座、挤压轴、供锭机构、残料分离剪、滑动模座等组成。 金属挤压机是实现金属挤压加工的最主要设备。金属挤压加工是利用金属塑性压力成形的一种重要方法。其重要的特点是将金属锭坯一次加工成管、棒、型材完成在瞬息之间,几乎没有任何其他方法可以与之匹敌。漂亮、高雅大厦的装修材料;飞越大洲、大洋的飞机;让人类探索外层空间的宇宙飞船及空间站;铁路、地铁、轻轨、磁悬浮列车车辆、舰船快艇等各个领域所使用的骨干材料,几乎都与挤压加工密切相关。 挤压机 液压系统主要由主缸、侧缸、锁紧缸、穿孔缸、大容量轴向柱塞变量泵、电液比伺服阀(或电液比例调节阀)、位置传感器、油管、油箱及各种液压开关组成。 [2]

电气部分主要供电柜、操作台、PLC可编程序控制器、上位工业控制机和显示屏幕等组成。 现代挤压机的一个特点是向节能化方向发展。铝材产品要降低成本,其中一个重要措施就是节能,挤压机的功率都相当大,节能自然成为企业家的首选。明晟机械自主研发通过采用伺服系统节能控制和优化液压回路的设计,降低了铝材在挤压过程中的耗电量。其原理及优点如下: (1)现有的挤压机动力控制方式是使用6极或4极的定速交流异步电动机驱动变量柱塞泵和叶片泵。变量柱塞泵根据挤压速度的需要改变油泵的变量机构实现调速功能;叶片泵提供辅助动作需要液压驱动。其有如下缺点: ①主机在待机情况下会产生无用功。 ②叶片泵在每次挤压循环提供辅助动作时的实际工作时间只有十来秒,其余时间都是通过溢流伐回油,会消耗一定的电能。 ③油泵长时间在工作或空转状态使用寿命会缩短。 ④主机在待机、电机和油泵在空转时液压油会产生热量。 (2)挤压机采用了伺服控制系统后,电机和油泵会根据挤压机的工作状态和挤压速度要求,受PLC控制实时调整电机的运行状况和所需的电机转速,真实反映了主机所需的功率。从而减少了能量消耗,提高了油泵的使用寿命,降低了液压油的温度,改善了电力系统的功率因数,提高挤压速度的控制精度。采用挤压机伺服系统,能真实地反映挤压机的用功功率和耗电情况,做到智能化控制。与旧液压控制系统相比较,生产每吨铝材节电15%~20%。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

浅谈磁悬浮技术及控制方法

浅谈磁悬浮技术及控制方法 11 浅谈磁悬浮技术 浅谈磁悬浮技术 及控制方法 及控制方法 演讲者孙振刚 时间com 电气工程教研室 电气工程教研室 2012-09-17 1 1 22

目录 目录 磁悬浮技术概述 磁悬浮技术概述 磁悬浮基本概念 磁悬浮基本概念 材料磁特性 材料磁特性 磁悬浮类别 磁悬浮类别 实例分析磁悬浮列车 实例分析磁悬浮列车

电磁悬浮系统的控制方法 电磁悬浮系统的控制方法 单点悬浮系统 单点悬浮系统 多点悬浮系统 多点悬浮系统 2012-09-17 2 2 33 一磁悬浮技术概述 一磁悬浮技术概述 1 基本概念 利用磁场力使物体沿着一个轴或几个轴保持一定

位置的技术措施 磁悬浮技术是集电磁学电子技术控制工程 信号处理机械学动力学为一体的典型的机电 一体化高新技术 2012-09-17 3 3 44 2 材料磁特性 顺磁性 抗磁性 磁畴未磁化磁畴 磁化 2012-09-17 4 4

55 抗磁性 抗磁性是一些物质的原子中电子磁矩互相抵消 合磁矩为零但是当受到外加磁场作用时电子 轨道运动会发生变化而且在与外加磁场的相反 方向产生很小的合磁矩这样表示物质磁性的磁 化率便成为很小的负数量抗磁性是物质抗拒 外磁场的趋向因此会被磁场排斥所有物质 都具有抗磁性可是对于具有顺磁性的物质 顺磁性通常比较显著遮掩了抗磁性只有纯抗 磁性物质才能明显地被观测到抗磁性当外磁场 存在时抗磁性才会表现出来 2012-09-17 5

5 66 抗磁性 具有抗磁性的反磁性物质是Faraday在Earnshaw 提出理论之后几年发现的 1872年时Lord Kelvin指出反磁性物质不需要遵守Earnshaw的 理论因此反磁性物质可以在静磁场里浮起来 然而由基本的解释得知所有的物质都有反磁 性只是其磁性很小因此一直到1939年 Braunbek才成功的利用了足够强的磁场将小块 的石墨及铋磁浮了起来 2012-09-17 6 6

高速磁浮交通技术进展与应用前景

内容摘要: 摘要:高速磁浮交通技术是利用电磁理论,采用直线电机牵引和列车自动控制等高科技技术,具有高速、安全、环保等特点,在中长距离城际客运交通领域具有比较优势,有一定的前景。本文简要地阐述磁浮的理论基础、技术进展和应用前景,并针对沪杭磁浮项目提出了建设性意见:要开拓创新,进一步消化吸收上海示范线的磁浮关键技术;通过技术谈判和交流合作,力争掌握核心技术,同时坚定不移走机电设备国产化道路,降低工程造价,提高市场竞争力。在目前沪杭磁浮工程可行性阶段,一定要进行多方案比选(高速轮轨与高速磁浮系统),并开展相应的专题研究,广泛征求意见和建议,采取多元化投资策略,充分利用中央、省市地方资源,创新体制机制,举全社会力量,大力推进磁浮项目的进程。 前言 1 理论基础 在长期的生产实践中,人们发现了天然的磁性物质(如磁铁矿或磁铁等),由于特有的排斥或吸引特性,中国古代发明了“指南针”,并应用于航海。在漫长的岁月里,人们对电磁一直处于感性认识,直到1820年丹麦物理学家奥斯特发现了电流能够产生磁场,奠定了电磁科学基础。随后,法拉第发明了电磁感应定律,定量描述了感应电动势与磁通量(磁场强度)的变化关系。19世纪60年代,英国物理学家麦克斯韦(1831-1879)建立了完整的电磁理论并提出了电磁波的猜想。20年以后,赫兹通过实验验证了电磁波的存在,为现代通讯和控制技术的应用奠定了基础。 从基础理论科学走向实践应用,同样经历了艰辛的探索,而且与当时的社会经济条件和科学进步水平密切相关。1922年,德国科学家赫尔曼.肯佩尔(hermann kemper)发明了电磁浮铁路原理,并于1934年8月获得了世界上第一项磁浮技术专利。 磁浮技术从悬浮方式上可以分为电磁磁浮(ems)和电动磁浮(eds)两大类[1]。 电磁磁浮技术是一种常导下的吸引式磁浮系统,即对车载的、置于导轨下方的悬浮电磁铁通电励磁而产生电场,磁铁与轨道上的铁磁构件相互吸引,将列车向上吸起悬浮于轨道上,磁铁与铁磁轨道之间的悬浮间隙一般为8-12mm。列车通过控制悬浮磁铁的励磁电流来保证稳定的悬浮间隙,通过直线电机来牵引列车走行。电磁式磁浮列车以德国transrapid(简称tr)型和日本的hsst型为代表,结构原理见图1。 电动磁浮技术是一种超导下排斥式电动磁浮系统,即当列车运动时,车载磁体(一般为低温超导线圈或永久磁铁)的运动磁场,在安装与线路上的悬浮线圈中产生感应电流,两者相互作用,产生一个向上的磁力将列车悬浮于路面一定高度(一般为100-150mm)。通过直线电机来牵引列车走行。与电磁式相比,电动式悬浮系统在静止条件下不能悬浮,必须达到一定速度(约150km/h)后才能悬浮。由于间隙大,一般无须主动控制。电动式磁浮列车以日本mlx 型超导列车为代表。 2 磁浮技术进展 1969年,在工业界和德国联邦铁路公司的大力推动下,开始了大运量高速铁路研究(hsbstudien),随后生产了第一代磁浮列车transrapid-01,简称tr-01,车重5.86吨,4个座位,在试验线(660m)上进行了试验,最大车速90km/h。根据试验,对列车进行了不断改进,研制了tr-02(1971)、tr-03(1972)、tr-04(1973)、hmb2(1976)、tr-05(1979)、tr-06(1984)、tr-07(1989)、tr-08(1999)。1999年研制的tr-08型列车,净重92吨,长51米,最大速度500km/h,并在埃姆斯兰(emsland,tve)双环形试验线(31.5km)运行。

磁悬浮列车原理

第九篇磁悬浮列车原理 §9.1磁悬浮列车综述 你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了! 其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。 但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。 尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。

无线充电技术(四种主要方式)原理与应用实例图文详解

无线充电已经在电动牙刷、电动剃须刀、无绳电话等部分家电产品中实用化,现在其应用范围又扩大到了智能手机领域及电动汽车和列车领域。未来可以将无线充电装置安装在办公桌内部,只要将笔记本或PDA 等电器放在桌上就能够立即供 电。 以下是四种主要无线充电方式: 无线充电方式 充电 效率 使用频率范围 传输距离 电场耦合方式 电磁感应方式 92% 22KHz 数mm-数cm 磁共振方式 95% 13.56MHz 数cm-数m 无线电波方式 38% 2.45GHz 数m- 1.电磁感应方式

无线供电驱动一枚60W电灯泡,效率高达75%。 电磁感应无线充电产品示意图

电磁感应方式,送电线圈与受电线圈的中心必须完全吻合。稍有错位的话,传输效率就会急剧下降。下图靠移动送电线圈对准位置来提高效率。 目前,市场上支持无线充电的智能手机和充电器大部分都符合总部位于美国的业界团体“无线充电联盟(WPC)”所制定的“Qi”规格。Qi源自汉语“气功”中的“气”, 无线充电方式包括“磁共振”及“电波接收”等多种方式,Qi采用的是“电磁感应方式”。通过实现标准化,只要是带有Qi标志的产品,无论是哪家厂商的哪款机型均可充电。

在伦 敦利用其最新研发的感应式电能传输技术成功实现为电动汽车无线充电。在展示过程中,该公司将电能接收垫安装于雪铁龙电动汽车车身下侧,这样电池就可以通过无线充电系统进行无线充电。

电动牙刷无线充电示意图 一种无线充电器发送和接收原理图

2. 磁共振方式 磁共振方式的原理与声音的共振原理相同。排列好振动频率相同的音叉,一个发声的话,其他的也会共振发声。同样,排列在磁场中的相同振动频率的线圈,也可从一个向另一个供电。 相比电磁感应方式,利用共振可延长传输距离。磁共振方式不同于电磁感应方式,无需使线圈间的位置完全吻合。 应用: 三菱汽车展示供电距离为20cm,供电效率达90%以上。线圈之间最大允许错位为20cm。如果后轮靠在车挡上停车,基本能停在容许范围内。 索尼公司发布的一款样机:无电源线的电视机利用磁场共振实现无线供电的电视机。 还有将供电线圈埋入道路中,在红灯停车时和行驶中为电动汽车充电的构想,以及利用植入轨道中的线圈为行驶中的磁悬浮列车供电的设想。 磁共振方式由能量发送装置,和能量接收装置组成,当两个装置调整到相同频率,或者说在一个特定的频率上共振,它们就可以交换彼此的能量。

磁悬浮技术的发展与应用

磁悬浮技术的发展与应用 1 磁悬浮原理及其特点 磁悬浮技术是利用电磁力将物体无机械接触地悬浮起来,该装置由传感器、控制器、电磁铁和功率放大器等部分组成。根据在磁悬浮系统中实现稳定悬浮的电磁力的状态(是静态的还是动态的),可将磁悬浮系统划分为无源(被动)和有源(可控)两种悬浮系统。 它一般是由悬浮体、传感器、控制器和执行器 4 部分组成。其中,执行器包括电磁铁和功率放大器两部分。现假设在某参考位置上,由于悬浮体受到一个向下的扰动,它将会偏离其参考位置。这时,传感器检测出悬浮体偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号;功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生电磁力,从而驱动悬浮体返回到原来的平衡位置。 因此,不论悬浮体受到的扰动是向下还是向上,它始终能处于稳定的平衡状态磁力弹簧是磁悬浮系统重要的执行器元件。 目前世界上有三种类型的磁悬浮 一是以德国为代表的常导电式磁悬浮,二是以日本为代表的超导电动磁悬浮,这两种磁悬浮都需要用电力来产生磁悬浮动力。而第三种,就是我国的永磁悬浮,它利用特殊的永磁材料,不需要任何其他动力支持。 2 磁悬浮技术应用状况及发展 2.1 磁悬浮轴承 磁悬浮轴承与磁悬浮列车是目前国内外研究较多的两类磁悬浮技术产品;而在国外,目前磁悬浮轴承已经开始进入工业应用阶段。我国从20 世纪80 年代开始研究磁悬浮轴承技术,现已取得了一定的研究成果。传统的磁悬浮轴承需要5 个或10 个非接触式位置传感器来检测转子的位移。由于传感器的存在,使磁悬浮轴承系统的轴向尺寸变大、系统的动态性能降低,而且成本高、可靠性低。由于受结构的限制,传感器不能装在磁悬浮轴承的中间,使系统的控制方程相互耦合,导致控制器设计更为复杂。此外,由于传感器的价格较高,导致磁悬浮轴承的售价很高,这大大限制了它在工业上的推广应用。因此,如何降低磁悬浮轴承的价格,一直是国际上的热点研究课题。近几年,结合磁悬浮轴承和无传感器检测两大研究领域的最新研究成果,诞生了一个全新的研究方向,即无传感器的磁悬浮轴承。它不需要设专门的位移传感器,转子的位移是根据电磁线圈上的电流和电压信号而得到的。这类磁悬浮轴承将使转子的轴向尺寸变小、系统的动态性能和磁悬浮轴承的可靠性得到提高;这样磁悬浮轴承的控制器将便于设计,价格也会显著下降。 2.2 磁悬浮列车 对于磁悬浮列车的研究由来已久,其依靠电磁吸力或电磁斥力将列车悬浮于空中并进行导向,实现列车与地面轨道间的无机械接触。按悬浮方式,磁悬浮列车可被分为常导磁吸型和超导排斥型两类。以德国高速常导磁悬浮列车TransRapid 为代表的常导磁吸型利用普通直流电磁铁电磁吸力的原理,由车上常导电流产生电磁引力,吸引轨道下的导磁体,使列车浮起。以日本MagLev 为代表的超导排斥型磁悬浮列车,利用超导磁体产生的强磁场在列车

磁悬浮的前景展望

1真空磁悬浮列车 目前,西南交通大学牵引动力国家重点实验室课题组正在积极研发试验真空管道高速交通。在未来两三年内,实验室将推出时速600~1000千米的真空磁悬浮列车实验模型,10年之后可能投入运行。根据现在的理论研究,这种列车最高时速可达到2万千米。 2声悬浮 声悬浮是通过声音压力波使物质悬浮在稀薄的空气中。和电磁悬浮技术相比,它不受材料导电与否的限制,且悬浮和加热分别控制,因而可用以研究非金属材料和低熔点合金的无容器凝固。声悬浮现象最早是1886年被发现的,随着航天技术的进步和空间资源的开发利用,声悬浮逐渐发展成为一项很有潜力的无容器处理技术.声悬浮是高声强条件下的一种非线性效应,其基本原理是利用声驻波与物体的相互作用产生竖直方向的悬浮力以克服物体的重量,同时产生水平方向的定位力将物体固定于声压波节处。 3.发展前景问题 由于磁悬浮系统以电磁力完成悬浮、向导和驱动功能的,断电后磁悬浮的安全保障措施,尤其是列车停电后的制动问题仍然是要解决的问题。其高速稳定性和可靠性还需要很长时间的运行考验。常导磁悬浮技术的悬浮高度降低,因此对线路的平整度、路基下沉量级道岔结构方面的要求较超导技术更高。超导磁悬浮技术由于涡流效应悬浮能耗较常导轨技术更大,冷却系统重,强磁场对人体与环境都有影响。每一种新的交通工具的间世, 都极大地推动着社会的进步。回顾交通工具发展史, 我们发现汽车极大地方便了人们的生活,但长途运输能力差, 且日益增多的汽车数量使交通拥挤堵塞现象越来越严重,常规轮轨列车的运输量大, 但运行速度慢, 运行噪声大, 爬坡能力低, 高速轮轨列车要求轨道有很高的平整度, 在高速运行时, 能量消耗大, 铁轨和车轮的磨损很严重, 从而导致维修费用昂贵。飞机运行速度快, 但运精量小, 且事故往往是致命性的,磁悬浮列车是一种新的交通工具, 相对而言, 它有多方面的优点, 如高速, 运输量大, 安全,舒适, 无噪声等。综合各种因素,就目前而言,磁悬浮的发展是最有潜力,最有发展必要的。 纵览磁悬浮列车在世界上的发展状况, 一可以看到由于磁浮运输系统具有无轮轨接触、速度高、噪音小、能耗少、维持费用低、安全舒适等一系列优点, 使磁悬浮列车特别适于城市间或城市内的中短途交通运输, 并将成为介于传统火车、汽车与飞机之间的一种有力运输工具、日、英、美、加、苏等) 都已经或正在考虑将磁悬浮列车投入实际运营 世界上已开发的主要磁悬浮列车的发展现状及其速度适应范围归纳于表 磁悬浮技术在中国的前景 一:与发达国家相比, 我国磁悬浮系统的研发和建设环境具有以下特点: (1)技术上. 我国磁悬浮技术的研发起步较晚, 尤其是工程层面的工作.不过, 我国通过中德技术合 作于2003年建成了世界上第一条商用高速磁悬浮线路, 即上海浦东机场线, 极大地推动了 我国磁悬浮技术的研发.在引进、消化、吸收的基础上, 我国已经逐步具备了再创新的能力. 例如, 20 世纪90 年代以来, 原国家科委正式将“中低速磁悬浮列车关键技术研究”列入“八五”国家科技攻关计划, 由铁道科学研究院牵头, 国防科技大学、中科院电工所、西南交通

磁悬浮技术

磁悬浮技术 磁悬浮技术(英文:electromagnetic levitation,electromagnetic suspension)简称EML技术或EMS技术)是指利用磁力克服重力使物体悬浮的一种技术。 目前的悬浮技术主要包括磁悬浮、光悬浮、声悬浮、气流悬浮、电悬浮、粒子束悬浮等,其中磁悬浮技术比较成熟。 磁悬浮技术实现形式比较多,主要可以分为系统自稳的被动悬浮和系统不能自稳的主动悬浮等。 磁悬浮列车是由无接触的磁力支承、磁力导向和线性驱动系统组成的新型交通工具,主要有超导电动型磁悬浮列车、常导电磁吸力型高速磁悬浮列车以及常导电磁吸力型中低速磁悬浮。 原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2012年,世界上有3种类型磁悬浮技术,即日本的超导电动磁悬浮、德国的常导电磁悬浮和中国的永磁悬浮。永磁悬浮技术是中国大连拥

有核心及相关技术发明专利的原始创新技术。据技术人员介绍,日本和德国的磁悬浮列车在不通电的情况下,车体与槽轨是接触在一起的,而利用永磁悬浮技术制造出的磁悬浮列车在任何情况下,车体和轨道之间都是不接触的。中国永磁悬浮与国外磁悬浮相比有五大方面的优势:一是悬浮力强。二是经济性好。三是节能性强。四是安全性好。五是平衡性稳定。 前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴承系统为基础的振动控制理论的研究,将其应用于汽轮机转子的振动和故障分析中;通过调整磁悬浮轴承的刚度来改变汽轮机转子结构设计的思想,从而改善转子运行的动态特性,避免共振,提高机组运行的可靠性等,这些都将为解决电力工程中的技术难题提供崭新的思路。

磁悬浮技术

1 磁悬浮技术的原理 磁浮技术原理并不深奥,它是运用磁铁“同性相斥,异性相吸”的性质,使磁铁具有抗拒地心引力的能力,即“磁性悬浮”。 由于磁铁有同性相斥和异性相吸两种形式,故磁悬浮技术的应用也有两种相应的形式:一种是利用磁铁同性相斥原理而设计的电磁运行系统,它利用超导体电磁铁形成的磁场与线圈形成的磁场之间所产生的相斥力,使物体悬浮的;另一种则是利用磁铁异性相吸原理而设计的系统,它利用吸引力与物体的重力平衡,从而使物体进行悬浮。 1 磁悬浮的种类 根据实现悬浮的物质,一般可以分为:常导悬浮、超导悬浮和永磁体悬浮三种。所谓常导、超导和永磁体悬浮,分别是指形成悬浮力需要利用常温导体制造的电磁铁、超导材料制造的电磁铁和永磁铁产生的磁场。表1-1表示两个物体之间的受力关系和悬浮方式。 表1-1 磁悬浮按照相互作用的物体间的关系分类 2 磁悬浮技术原理及其应用 (1)根据磁悬浮原理,实际应用中常见以下四种形式:

①使用永久磁铁悬浮 永久磁铁是使用硬磁材料充磁后所具有的很强的剩磁效应制造的。由于无论采用斥力还是吸引力方式实现悬浮,永磁体在使用中都是不消耗能源的,因此在节能要求高的场合有特殊的优势。其缺点是永磁体产生的磁场难以控制,因此需要和常导电磁铁组合使用。而且强永磁体制作成本高,普通材料又难以产生足够的磁感应强度,因此工作受到限制。 ②使用超导电磁铁悬浮 超导悬浮是在空心超导线圈中通入强电流,从而产生强磁场实现悬浮。超导悬浮有吸引力悬浮和斥力悬浮两种形式。利用吸引力悬浮式,由于电流难以控制,所以常与常导方式结合使用。利用斥力悬浮时,是让超导体与另一个导体产生相对运动,利用在另一导体中产生的感应电流来获得斥力。超导电磁铁悬浮常用于磁悬浮列车。超导电磁铁悬浮的优点是系统是自稳定的,无需主动控制,也无需沉重的铁芯,线圈能量损耗少。但是,超导悬浮系统需要复杂的液氮冷却系统。 ③利用高频感应的电涡流悬浮 高频感应线圈产生的高频交变磁场可以再金属中感应出电涡流,这样的涡流也同样会产生磁场,而且必定与原来磁场方向相反,于是可以利用这一原理实现斥力悬浮。这种方法的优点是可以对任何导电体可以实现静止悬浮,不要求悬浮体是导磁体。这种方法已经应用于高纯度、高熔点金属的熔炼,由于感应悬浮方法的悬浮力决定于感应电流的大小,而且一般采用常导线圈,能耗较大,应用面较窄。

专题11 磁场(1)(解析版)

专题11 磁场(1)-高考物理精选考点专项突破题集 一、单项选择题:(在每小题给出的四个选项中,只有一项符合题目要求) 1、超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术。磁体悬浮的原理是() ①超导体电流的磁场方向与磁体的磁场方向相同 ②超导体电流的磁场方向与磁体的磁场方向相反 ③超导体使磁体处于失重状态 ④超导体对磁体的磁力与磁体的重力相平衡 A.①③ B.①④ C.②③ D.②④ 【答案】D 【解析】超导体中产生的是感应电流,根据楞次定律的“增反减同”原理,这个电流的磁场方向与原磁场方向相反,对磁体产生排斥作用力,这个力与磁体的重力达平衡,因此选项D正确。故本题选D。 【考点】磁场的应用性 【难度】中等 2、中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也。”进一步研究表明,地球周围地磁场的磁感线分布示意如图。结合上述材料,下列说法不正确的是() A.地理南、北极与地磁场的南、北极不重合 B.地球内部也存在磁场,地磁南极在地理北极附近 C.地球表面任意位置的地磁场方向都与地面平行 D.地磁场对射向地球赤道的带电宇宙射线粒子有力的作用 【答案】C 【解析】根据题意知地理南北极与地磁场存在一个夹角叫磁偏角,两者不重合,因此选项A正确。地磁南极在地理的北极附近,地磁北极在地理南极附近,因此选项B正确。由于地磁场磁场方向沿磁感线切线方向,故只有赤道处才与地面平行,因此选项C错误。在赤道处磁场方向水平,而射线是带电的粒子,运动

中低速磁悬浮和轻轨、地铁的比较

中低速磁悬浮在城市轨道交通中的运用 磁悬浮技术的研究源于德国,1922年德国工程师赫尔曼·肯佩尔提出了电磁悬浮原理,1934年他申请了磁悬浮列车的专利,1953年完成科学报告《电子悬浮导向的电力驱动铁路机车车辆》。20世纪70年代以后,世界工业化国家经济实力不断加强,为提高交通运输能力以适应经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始对磁悬浮运输系统进行开发,并取得令人瞩目的进展。 磁悬浮列车与传统轮轨列车不同,它用电磁力将列车浮起,导向和驱动。在运行时不与轨道发生摩擦,中低速磁悬浮列车(时速小于200km)在运行时发出的噪声非常低。此外,磁悬浮列车还具有速度高,制动快,爬坡能力强,转弯半径小,振动小,舒适性好等优点。在修建城市轨道交通线路的造价攀升的情况下,中低速磁悬浮线的性能价格比好的优势得以显示出来。 1 磁悬浮技术的种类 目前,载人试验获得成功的磁浮列车系统有3种,它们的磁悬原理和系统技术完全不同,不能兼容。 (1)用常导磁吸式(EMS)进行悬浮导向,同步长定子直线电机驱动的高速磁浮列车系统。以德国的TR(Trans rapid)磁浮列车系统为代表。TR采用常规电导吸引的方式进行悬浮和导向,悬浮的气隙较小,一般为 10mm 左右;由地面一次控制的直线同步电机驱动。我国上海机场磁悬浮线就是引进的德国 TR系统 (2)采用超导磁斥式(EDS)进行悬浮和导向,同步长定子直线电机驱动的高速磁浮列车系统。 高速超导磁悬浮列车以日本的ML系统为代表。车上的超导线圈在低温下进入超导状态,通电后产生很强的磁场,列车运动时,超导磁体使线路上的导体产生感应电流,该电流也将产生磁场,并与车上的超导磁体形成斥力,使车辆悬浮(悬浮高度较大,一般为100mm左右)。列车由地面一次控制的线性同步电机进行驱动,同步电机定子三相绕组铺设在地面线路两侧,无需通过弓网受电方式供电。

高速磁浮交通技术及产业发展战略研讨会在京隆重举行

加快发展磁浮交通,助力国家战略 ——高速磁浮交通技术及产业发展战略研讨会在京举行本报讯,8月6日,中国工程院“高速磁浮技术与产业发展战略研究”课题组与由北京科技协作中心共同主办的“高速磁浮技术与产业发展战略研讨会”,在北京京仪大厦隆重举行。 来自中国工程院、科研院所、政府部门和国内铁路勘察设计、高速列车制造、铁路工程建设、城市轨道交通领域的骨干企业的专家出席会议。部分地方政府交通建设管理机构、科技创新企业和国外磁浮技术开发企业代表参加了会议。 会议由国家轨道交通电气化与自动化工程技术研究中心主任高仕斌教授主持,“高速磁浮技术与产业发展战略研究”课题组组长、中国工程院钱清泉院士首先介绍了中国工程院设立“高速磁浮技术与产业发展战略研究”重大咨询课题的背景。田红旗、乐嘉陵、刘大响、顾国彪等院士从空气动力、电磁控制等角度提出了高速磁浮交通技术工程化发展战略的建议。与会专家认为,我国于2002年率先建成世界上首条高速磁浮示范线,已安全稳定运行近13年,共计超过1400万公里,证明了高速磁浮交通的安全性与实用性。我国科研院所在车辆悬浮和驱动技术上进行了30多年的探索,进行了几代样车的试制,已具备高速磁浮技术工程化的各种能力,后期应尽快建设一条具有商业应用前景的中等长度(150-200km)工程试验线,形成我国高速磁浮交通系统产业链。同时,自2013年美国Elon Musk公布了一份关于

真空管道列车Hyperloop的方案以后,包括美国Hyperloop-one等公司在内的多家企业已经开始高速真空管道列车的开发竞赛。2014年,日本东京至大阪的高速磁浮应用线路已经开工建设。我们国家的高速磁浮技术工程化不能再次落后于世界。 国家科技支撑计划重大项目“高速磁浮交通关键技术研究”负责人、中国中车青岛四方车辆有限公司丁叁叁副总工程师介绍了高速磁浮交通技术的先进性和国家科技支撑项目设置的必要性,阐述了“十三五”计划期间高速磁浮交通技术开发的国家目标:将全面掌握自主设计、制造、调试和试验评估方法,研制时速600公里工程化常导磁浮交通系统;建立完善的高速磁浮系统研发、制造、试验平台,形成自主研发创新能力;建立具有国际适应性的中国高速磁浮系统核心技术和标准规范体系;初步搭建全链条自主化产业平台;在“十四五”期间争取示范工程,实现新型高速磁浮系统的产业化目标,打造完整的国产化产业链,促进规模化效应,具备国际竞争能力。 “我们计划在5年内建成中国的跨海真空列车项目。”北京九州动脉隧道技术有限公司董事长刘子忠告诉记者。据介绍,该公司提出的跨海隧道技术方案与传统盾构隧道相比,投资显著节省,列车运行速度将来可以超过1000公里每小时。重要的是这种列车完全对天气免疫。他们也考察了舟山群岛、长山列岛、崇明岛、平潭岛、海南岛周围的一些目标地,计划把海岛交通、旅游和海岛综合开发结合起来。其中舟山市表现出了巨大兴趣,双方正在就舟山到桃花岛项目进行前期论证。

磁悬浮列车技术发展路线研究

2017年第24卷第6期 技术与市场技术研发磁悬浮列车技术发展路线研究 张杨,吴超 (中车株洲电力机车有限公司,湖南株洲41001) 摘要:阐述了国内外磁悬浮列车的主要技术研究路线,研究了国内外主要从事磁悬浮技术研究的科研机构与技术特 点,旨在促进我国磁悬浮交通装备产业发展。 关键词:磁浮列车;技术发展;研究 doi:10. 3969/j.issn.1006 - 8554. 2017.06.036 〇引言 磁悬浮列车是根据电磁学原理,利用磁力悬浮与线性驱动 的方法,实现悬浮、导向和推进列车的新型交通工具,据相关机 构统计,磁浮列车在速度上可覆盖100 ~ 600 km/h范围,500 km/h速度下每座位.公里能耗仅为飞机1/3 ~ 1/2,300 k m/h 速度下能耗比I C E高速列车低33%,由于没有机械传动及轮轨 接触,在噪音及振动等方面也表现极佳。正是因其诸多方面的 优势,国内外相关机构开展了大量磁浮列车技术研究。在国际 范围内,开展过磁悬浮列车研究的国家主要有德国、日本、美国 和中国。 1国外磁悬浮列车的发展现状 1.1 超导磁悬浮技术 日本在磁浮列车发展上选择了电动磁浮方式,采用超导材 料作为励磁材料,车辆在轨道上运行时,通过车上移动电磁铁 的作用,使地面悬浮感应线圈产生感应电流及感应磁场,依靠 感应磁场和车上电磁铁的相互作用使车辆悬浮起来,悬浮气隙 可达100 m m。其构建的M L U系统设计速度为500 km/h,2015 年4月,山梨试验线的超导磁浮列车进行载人试验,最高时速 达到663 k m/h,刷新了地面轨道交通工具的最高速度记录。由于其悬浮力必须在一定速度下方能实现,因此只有在速度大于 120 km/h之后才能产生足够的悬浮力使列车起浮,而在低速 范围内仍需依赖车轮支撑运行。因此,这种方式不适合站间距 短、需要频繁启动停车的城市轨道交通系统;同时由于其超导 材料需要在特殊条件下进行管理维护,费用高昂。 1.2 常导磁悬浮技术 德国在技术路线上选择了与日本不同的电磁悬浮方式,采 用普通导电材料作为励磁材料,依靠安装在车体上的电磁铁和 轨道铁轨之间的吸引力使车辆悬浮。其构建的T R系统设计速 度500 k m/h,能实现静止状态下的悬浮;由于悬浮间隙通常为 8 ~ 12 m m,需要动态间隙检测和悬浮控制系统以维持动态间隙 在允许波动范围内。 1.3永磁悬浮技术 美国采用永磁悬浮方式,通过导轨上铺设的直线同步电机线圈来推动,导轨边的供电系统输送可变频率交流电到导轨上 线圈产生移动磁场与车上磁体相互作用而移动,交流电流的频 率控制列车移动速度。其构建的M a g p la n e系统采用弧形断面 轨道来同时提供悬浮和导向力,悬浮间隙为5 ~ 15 m m。与日 本技术类似,车体开始运行时由车轮支撑,轨道两侧的铝制导 轨内产生涡流,当时速达到20 k m以上时实现悬浮。 1.4真空管道磁悬浮技术 美国电动汽车特斯拉和美国科技公司E T3都公布了“真 空管道运输”计划,特斯拉称其为“H y p e r io p”或“超级高铁” E T3称之为“胶囊高铁”单体重183 k g,长约4. 87m,可以容纳 4 ~6名乘客,预计能达到1 200 km/h的速度,主要分为高架低 真空磁悬浮列车和地下真空管道磁悬浮列车。 2我国磁悬浮列车的发展现状 早期国内相关科研机构如国防科技大学、西南交通大学、同济大学、铁科院等开展了相关试验研究工作,并研制了单悬 浮架试验台及原型样车。 21世纪初我国引进德国高速磁悬浮技术,建设了上海高 速磁悬浮交通示范运营线,成立了国家磁浮交通工程技术研究 中心,开展磁悬浮交通技术的自主研究,实现了上海线线路轨 道技术国产化,并在同济大学嘉定校区建成“三个一”高速磁 悬浮试验系统(含一条1.5 k m轨道,一列两节编组磁悬浮车和 一套牵引及运控系统,简称三个一)。在技术转移基础上,主持 研制了我国首列高速磁悬浮国产化样车(四节编组)并投人上 海线示范运行,还实现了高速磁悬浮道岔、定子铁心和线圈国 产化。国家磁浮中心还与上海磁浮公司合作,开发了上海高速 磁浮列车关键设备的备品备件,逐步实现进口替代。目前,西 南交大也正在开展真空管道磁悬浮列车研究。 北京控股磁浮发展有限公司与国防科大、唐山机车车辆有 限公司合作,2008年建设了唐山中低速磁浮试验线路,并研制 了原理性样车。2006年开始,中车株洲电力机车有限公司,联 合株洲电力机车研究所、株洲电机公司、西南交通大学试,开展 磁悬浮列车技术研究。2012年成功3车编组中低速磁悬浮列 车样车一“追风者”号,在株洲建设了 1.6 k m试验线,全盘掌握 101

筹码学完整讲解

第一章筹码的属性和缺陷 一、筹码的四个属性 二、筹码的缺陷 第二章筹码的定义学习筹码的意义和现实作用 一、筹码的定义 二、学习筹码的意义和现实作用 第三章如何在股票行情分析软件里使用筹码 一、如何在行情分析软件中使用筹码技术指标 二、如何解读筹码界面中相关的内容 第四章筹码对股价的影响 第五章筹码的各种形态 一、静态筹码形态分为单峰筹码、多峰筹码和缺失筹码 二、动态筹码形态分为筹码的发散、聚集和融合 三、双峰筹码 四、观察筹码形态时的一些注意事项 第六章通过筹码可以判断主力的动向、意图和底牌 一、通过筹码来判断主力是否在底部吸筹和吸筹后的持仓成本 二、通过筹码来判断主力的洗盘动作 三、通过筹码来判断主力的持仓数量和价位 四、通过筹码来判断主力的控盘度 五、通过筹码来判断主力是否派发 第七章筹码与成交量和K线走势的关系 一、筹码的沉淀 二、筹码的转移 三、筹码与成交量和K线走势的关系 四、总结 第八章筹码的延伸技术指标——穿透率、集中度、获利比例和浮筹比例 第一章筹码的属性 一、筹码的四个属性: 1.筹码的价位属性。在什么价位交易,自然会在筹码的统计当中体现出来; 2.筹码的数量属性。在某一价位交易了多少,用筹码的统计就是百分比。在行情分析软件里用水平线条或火焰山体现(与成交量和换手率相似,但成交量和换手率只体现统计周期内的股票交易数量,但不体现价位); 3.筹码的流动属性。在一只股票“实际”流通股本不变的情况下,由于每个交易日都产生交易和股价波动的原因,筹码自然发生流动。所以,我们在观察筹码时,要从左到右,移动鼠标来观察筹码的各种变化和形态,从而得出分析的结论。所以,在我们使用筹码这个技术指标时,要动态地来观察,而不能静止不动。 4.筹码的扩容属性。一个上市公司在经营和分配利润的过程中,股本扩容经常发生,(关于股本扩容的知识,我们曾经专题讨论过。)有些股本自然会流入到二级市场进行交易,这样筹码就会有新的形态变化。另外,由于股改后大小非减持的特殊性(通过个股的信息地雷可以获知这方面的信息),实际流通的股本也自然发生改变。上面这些情况,都可以通过观察其他价位区间的筹码百分比减小但总体形态不变,新出现了一定区间的筹码而体现出来。 二、筹码的缺陷: 筹码无法统计出一个账号里,持股的数量和平均价位。打个比方,一个人在1元的价位买

相关文档