文档库 最新最全的文档下载
当前位置:文档库 › 34 线性算子的基本定理

34 线性算子的基本定理

34 线性算子的基本定理
34 线性算子的基本定理

3.4 线性算子的基本定理

汉恩-巴拿赫延拓定理、逆算子定理、闭图像定理以及共鸣定理是泛函分析的四大基石,证明具有一定的技巧,应用非常广泛.前面已经学习了Hahn-Banach 定理,知道一般的线性赋范空间X 中存在足够多的线性连续泛函,从而使共轭空间的研究才有意义.本节探讨其它三个重要的定理.

汉恩-巴拿赫延拓定理(The Hahn-Banach Theorem)

定理 设G 为线性赋范空间X 的线性子空间,f 是G 上的任一线性有界泛函,则存在X 上的线性有界泛函F ,满足

(1) 当x G ∈时,()()F x f x =; (2) X

G

F f

=.

其中X

F

表示F 作为X 上的线性泛函时的范数;G

f

表示G 上的线性泛函的范数.

延拓定理被应用于Riesz 定理、Liouville 定理的证明及二次共轭空间等的研究中.

3.4.1 逆算子定理(The Inverse Mapping Theorem)

在微积分课程中介绍过反函数的概念,并且知道“单调函数必存在反函数”,将此概念和结论推广到更一般的空间.

定义3.4.1 逆算子(广义上)

设X 和Y 是同一数域K 上的线性赋范空间,G X ?,算子T :G Y →,T 的定义域为()D T G =;值域为()R T .用1T -表示从()()R T D T →的逆映射(蕴含T 是单射),则称1T -为T 的

逆算子(invertiable operator).

定义3.4.2 正则算子

设X 和Y 是同一数域K 上的线性赋范空间,若算子T :()G X Y ?→满足 (1)T 是可逆算子; (2) T 是满射,即()R T Y =; (3) 1T -是线性有界算子, 则称T 为正则算子(normal operator).

注1 ①若T 是线性算子,1T -是线性算子吗?②若T 是线性有界算子,1T -是线性有界算子吗?

性质3.4.1 若T :()G X Y ?→是线性算子,则1T -是线性算子. 证明 12,y y Y ∈,,αβ∈K ,由T 线性性知:

1111212(())T T y y T y T y αβαβ---+--1111212()TT y y TT y TT y αβαβ---=+--

1212()y y y y αβαβ=+--0=

由于T 可逆,即T 不是零算子,于是1111212()T y y T y T y αβαβ---+=+,故1T -是线性算子.□

定理3.4.1逆算子定理

设T 是Banach 空间X 到Banach 空间Y 上的双射(既单又满)、线性有界算子,则1T -是线性有界算子.

例 3.4.1 设线性赋范空间X 上有两个范数1?和2?,如果1(,)X ?和2(,)X ?均是Banach

空间,而且2?比1?强,那么范数1?和2?等价.(等价范数定理)

证明 设I 是从由2(,)X ?到1(,)X ?上的恒等映射,由于范数2?比1?强,所以存在0M >,使得x X ?∈有

112Ix x M x =≤

于是I 是线性有界算子,加之I 既是单射又满射,因此根据逆算子定理知1I -是线性有界算子,即存在0M'>,使得x X ?∈有

1212

I x

x M'x -=≤.

故范数1?和2?等价.□

3.4.2 闭图像定理(The Closed Graph Theorem)

学习微积分时,我们知道闭区间[,]a b 上的函数()y f x =图形是xoy 平面上的一条曲线,即为2R 中的一个点集(){(,)(),[,]}G f x y y f x x a b ==∈,特别当()[,]f x C a b ∈,这个点集()G f 为2R 中的闭集,现在将此结论推广到更一般的线性赋范空间上.

定义3.4.3 线性赋范空间的乘积

设X 和Y 是同一数域K 上的线性赋范空间,考虑直积集{(,),}X Y x y x X y Y ?=∈∈,

1122(,),(,)x y x y X Y ?∈?,α?∈K ,在X Y ?上定义加法和数乘,

11221212(,)(,)(,)x y x y x x y y +=++,1111(,)(,)x y x y ααα=

那么X Y ?构成线性空间.设,x X y Y ∈∈,其范数分别为,x y ,于是在X Y ?上可定义范数

1(,)

()p p

p

p

x y x y =+(1)p ≤<+∞,(,)

max(,)x y x y ∞

=

最常用的是1(,)x y x y =+,1

2

22

2(,)()x y x y =+,(,)

max(,)x y x y ∞

=,可证明这些范

数都是X Y ?上的等价范数.此时称X Y ?为X 和Y 的乘积空间.

注2 通过上述范数的定义可知乘积空间X Y ?是线性赋范空间,于是在X Y ?中就有了开集、闭集、列紧集、收敛列、完备性等概念和相应的结论.例如点列{(,)}n n x y X Y ??收敛于

00(,)x y 当且仅当

0000(,)(,)(,)0n n n n x y x y x x y y -=--→.

同时易证

00(,)(,)n n x y x y →?00,n n x x y y →→,

可见若F X Y ??,F 闭集的的充要条件为:(,)n n n A x y F ?=∈,若(,)n A A x y →=,即n x x →,n y y →,则有A F ∈.

定义3.4.4 闭算子

设X 和Y 是同一数域K 上的线性赋范空间,若T 的图像

(){(,),()}G T x y y Tx x D T ==∈

是乘积空间X Y ?的闭子集,则称T 为闭线性算子,简称闭算子.

引理3.4.1 设X 和Y 是同一数域K 上的线性赋范空间,T :()G X Y ?→是线性算子,那么T 为闭线性算子?()n x D T ?∈,当n x x X →∈,n Tx y Y →∈时,必有()x D T ∈且Tx y =.

证明 ?如果T 为闭线性算子,那么当()n x D T ∈,n x x X →∈,n Tx y Y →∈时,显然有{(,)}()?n n x Tx G T ,而且在乘积空间X Y ?中有(,)(,)n n x Tx x y →,由于()G T 是X Y ?中的闭集,

故(,)()x y G T ∈,即()x D T ∈,Tx y =.

?(,)()n n x Tx G T ?∈,当(,)(,)n n x Tx x y →

时,显然有n x x →,n Tx y →,由条件知()x D T ∈且Tx y =.于是(,)(,)()x y x Tx G T =∈,即()G T 中的每一收敛点列的极限都在()G T 中,所以()G T 是闭集,即T 为闭线性算子.□

注3 对于线性算子而言,已有三个主要的概念:连续性、有界性和闭性,其中连续性和有界性等价,因此,需要研究“线性有界算子”与“闭线性算子”之间的关系.

定理3.4.2 设T :()()D T X Y ?→是线性有界算子,如果()D T 是X 的闭线性子空间,那么T 为闭线性算子.

证明 设()n x D T ∈且有n x x X →∈,n Tx y Y →∈.因为()D T 是X 的闭线性子空间,所以

()x D T ∈;又因为T 有界,即连续算子,所以

lim lim n n n n y Tx T x Tx →∞

→∞

===

故根据上述引理可得T 为闭线性算子.□

注4 当()D T X =时,若T :X Y →是线性有界算子,则由定理知T 为闭算子. 定理3.4.3 闭图像定理

设X 和Y 都是Banach 空间,T :()()D T X Y ?→是闭线性算子,()D T 是X 的闭线性子空间,那么T 为线性连续算子.

证明 略.

推论3.4.1 设X 和Y 都是Banach 空间,()T X Y ∈→,那么

T 为线性有界算子?T 为闭算子.

例3.4.2 设[0,1]X C =,(1)(){()[0,1]}[0,1]D T x X x't C C =∈∈=,定义微分算子D :()D T X

→如下:()x D T ?∈,()d

x x t dt

=

D ,则D 是闭算子,但是D 无界的. 证明 由第三节例3.3.3后的反例知:令()()[0,1]n t a n x t e C --=∈,可得

()[,]

max 1n t a n t a b x e --∈==;n x n =→∞D

知T 是无界的.下证T 是闭算子.设()n x D T ∈,且n x x →,n Tx y →.因为在[0,1]C 中的收敛是函数列的一致收敛,由()()()'n n x t Tx t y t =→,即()'n x t 在[0,1]C 上一致收敛()y t ,所以有

0()lim ()t

t 'n n y d x d ττττ→∞

=?

?0

lim ()t

'n n x d ττ→∞=?lim[()(0)]n n n x t x →∞

=-()(0)x t x =-

即0()(0)()t

x t x y d ττ=+?,从而()()x t D T ∈ ,且()()Tx x't y t ==,根据上述引理3.4.1(闭算子的等价条件)知,T 是闭算子.□

例3.4.2说明算子的闭性不蕴含有界,下面的例子则说明有界也不蕴含闭性.

例 3.4.3 设[,]X C a b =,()[,]D T P a b =是[,]a b 上的实系数多项式函数的全体,再令:()[,]T D T C a b →是恒等算子,那么T 是线性有界算子,但T 不是闭算子.

证明 因为()x D T ?∈,Tx x =,所以显然有T 是线性有界算子.令()sin ()x t t X D T =∈-,由于()[,]D T P a b =在X 中稠密,所以存在点列{}()n x D T ?,使得()n x x n →→∞,即n n Tx x x =→,但是(,)(sin ,sin )()x Tx t t G T =?,故T 不是闭算子.□

3.4.3 共鸣定理(The Banach-Steinhaus Theorem)

在许多数学问题中,常常会遇到一族算子的有界问题,而不是仅仅考虑某一个算子的有界问题,即需要讨论这一族线性有界算子在什么条件下一致有界?要回答这一问题,涉及到如下在理论和应用上大都十分重要的定理——共鸣定理.

定义3.4.5 一致有界

设X 和Y 是同一数域K 上的线性赋范空间,()F B X Y ?→,如果{ }T T F ∈是有界集,则称算子族F 为一致有界.

定理3.4.4 共鸣定理

设X 是Banach 空间,Y 是线性赋范空间,算子族()F B X Y ?→,那么

{ }T T F ∈是有界集(F 一致有界)?x X ?∈,{ }Tx T F ∈为有界集.

证明 (1) 必要性? 因为{ }T T F ∈是有界集,所以存在0M >,T F ?∈,有T M ≤,于是x X ?∈,不妨设x a =,那么

Tx T x M x M a ≤≤≤?

因此{ }Tx T F ∈为有界集.

(2) 充分性?x X ?∈,定义sup F

T F

x x Tx ∈+ ,显然F ?是X 上的范数且比?强,下面证

明(,)F X ?完备.

如果s u p ()0m n

m n m n F

T F

x x x x T x x ∈-=-+-→(,)m n →∞,由X 是Banach 空间知存在

x X ∈,使得

0n x x -→()n →∞.

又因为0ε?>,N ?∈N ,使得只要,m n N ≥,便有

sup m n T F

Tx Tx ε∈-<.

从而T F ?∈有

n n m m Tx Tx Tx Tx Tx Tx -=-+-n m m Tx Tx T x x ≤-+-0→()n →∞.

因此得sup ()0n n T F

x x T x x ∈-+-→()n →∞,即0n F

x x

-→,可见(,)F X ?完备.

根据等价范数定理知范数F ?和?等价,从而存在0M >,使得x X ?∈有

sup sup F

T F

T F

Tx x Tx x

M x ∈∈≤+=≤

于是可得T F ?∈有T M ≤.□

注5 共鸣定理也称为一致有界定理(或原理),由共鸣定理知,当F 不一致有界时,即

sup{ }T T F ∈=∞,则存在0x X ∈,使得0sup{ }Tx T F ∈=∞,称0x 为算子族F 的共鸣点.

例3.4.4 设无穷矩阵

111212122212j j i i ij a a a a a a A a a a ?? ? ? ?= ? ? ??

?

满足2

1

ij i a ∞

=<∞∑,1,2,3,j = ,并对任何212(,,,,)i x x x x l =∈ 有

Tx xA =11

12121

2221212(,,,,)j j i i i ij a a a a a a x x x a a a ?? ? ? ?= ? ? ??

?

12(,,,,)i y y y = 2y l =∈

其中1

j i ij i y x a ∞

==∑,1,2,j = ,证明算子T 是线性连续算子.

证明 显然22()T l l ∈→是线性算子,又知2l 是Banach 空间,所以由闭图像定理知,算子T 连续等价于T 是闭算子.设2{}n x l ?,()n x x n →→∞,2n Tx y l →∈,下面证明y Tx =.记

12(,,,,)i x x x x = ;00

012(,,,,)j Tx y y y = ;12(,,,,)j y y y y = ;

12(,,,,)n n

n n i x x x x = ;12(,,,,)n n n n j Tx y y y = .

由n Tx y →知,对每一个j 而言,有

122

1()n

n j

j j

j j y y y y ∞

=-≤-∑0→ (n →∞)

另一方面对每一个j 有

01

()n n j

j

i i ij i y y x

x a ∞

=-=

-∑

1

()n i i ij i x x a ∞

=≤-∑

112

2

2

2

11

()()n ij i

i i i a x x ∞

==≤-∑∑

12

2

1

()

ij n i a x x ∞

==-∑0→ (n →∞)

所以0j j y y =,即y Tx =.由闭算子的等价条件知T 是闭线性算子.□

例3.4.5 (Fourier 级数的发散问题) 存在一个周期为2π的实值连续函数,它的Fourier 级数在0t =点发散.

证明 记周期是2π的实值连续函数全体为2C π,对于2f C π∈,f 导出的Fourier 级数为:

01

1

(cos sin )2n n n a a nt b nt ∞

=++∑,其中 1

()cos d n a f t nt t π

π

π

-

=

? (0,1,2,n = );1

()sin d n b f t nt t π

ππ

-

=

? (1,2,3,n = ).

当0t =时,级数为01

1

2n n a a ∞

=+∑,前1n +项部分和为

01

1

11

()()[12cos ]d 22n

n

n n n n S f a a f t nt t π

ππ-

===+=

+∑∑?

记1

()12cos n

n n K t nt ==+∑,计算可得1

sin()2()sin 2

n n t

K t t +=

(计算略),于是 1()()()d 2n n

S f f t K

t t π

ππ

-

=

?.

下面证明存在2f C π∈,使得{()}n S f 发散.显然2:n S C π→R 是线性泛函.又因为

[,]

1()max {()}()d 2n n

t S f f t K

t t π

ππππ

-

∈-≤?

?n M f ≤?

其中1()d 2n n

M K

t t π

ππ-

=?,所以n S 是2C π上的线性连续泛函.可证明n S 的范数为1()d 2n n n

S M K

t t π

ππ

-

==

?(证明略).

由于2C π是Banach 空间,为了证明存在2f C π∈,使得{()}n S f 无界,根据共鸣定理,只需证{}n S 无界.因为

1

sin()1

2d 12sin 2

n n t S t t π

π

π

-

+=

?202sin(21)d sin n s s s π

π+=? (2t s =) (1)22(21)0

2(21)

sin(21)2

d k n

n k k n n s

s s

πππ

++=++≥

∑?

(1)2202

sin 2

d k n

k k u u u

πππ

+==

∑?

((21)u n s =+)

(1)2202

2

2

sin d (1)k n

k k u u k ππππ

+=≥+∑

?

(1)22202

4

1sin d 1k n

k k u u k π

π

π+==+∑? 22

2004

1sin d 1n

k u u k π

π==+∑?22

41

1n

k k π==+∑→∞

所以{}n S 无界.□

线性规划的概念

3.6:线性规划 目录: (1)线性规划的基本概念 (2)线性规划在实际问题中的应用 【知识点1:线性规划的基本概念】 (1)如果对于变量x 、y 的约束条件,都是关于x 、y 的一次不等式,则称这些约束条件为__线性约束条件__(),z f x y =是欲求函数的最大值或最小值所涉及的变量x 、y 的解析式,叫做__目标函数_,当(),f x y 是x 、y 的一次解析式时,(),z f x y =叫做_线性目标函数__. (2)求线性目标函数在线性约束条件下的最大值或最小值问题,称为__线性规划问题__ ;满足线性约束条件的解(),x y 叫做__可行解_;由所有可行解组成的集合叫做__可行域_;使目标函数取得最大值或最小值的可行解叫做_最优解__ 例题:若变量x 、y 满足约束条件2 10x y x y +≤?? ≥??≥? ,则z x y =+的最大值和最小值分别为 ( B ) A. 4和3 B. 4和2 C. 3和2 D. 2和0 分析:本题考查了不等式组表示平面区域,目标函数最值求法. 解:画出可行域如图 作020l x y +=: 所以当直线2z x y =+过()20A , 时z 最大,过()1,0B 时z 最小max min 4, 2.z z == 变式1:已知2z x y =+,式子中变量x 、y 满足条件11y x x y y ≤?? +≤??≥-? ,则z 的最大值是__3___ 解:不等式组表示的平面区域如图所示.

作直线0:20l x y +=,平移直线0l ,当直线0l 经过 平面区域的点()21A -,时,z 取最大值2213?-=. 变式2:设2z x y =+,式中变量x 、y 满足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最小值 分析:由于所给约束条件及目标函数均为关于x 、y 的一次式,所以此问题是简单线性 规划问题,使用图解法求解 解:作出不等式组表示的平面区域(即可行域),如图所示. 把2z x y =+变形为2y x z =-+,得到斜率为-2,在y 轴上的截距为z ,随z 变化的一族平行直线. 由图可看出,当直线2z x y =+经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小. 解方程组430 35250x y x y -+=??+-=?,得A 点坐标为()5,2, 解方程组1 430x x y =??-+=? ,得B 点坐标为()1,1 所以max min 25212,211 3.z z =?+==?+= 变式3:若变量x 、y 满足约束条件6 321x y x y x +≤?? -≤-??≥? ,则23z x y =+的最小值为( C ) A. 17 B. 14 C. 5 D. 3

算子理论论

Research Institute of Antennas & RF Techniques School of Electronic and Information Engineering South China University of Technology 计算电磁场第3讲 算子理论与逼近理论 褚庆昕 华南理工大学 电子与信息学院 天线与射频技术研究所

Research Institute of Antennas & RF Techniques 算子理论 逼近理论 误差分析 第3讲内容

3-1-1 映射和算子 Research Institute of Antennas & RF Techniques

Research Institute of Antennas & RF Techniques 按照映射前后两个集合的不同类型有三种基本的映射关系: 函数:数与数的对应关系。 泛函:函数与数之间的对应关系。 算子:函数与函数之间的对应关系。 算子有多种形式:微分,不定积分,Fourier 变换,Laplace 变换,矩阵,梯度,旋度,散度等。

Research Institute of Antennas & RF Techniques

Research Institute of Antennas & RF Techniques 3-1-2常用算子 线性算子 符合以下条件的算子L 称为线性算子(a) (b) 单位算子I 零算子θ 逆算子L -1,若,则称为的逆算子 1212()L u u Lu Lu +=+()L u Lu αα=Iu u =0u θ=1LL I -=1L -L

线性代数公式大全最全最完美

线性代数公式大全——最新修订 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

第三章逐次逼近法

第三章 逐次逼近法 1.1 1、一元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x ∈[a,b],φ(x) ∈[a,b] 2)压缩性∣φ(x) -φ(y)∣≤L ∣x-y ∣其中L <1,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。由微分中值定理,如果∣φ’∣≤L <1,显然它一定满足压缩性条件。 2、多元迭代法x n+1=φ(x n )收敛条件为: 1)映内性x n ∈Ω,φ(x n ) ∈Ω 2)压缩性ρ(▽φ)<1,其中▽φ为x n 处的梯度矩阵,此时φ为压缩算子,在不断的迭代中,就可以得到最终的不动点集。 3、当φ(x )= Bx+f 时,收敛条件为,ρ(B )<1,此时x n+1= Bx n +f ,在不断的迭代中,就可以得到线性方程组的解。 4、线性方程组的迭代解法,先作矩阵变换 U L D A --= Jacobi 迭代公式的矩阵形式 f Bx b D x U L D x n n n +=++=--+111)( Gauss-Seidel 迭代公式的矩阵形式 f Bx b L D Ux L D x n n n +=-+-=--+111)()( 超松弛迭代法公式的矩阵形式 f Bx b L D x U D L D x k k k +=-++--=--+ωωωωω111 )(])1[()( 三种迭代方法当1)( ∑ ≠-,于是

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

Bernstein-Sikkema算子逼近

第19卷 增刊数学研究与评论V o l.19Supp 1999年4月JOU RNAL O F M A TH E M A T I CAL R ESEA RCH AND EXPO S IT I ON A p r.1999 Bern ste i n-Sikkema算子逼近Ξ 熊庆良 (绍兴鲁迅学院,浙江312000)  曹飞龙 (宁夏大学数学系,银川750021) 摘 要:研究Bernstein2Sikkem a算子的逼近问题,得到强型正定理和弱型逆定理,改进了文献[1]的结果. 关键词:Bernstein2Sikkem a算子,光滑模,逼近. 分类号:AM S(1991)41A10,41A36 CL C O174.41 文献标识码:A 文章编号:10002341X(1999)增刊20261205 1 引 言 记权函数Υ(x)=(x(1-x))1 2.对于f∈C[0,1],定义带权光滑模[2] ΞrΥ(f,t)=sup 0

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

【文献综述】关于Bernstein-Sikkema算子逼近性质的研究

文献综述 数学与应用数学 关于Bernstein-Sikkema 算子逼近性质的研究 一、国内外研究现状 Bernstein 于1912年提出了Bernstein 算子,它在逼近论、计算数学以及概率论等相关领域都有着重要的影响,与其有关的研究一直以来从未间断过,其中一个研究分支就是从各个方面对Bernstein 算子就行推广,如Bernstein-Sikkema 算子,这是由Sikkema 于1975年首先在Uber die schurerschen linearen pesitiven operatoren 一文中提出,近几十年来该方面的研究也一直受到众多学者的光顾。 熟知,对于,其对应的Bernstein 算子为 [0,1]f C ? .0 (,)()(),n n n k k k B f x p x f n N n ==?? 其中 .()(1),[0,1]k n k n k n p x x x x k -??÷?=÷-??÷ ÷?è? P.C.Sikkemax 修改Bernstein 算子为如下的Bernstein-Sikkema 算子 0(,)(1)()n k n k n k n k L f x x x f k n n a -=??éù÷?ê=÷-?÷ê÷?+è??? ?并讨论了他的一些逼近性质。对k 维单纯形上的Bernstein-Sikkema 算子,应用“扩张乘数法”研究了无界函数的逼近定理,之后,又对[0,1]上只有第一类间断点的函数用Bernstein-Sikkema 算子逼近,得到了逼近定理。李松研究并证明了该算子逼近的正逆定理的基础上,熊庆良利用光滑模和K-泛函改进了李松的结论并巧妙的给出了强型正定理。 Ditzian 研究了Bernstein 算子 ,,0 (,)()(()(1),0,1n k n k n n k n k k n k B f x p x f p x x x f C k n -=??÷?éù÷?÷??÷?è? = =-??得出如下正结果 12 12 (,)()((,)()),[0,1]n B f x f x C f n x x I l j w l j - --£?=其中: 为二阶统一光滑模 22001;()(,)sup ()h h t x f x f x l j l j w l j <£££= =D

线性代数重要公式、定理大全

1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1) (1) i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1) 2 1 (1) n n D D -=-;(1) 2 2 (1) n n D D -=- 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4 D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1)n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1) m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1 (1) n n k n k k k E A S λλλ -=-=+ -∑,其中k S 为k 阶主子式; 7. 证明 A =的方法: ①、 A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ? 齐次方程组0 Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解; ?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积;

最全线性代数公式笔记

线性代数公式必记 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

简单的线性规划问题附答案)

简单的线性规划问题 [学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题. 知识点一 线性规划中的基本概念 知识点二 1.目标函数的最值 线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是z b ,当z 变化时,方程表 示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤 在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即, (1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域. (2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解. (3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案. 知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型 (1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大; (2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题 例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?

线性代数公式大全——最新修订(突击必备)

线性代数公式大全 1、行列式 1. n 行列式共有2 n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1) n n -? -; ⑤、拉普拉斯展开式:A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 5. 对于n 阶行列式A ,恒有:1(1) n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 6. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

?A 与E 等价; ?A 可表示成若干个初等矩阵的乘积; ?A 的特征值全不为0; ?T A A 是正定矩阵; ?A 的行(列)向量组是n R 的一组基; ?A 是n R 中某两组基的过渡矩阵; 2. 对于n 阶矩阵A :* * AA A A A E == 无条件恒成立; 3. 1* *1 11**()()()()()()T T T T A A A A A A ----=== * * * 1 1 1 ()()()T T T AB B A AB B A AB B A ---=== 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12 s A A A A ?? ? ?= ? ?? ? ,则: Ⅰ、12s A A A A = ; Ⅱ、1 1112 1s A A A A ----?? ? ?= ? ? ?? ? ; ②、1 11A O A O O B O B ---?? ?? = ? ????? ;(主对角分块) ③、1 11O A O B B O A O ---?? ??= ? ? ???? ;(副对角分块) ④、1 1111A C A A CB O B O B -----?? -?? = ? ????? ;(拉普拉斯) ⑤、1 111 1A O A O C B B CA B -----?? ?? = ? ?-???? ;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个m n ?矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:r m n E O F O O ???= ???; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ? ; 2. 行最简形矩阵:

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

考研数学线性代数常用公式

考研数学线性代数常用公式 数学考研考前必背常考公式集锦。希望对考生在暑期的复习中有所帮助。本文内容为线性代数的常考公式汇总。 1、行列式的展开定理 行列式的值等于其任何一行(或列)所有元素与其对应的代数余子式乘积之和,即 C 的 3、设A 为n 阶方阵,*A 为它的伴随矩阵则有**==AA A A A E . 设A 为n 阶方阵,那么当AB =E 或BA =E 时,有1-B =A 4、对单位矩阵实施一次初等变换得到的矩阵称之为初等矩阵.由于初等变换有三种,初等矩阵也就有三种: 第一种:交换单位矩阵的第i 行和第j 行得到的初等矩阵记作ij E ,该矩阵也

可以看做交换单位矩阵的第i 列和第j 列得到的.如1,3001010100?? ?= ? ??? E . 第二种:将一个非零数k 乘到单位矩阵的第i 行得到的初等矩阵记作()i k E ;该矩阵也可以看做将单位矩阵第i 列乘以非零数k 得到的.如 2100(5)050001?? ?-=- ? ??? E . 第三种:将单位矩阵的第i 行的k 倍加到第j 行上得到的初等矩阵记作()ij k E ;该矩阵也可以看做将单位矩阵的第j 列的k 倍加到第i 列上得到的.如 3,2100(2)012001?? ?-=- ? ??? E . 注: 1)初等矩阵都只能是单位矩阵一次初等变换之后得到的. 2)对每个初等矩阵,都要从行和列的两个角度来理解它,这在上面的定义中已经说明了.尤其需要注意初等矩阵()ij k E 看做列变换是将单位矩阵第j 列的k 倍加到第i 列,这一点考生比较容易犯错. 5、矩阵A 最高阶非零子式的阶数称之为矩阵A 的秩,记为()r A . 1)()()(),0r r r k k ==≠T A A A ; 2)()1r ≠?≥A O A ; 3)()1r =?≠A A O 且A 各行元素成比例; 4)设A 为n 阶矩阵,则()0r n =?≠A A . 6、线性表出 设12,,...,m ααα是m 个n 维向量,12,,...m k k k 是m 个常数,则称1122...m m k k k ααα+++为向量组12,,...,m ααα的一个线性组合. 设12,,...,m ααα是m 个n 维向量,β是一个n 维向量,如果β为向量组

相关文档
相关文档 最新文档