文档库 最新最全的文档下载
当前位置:文档库 › 高考物理压轴题

高考物理压轴题

高考物理压轴题
高考物理压轴题

2013高考物理·压轴题

1.(2010·江苏卷)制备纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行极板,如图甲所示,加在极板A 、B 间的电压U AB 作周期性变化,其正向电压为U 0,反向电压为-kU 0(k>1),

电压变化的周期为2r ,如图乙所示。在t=0时,极板B 附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动。若整个运动过程中,电子未碰到极板A ,且不考虑重力

作用。

(1)若5

4

k =

,电子在0—2r 时间内不能到达极板A ,求d 应满足的条件; (2)若电子在0—2r 时间未碰到极板B ,求此运动过程中电子速度v 随时间t 变化的关系;

(3)若电子在第N 个周期内的位移为零,求k 的值。

答案(1

)d >2)当0≤τ-2n τ<τ时v=[t-(k+1)n τ] 0ekU md ,当0≤τ-2n τ<τ

时v =[(n+1)(k+1)τ-kt]0eU dm (3)41

43

N k N -=- 2(20分)

如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求:

(1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向

12

20

210qB mE h π

=3.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如左图所示.磁场的磁感应强度B 随时间t 的变化情况如右图所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求: (1)电场强度E 的大小.

(2)小球从M 点开始运动到第二次经过D 点所用的时间 (3)小球运动的周期,并画出运动轨迹(只画一个周期)

答案:(1)E =mg q .(2)2t 0+m

B 0q (3)T =8t 0(或T =12πm qB 0) 轨迹如图

4.如图甲所示,一对平行放置的金属板M 、N 的中心各有一小孔P 、Q 、PQ 连线垂直金属

板;N 板右侧的圆A 内分布有方向垂直于纸面向外的匀强磁场,磁感应强度大小为B ,圆半径为r ,且圆心O 在PQ 的延长线上。现使置于P 处的粒子源连续不断地沿PQ 方向放出质量为m 、电量为+q 的带电粒子(带电粒子的重力和初速度忽略不计,粒子间的相互作用力忽略不计),从某一时刻开始,在板M 、N 间加上如右图所示的交变电压,周期为T ,电压大小为U 。如果只有在每一个周期的0—T/4时间内放出的带电粒子才能从小孔Q 中射出,求:

(1)在每一个周期内哪段时间放出的带电粒子到达Q 孔的速度最大?

(2)该圆形磁场的哪些地方有带电粒子射出,在图中标出有带电粒子射出的区域

答案(1)m

qU v 2=

(2)斜线部分有带电粒子射出

5.(2010·石家庄质检)两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。在t=0。时刻由负极板释放一个初速度为零的带负电的粒子(不计重力)。若电场强度E 0、磁感应强度B 0、粒子的比荷q/m 均已知,且 ,两板间距 。

(1)求粒子在0~to 时间内的位移大小与极板间距h 的比值。 (2)求粒子在极板间做圆周运动的最大半径(用h 表示)。 ⑶若板间电场强度E 随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。

002qB m t π

=

答案:(1)

511=h s (2)h π

52

(3)如右图2 6.(2011·湖南十校联考)如图甲所示,在边界MN 左侧存在斜方向的匀强电场E 1,在MN

的右侧有竖直向上、场强大小为E 2=0.4N /C 的匀强电场,还有垂直纸面向内的匀强磁场B(图甲中未画出)和水平向右的匀强电场E 3(图甲中未画出),B 和E 3随时间变化的情况如图乙所

示,P 1P 2为距MN 边界2.295m 的竖直墙壁,现有一带正电微粒质量为4×10-

7kg ,电量为1×10

-5

C ,从左侧电场中距MN 边界115

m 的A 处无初速释放后,沿直线以1m /s 速度垂直MN 边

界进入右侧场区,设此时刻t =0, 取g =10m /s 2。求: (1)MN 左侧匀强电场的电场强度E 1(sin 37°=0.6); (2)带电微粒在MN 右侧场区中运动了1.5s 时的速度;

(3)带电微粒在MN 右侧场区中运动多长时间与墙壁碰撞?(1.2

≈0.19)

答案:(1)0.5N /C ,水平向右方向夹53°角斜向上.(2)1.1m /s ,水平向左(3)37

12s

7.(2010·黄冈质检)在竖直平面内建立一平面直角坐标系xOy ,x 轴沿水平方向,如图甲所示,坐标系的第一象限内有一正交的匀强电场和匀强磁场,电场方向竖直向上,场强为E ,

磁场方向垂直纸面,磁感应强度T B 10

3

30±=

,方向按图乙所示规律变化(以垂直纸面向外为磁场的正方向),第二象限内有一水平的匀强电场,场强E 2=2E 1,一个比荷q/m=102C/kg 的带电的粒子(可视为质点)以v 0=4m/s 的速度在-x 轴上的A 点竖直向上抛出,恰能以v 1=8m/s 速度从+y 轴上的C 点水平进入第一象限。取粒子刚进入第一象限时刻为t=0时刻,g=10m/s 2. (1)求AC 间电势差U AC

(2)为确保粒子不再越过OC 进入第二象限,则交变磁场周期最大值Tm 为多大?若磁场周期为上述最大值,粒子打到+x 轴上的D 点(图中未标出),求OD 长度L 0。

答案:(1)V U AC 32.0=(2)s 36

)33(Tm π-=,m L 15

)

33(40-=

8如图(甲)所示,两水平放置的平行金属板C 、D 相距很近,上面分别开有小孔 O 和O',水

平放置的平行金属导轨P 、Q 与金属板C 、D 接触良好,且导轨垂直放在磁感强度为B 1=10T 的匀强磁场中,导轨间距L =0.50m ,金属棒AB 紧贴着导轨沿平行导轨方向在磁场中做往复运动,其速度图象如图(乙),若规定向右运动速度方向为正方向.从t =0时刻开始,由C 板小孔O 处连续不断地以垂直于C 板方向飘入质量为m =3.2×10 -21kg 、电量q =1.6×10 -19

C 的带正电的粒子(设飘入速度很小,可视为零).在

D 板外侧有以MN 为边界的匀强磁场B 2=10T ,MN 与D 相距d =10cm ,B 1和B 2方向如图所示(粒子重力及其相互作用不

A v 0 E 2 C v 1 E 1

B 0

y x

O B/T B 0 0 -B 0 T 0/2 T 0 3T 0/2 2T 0 t/s

计),求

(1)0到4.Os 内哪些时刻从O 处飘入的粒子能穿过电场并飞出磁场边界MN ? (2)

粒子从边界MN 射出来的位置之间最大的距离为多少?

9.如图(甲)所示为电视机中显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,

这些电子再经加速电场加速后,从O 点进入偏转磁场中,经过偏转磁场后打到荧光屏MN 上,使荧光屏发出荧光形成图象,不计逸出电子的初速度和重力。已知电子的质量为m 、电荷量为e ,加速电场的电压为U ,偏转线圈产生的磁场分布在边长为l 的正方形abcd 区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示。在每个周期内磁感应强度都是从-B 0均匀变化到B 0。磁场区域的左边界的中点与O 点重合,ab 边与OO′平行,右边 界bc 与荧光屏之间的距离为s 。由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用。 (1)求电子射出加速电场时的速度大小 (2)为使所有的电子都能从磁场的bc 边射出,求偏转线圈产生磁场的磁感应强度的最大值

(3)荧光屏上亮线的最大长度是多少

答案:(1) (2)

(3) 10.(2011·西安四校联考)如图甲所示,带正电粒子以水平速度v0

从平行金属板MN 间中线O O 连续射入电场中。MN 板间接有如图乙所示的随时间t 变化的电压uMN ,两板间电场可看作是均匀的,且两板外无电场。紧邻金属板右侧有垂直纸面向里的匀强磁场B

,分界线

CD ,EF 为屏幕。金属板间距为d ,长度为l ,磁场B 的宽度为d 。已知:B=5×10-3T ,l = d =0.2m ,每个带正电粒子的速度v0=105m/s ,比荷为q/m=108C/T ,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的。 试求:

(1)带电粒子进入磁场做圆周运动的最小半径? (2)带电粒子射出电场时的最大速度?

(3)带电粒子打在屏幕EF 上的范围?

图乙

答案:(1)r min =0.2m (2) v max =1.414×105

m/s (3)EF=0.38m , 11

如图10是为了检验某种防护罩承受冲击能力的装置,M 为半径为 1.0R m =、固定于竖

直平面内的

1

4

光滑圆弧轨道,轨道上端切线水平,N 为待检验的固定曲面,该曲面在竖直面

内的截面为半径r =的1

4

圆弧,圆弧下端切线水平且圆心恰好位于M 轨道的上端

点,M 的下端相切处置放竖直向上的弹簧枪,可发射速度不同的质量0.01m kg =的小钢珠,假设某次发射的钢珠沿轨道恰好能经过M 的上端点,水平飞出后落到N 的某一点上,取

210/g m s =,求:

(1)发射该钢珠前,弹簧的弹性势能p E 多大?

(2)钢珠落到圆弧N 上时的速度大小N v 是多少?(结果保留两位有效数字)

12(10分)

建筑工地上的黄沙堆成圆锥形,而且不管如何堆其角度是不变的。若测出其圆锥底的周长为12.5m ,高为1.5m ,如图所示。

(1)试求黄沙之间的动摩擦因数。

(2)若将该黄沙靠墙堆放,占用的场地面积至少为多少?

13.(17分)

荷兰科学家惠更斯在研究物体碰撞问题时做出了突出的贡献.惠更斯所做的碰撞实验可简化为:三个质量分别为m 1、m 2、m 3的小球,半径相同,并排悬挂在长度均为L 的三根平行绳子上,彼此相互接触。现把质量为m 1的小球拉开,上升到H 高处释放,如图所示,已知各球间碰撞时同时满足动量守恒定律和机械能守恒定律,且碰撞时间极短,H 远小于L ,不计空气阻力。

(1)若三个球的质量相同,则发生碰撞的两球速度交换,试求此时系统的运动周期。 (2)若三个球的质量不同,要使球1与球2、球2与球3相碰之后,三个球具有同样的动量,则m 1∶m 2∶m 3应为多少?它们上升的高度分别为多少?

(17分)

(1)球1与球2、球2与球3碰撞后速度互换,球3以球1碰球2前瞬间的速度开始上升到H 高处,然后再摆回来与球2、球2与球1碰撞,使球1上升到H 高处,此后,系统做到周期性运动,则)(2

1

,23131T T T g L T T +===π

…………………2′ 由此可知系统的运动周期为:g

L

T π

2=…………………………………………2′ (2)由题意知三球碰后的动量均相同,设为p,则m

p E k 22

=,球2在与球3碰前具有动

量2p ,根据机械能守恒定律,对于球2与球3碰撞的情况应有:

2

2

12222)2(22)2(m p m p m p +

=………………………………………………………2′ 由此得:2m ∶3m =3∶1………………………………………………1′ 球1与球2碰前的动量为3p ,根据机械能守恒定律有:

2

2

12122)2(22)3(m p m p m p +

=……………………………………………………………2′ 由此得:1m ∶2m =2∶1……………………………………………………………1′ 从而可得:1m ∶2m ∶3m =6∶3∶1…………………………………………………1′ 设三球碰后上升的高度分别为321H H H 、、

球1碰前动能1K E =gH m 1,又1K E =122)3(m p ,∴2H =g

m P 2

1229 球1碰后动能1K E =,11gH m 又1K E =22p m ,∴2

2212P H m g

=

从而可得:91H

H =

…………………………………………………………………2′ 同理可得:249

H

H =…………………………………………………………………2′

H H 43=…………………………………………………………………2′

14.(15分)

如图所示,在绝缘水平面上,相距为L 的A 、B 两点处分别固定着两个带电量相等的正电荷,a 、b 是AB 连线上的两点,其中Aa =Bb =L /4,O 为AB 连线的中点,一质量为m 带电量为+q 的小滑块(可以看作质点)以初动能E 0从a 点出发,沿直线AB 向b 点运动,其中小滑块第一次经过O 点时的动能为初动能的n 倍(n >l ),到达b 点时动能恰好为零,小滑块最终停在O 点,求:

(1)小滑块与水平面间的动摩擦因数。 (2)O 、b 两点间的电势差U ob 。 (3)小滑块运动的总路程。

(1)因为+b a q q b A 、,+=是以中点O 对称,所以0=ab U ……………………………1′

滑块由a→b ,根据动能定理:02

1

E mg qU ab -=-μ………………………………2′ ∴mgl

E 0

2=

μ………………………………………………………2′ (2)对小滑块由o →b 的过程,根据动能定理: 04

1

nE mg qU ab -=?

-μ………………2′

q

E n q

nE mg U ab 2)21(410

-=

-?=

μ……………………………………………2′

(3)q

E n U U ab ab 2)12(0

-=

-= ……………………………………………………2′

小滑块从a 点开始,最终停在O 点,根据动能原理

ao qU -0E mgs -=μ…………………………………………………………………2′

S =

0(21)4

ao qU E n l

mg μ++=……………………………………………………2′

15.(15分)

如图所示,质量为M =4kg 的木板静止置于足够大的水平面上,木板与水平面间的动摩擦因数μ=0.01,板上最左端停放着质量为m =1kg 可视为质点的电动小车,车与木板的档板相距L =5m ,车由静止开始从木板左端向右做匀加速运动,经时间t =2s ,车与挡板相碰,碰撞时间极短且碰后电动机的电源切断,车与挡板粘合在一起,求:

(1)试通过计算说明,电动小车在木板上运动时,木板能否保持静止? (2)试求出碰后木板在水平面上滑动的距离。

(1)设木板不动,电动车在板上运的加速度为0a .

由L =

2

02

1t a 得20/5.2s m a =…………………………………………………1′ 此时木板使车向右运动的摩擦力

N ma F 5.20==………………………………1′

木板受车向左的反作用力N F F 5.2=='…………………………………………1′ 木板受地面向右最大静摩擦力N g m M F f 5.0)(=+=μ…………………………1′

f F F >'所以木板不可能静止,将向左运动 ………………………………………1′

(2)设电动车向右运动加速度1a ,木板向左运动加速度为2a ,碰前电动车速度为1v ,木板速度为2v ,碰后共同速度为v ,两者一起向右运动s 而停止。

对电动车 1ma F =…………………………………………………………………1′

对木板(μ-'F m+M )g =Ma 2……………………………………………………1′

F′=F …………………………………………………………

21l t a t a =+212

1

…………………………………………………………1′ 解得 2

22

1/4.0,/1.2s m a s m a ==………………………………1′

s m t a v /2.411==……………………………………………………………1′ s m t a v /8.022==……………………………………………………………1′

两者相碰时,动量守恒 v M m Mv mv )(21+=-…………………………1′

s s m M m Mv mv v /2.05

8

.042.4121=?-?=+-=

……………………………………1′

根据动能定理:-2

)(2

1)(v M m gS M m +-=+μ…………………………………1′

解得:S =0.2m………………………………………………………………………1′

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析

备战高考物理与电磁感应现象的两类情况有关的压轴题附答案解析 一、电磁感应现象的两类情况 1.如图所示,无限长平行金属导轨EF、PQ固定在倾角θ=37°的光滑绝缘斜面上,轨道间距L=1m,底部接入一阻值R=0.06Ω的定值电阻,上端开口,垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量m=2kg的金属棒ab与导轨接触良好,ab与导轨间的动摩擦因数μ=0.5,ab连入导轨间的电阻r=0.04Ω,电路中其余电阻不计。现用一质量M=6kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连.由静止释放物体,当物体下落高度h=2.0m时,ab开始匀速运动,运动中ab始终垂直导轨并与导轨接触良好。不计空气阻力,sin37°=0.6,cos37°=0.8,g取10m/s2。 (1)求ab棒沿斜面向上运动的最大速度; (2)在ab棒从开始运动到开始匀速运动的这段时间内,求通过杆的电量q; (3)在ab棒从开始运动到开始匀速运动的这段时间内,求电阻R上产生的焦耳热。 【答案】(1) (2)q=40C (3) 【解析】 【分析】 (1)由静止释放物体,ab棒先向上做加速运动,随着速度增大,产生的感应电流增大,棒所受的安培力增大,加速度减小,棒做加速度减小的加速运动;当加速度为零时,棒开始匀速,速度达到最大。据法拉第电磁感应定律、闭合电路的欧姆定律、安培力公式、平衡条件等知识可求出棒的最大速度。 (2)本小问是感应电量的问题,据法拉第电磁感应定律、闭合电路的欧姆定律、电流的定义式、磁通量的概念等知识可进行求解。 (3)从ab棒开始运动到匀速运动,系统的重力势能减小,转化为系统增加的动能、摩擦热和焦耳热,据能量守恒定律可求出系统的焦耳热,再由焦耳定律求出电阻R上产生的焦耳热。 【详解】 (1)金属棒ab和物体匀速运动时,速度达到最大值,由平衡条件知 对物体,有;对ab棒,有 又、 联立解得: (2) 感应电荷量

2018高三期中物理压轴题答案

2016-2018北京海淀区高三期中物理易错题汇编 1.如图所示为某种弹射装置的示意图,该装置由三部分组成,传送带左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连 接着质量M=6.0kg的物块A.装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接.传送带的皮带轮逆时针匀速转动,使传送带上表面以u=2.0m/s匀速运动.传送带的右边是一半径R=1.25m位于竖直平面内的光滑1/4圆弧轨道.质量m=2.0kg的物块B从1/4圆弧的最高处由静止释放.已知物块B与传送带之间的动摩擦因数μ=0.1,传送带两轴之间的距离l=4.5m.设物块A、B之间发生的是正对弹性碰撞,第一次碰撞前,物块A静止.取g=10m/s2.求: (1)物块B滑到1/4圆弧的最低点C时对轨道的压力. (2)物块B与物块A第一次碰撞后弹簧的最大弹性势能. (3)如果物块A、B每次碰撞后,物块A再回到平衡位置时弹簧都会被立即锁定,而当它们再次碰撞前锁定被解除,求物块B经第一次与物块A后在传送带碰撞上运动的总时间. 2.我国高速铁路使用的和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.某列动车组 由8节车厢组成,其中车头第1节、车中第5节为动车,其余为拖车,假设每节动车和拖车的质量均为m=2×104kg,每节动车提供的最大功率P=600kW. (1)假设行驶过程中每节车厢所受阻力f大小均为车厢重力的0.01倍,若该动车组从静止以加速度a=0.5m/s2加速行驶. 1求此过程中,第5节和第6节车厢间作用力大小. 2以此加速度行驶时所能持续的时间. (2)若行驶过程中动车组所受阻力与速度成正比,两节动车带6节拖车的动车组所能达到的最大速度为v1.为提高动车组速度,现将动车组改为4节动车带4节拖车,则动车组所能达到的最大速度为v2,求v1与v2的比值. 3.暑假里,小明去游乐场游玩,坐了一次名叫“摇头飞椅”的游艺机,如图所示,该游艺机顶上有一个半径为 4.5m的“伞盖”,“伞盖”在转动过程中带动下面的悬绳转动,其示意图如图所示.“摇头飞椅”高O1O2= 5.8m,绳长5m.小明挑 选了一个悬挂在“伞盖”边缘的最外侧的椅子坐下,他与座椅的总质量为40kg.小明和椅子的转动可简化为如图所示的圆周

高考物理压轴题集(精选)

1(20分) 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 图12 2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、 ,放手后,木板沿斜面下滑,稳定后弹小球放在斜面上,用手固定木板时,弹簧示数为F 1 簧示数为F ,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地 2 面上)

高考物理63个经典压轴题

2020高考物理压轴题 63道题经典题例(答案在文末) 1(20分)如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正 电荷还是负电荷? (2)物体与挡板碰撞前后的 速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向图12

2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A 以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰 撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止, C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上, 用手固定木板时,弹簧示数为F1,放 手后,木板沿斜面下滑,稳定后弹簧示 数为F2,测得斜面斜角为θ,则木板与斜面间动摩擦

高考物理压轴题之电磁学专题(5年)(含答案分析).

25.2014新课标2 (19分)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯 视图如图所示.整个装置位于一匀强磁场中,磁感应强度的 大小为B,方向竖直向下,在内圆导轨的C点和外圆导轨的 D点之间接有一阻值为R的电阻(图中未画出).直导体棒 在水平外力作用下以速度ω绕O逆时针匀速转动、转动过 程中始终与导轨保持良好接触,设导体棒与导轨之间的动摩 擦因数为μ,导体棒和导轨的电阻均可忽略,重力加速度大 小为g.求: (1)通过电阻R的感应电流的方向和大小; (2)外力的功率.

25.(19分)2013新课标1 如图,两条平行导轨所在平面与水平 地面的夹角为θ,间距为L。导轨上端接 有一平行板电容器,电容为C。导轨处于 匀强磁场中,磁感应强度大小为B,方向 垂直于导轨平面。在导轨上放置一质量为 m的金属棒,棒可沿导轨下滑,且在下滑 过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系; (2)金属棒的速度大小随时间变化的关系。 24.(14分)2013新课标2 如图,匀强电场中有一半径为r的光滑绝缘圆轨道,轨道平面与电场方向平行。a、b为轨道直径的两端,该直径与电场方向平行。一电荷为q(q>0)的质点沿轨道内侧运动.经过a 点和b点时对轨道压力的大小分别为Na和Nb不计重力,求电场强度的大小E、质点经过a点和b点时的动能。

高考物理压轴大题

压轴大题的解题策略与备考策略 2008年高考,江苏省将采用新的高考模式,物理等学科作为学科水平测试科目,不再按百分制记分而代之以等级记成绩,把满分为120分的高考原始成绩转化为A、B、C、D等4个等级,A、B两级分别占考生总人数的前20%和20%~50%。在A、B两级中又细 化为A和B,如A,就是占考生总人数的前5%的考生。没有B级,就不能报本科,没有A级,就很难考上重点大学,而要考上名牌大学,如清华、北大、南大等,可能要A了。所以表面看起来,虽然物理等学科不按百分制记分了,似乎它对高考的作用减弱了,其实那是近视的看法,物理等学科虽然没有决定权但有否决权。 不论百分制记分还是等级记成绩,都要把题目做对才能有好成绩。要把题目做对、做好,就要研究高考命题趋势和解题策略,本文研究的是压轴大题的高考命题的趋势及压轴大题的解题策略与备考策略。因为压轴大题占分多,难度大,对于进入B级以及区分A级B级至关重要,而什么是压轴题?查现代汉语词典,有[压轴戏]词条,解释是:压轴子的戏曲节目,比喻令人注目的、最后出现的事件。有[压轴子]词条,解释是:①把某一出戏排做一次戏曲演出中的倒数第二个节目(最后的一出戏叫大轴子)。②一次演出的戏曲节目中排在倒数第二的一出戏。本文把一套高考试卷的最后一题和倒数第二题作为压轴大题研究。 根据笔者多年对高考的实践与研究认为,因为要在很短的时间内考查考生高中物理所学的很多知识和物理学科能力,压轴大题命题的角度常常从物理学科的综合着手。在知识方面,综合题常常是:或者力学综合题,或者电磁学综合题。 力学综合题的解法常用的有三个,一个是用牛顿运动定律和运动学公式解,另一个是用动能定理和机械能守恒解,第三个是用动量定理和动量守恒解,由于新课程高考把动量的内容作为选修和选考内容,所以用动量定理和动量守恒解的题目今年将会回避而不会出现在压轴大题中。在前两种解法中,前者只适用于匀变速直线运动,后者不仅适用于匀变速直线运动,也适用于非匀变速直线运动。 电磁学综合题高考的热点有两个,一个是带电粒子在电场或磁场或电磁场中的运动,一个是电磁感应。带电粒子在匀强电场中做类平抛运动,在磁

历年高考物理压轴题精选(一)详细解答

历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。 维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 11核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 11核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2 R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

高考物理压轴题总汇编

高考物理压轴题汇编 如图所示,在盛水的圆柱型容器竖直地浮着一块圆柱型的木块,木块的体积为V ,高为h ,其密度为水密度ρ的二分之一,横截面积为容器横截面积的二分之一,在水面静止时,水高为2h ,现用力缓慢地将木块压到容器底部,若水不会从容器中溢出,求压力所做的功。 解:由题意知木块的密度为ρ/2,所以木块未加压力时,将有一半浸在水中,即入水深度为h/2, 木块向下压,水面就升高,由于木块横截面积是容器的1/2,所以当木块上底面与水面平齐时,水面上升h/4,木块下降h/4,即:木块下降 h/4,同时把它新占据的下部V/4体积的水重心升高3h/4,由功能关系可得这一阶段压力所做的功vgh h g v h g v w ρρρ16 1 42441=-= 压力继续把木块压到容器底部,在这一阶段,木块重心下降4 5h ,同时底部被木块所占空 间的水重心升高4 5h ,由功能关系可得这一阶段压力所做的功 vgh h g v h vg w ρρρ16 10452452=-= 整个过程压力做的总功为:vgh vgh vgh w w w ρρρ16 11 161016121=+= += (16分)为了证实玻尔关于原子存在分立能态的假设,历史上曾经有过著名的夫兰克—赫兹实验,其实验装置的原理示意图如图所示.由电子枪A 射出的电子,射进一个容器B 中,其中有氦气.电子在O 点与氦原子发生碰撞后,进入速度选择器C ,然后进入检测装置D .速度选择器C 由两个同心的圆弧形电极P 1和P 2组成,当两极间加以电压U 时,只允许具有确定能量的电子通过,并进入检测装置D .由检测装置测出电子产生的电流I ,改变电压U ,同时测出I 的数值,即可确定碰撞后进入速度选择器的电子的能量分布. 我们合理简化问题,设电子与原子碰撞前原子是静止的,原子质 量比电子质量大很多,碰撞后,原子虽然稍微被碰动,但忽略这一能量损失,设原子未动(即忽略电子与原子碰撞过程中,原子得到的机械能).实验表明,在一定条件下,有些电子与原子碰撞后没有动能损失,电子只改变运动方向.有些电子与原子碰撞时要损失动能,所损失的动能被原子吸收,使原子自身体系能量增大,

备战高考物理临界状态的假设解决物理试题-经典压轴题

备战高考物理临界状态的假设解决物理试题-经典压轴题 一、临界状态的假设解决物理试题 1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求: (1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。 【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】 (1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有2 12 AB h gt =,解得 2(2.050.8) s 0.5s 10 t ?-= = (2)水平方向匀速运动,则有 02m/s 4m/s 0.5x v t = == 竖直方向的速度为 5m/s y v gt == 则 22 22045m/s=41m/s 6.4m/s y v v v =+=+≈ (3)在A 点根据向心力公式得 2 v T mg m L -= 代入数据解得 2 4(1101)N=30N 0.8 T =?+?

2.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。P是圆外一点,OP=3r,一质量为m、电荷量为q(q>0)的粒子从P点在纸面内沿着与OP成60°方向射出(不计重力),求: (1)若粒子运动轨迹经过圆心O,求粒子运动速度的大小; (2)若要求粒子不能进入圆形区域,求粒子运动速度应满足的条件。 【答案】(1)3Bqr ;(2) (332) v m ≤ + 或 (332) v m ≥ - 【解析】 【分析】 【详解】 (1)设粒子在磁场中做圆周运动的半径为R,圆心为O',依图题意作出轨迹图如图所示: 由几何知识可得: OO R '= ()222 (3)6sin OO R r rRθ '=+- 解得 3 R r = 根据牛顿第二定律可得 2 v Bqv m R = 解得 3Bqr v= (2)若速度较小,如图甲所示:

高考物理压轴题电磁场汇编

Q 1、在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于 φ纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一 定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁 R 场(不计重力影响)。 ⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。A O P D ⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径。 设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得: Q 2 v φ 1 mqBv 1 d/2 / R R qBd v 解得:1 2m / AO O ⑵设O/是粒子在磁场中圆弧轨道的圆心,连接O/Q,设O/Q=R/。 P D / 由几何关系得:OQO // OORRd 由余弦定理得: 2 /22// (OO)RR2RRcos 解得: /d(2Rd) 2R(1cos)d R 设入射粒子的速度为v,由 2 v mqvB / R 解出:v qBd(2Rd) 2mR(1cos)d y 2、(17分)如图所示,在xOy平面的第一象限有一匀强电场,电场的方 向平行于y轴向下;在x轴和第四象限的射线OC之间有一匀强磁场, E 磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有 电荷量+q的质点由电场左侧平行于x轴射入电场。质点到达x轴上A 点时,速度方向与x轴的夹角为φ,A点与原点O的距离为d。接着,O φ A φ x

质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场 的场强大小。 B C 解:质点在磁场中偏转90o,半径 mv rdsin,得 qB v q Bd sin m ; v

高考物理压轴题解析及题型特点-教育文档

2019年高考物理压轴题解析及题型特点 2019年高考物理压轴题特点与解答思路 一份试卷的压轴题,难度大,分值也大,是用来鉴别考生掌握知识与综合应用能力高下的分档题。所以,拿下压轴题,就能胜券在握。 压轴题显著特点 综合的知识多一般是三个以上知识点融汇于一题。譬如:电磁感应综合的压轴题,可以渗透磁场安培力、闭合电路欧姆定律、电功、电功率、功能原理、能量转化与守恒定律、牛顿定律、运动学公式,力学平衡等多个知识点。 物理技能要求高解题时布列的物理方程多,需要等量代换,有时用到待定系数法;研究的物理量是时间、位移或其他相 关物理量的函数时,则通过解析式进行分析讨论;当研究的 物理量出现极值、临界值,可能涉及三角函数,也有用到判别式、不等式性质等。 难易设计有梯度虽说压轴题有难度,但并不是一竿子难到底,让你望题生畏,而是先易后难。通常情况下的第(1)、(2)问,估计绝大多数考生还是有能力和信心完成的,所以,绝对不能全部放弃。 压轴题解答思路 压轴题综合这么多知识点,又能清晰地呈现物理情境。其中,物理问题的发生、变化、发展的全过程,正是我们研究问题

的思路要沿袭的。 分析物理过程根据题设条件,设问所求,把问题的全过程分解为几个与答题有直接关系的子过程,使复杂问题化为简单。有时压轴题的设问前后呼应,即前问对后问有作用,这样子过程中某个结论成为衔接两个设问的纽带;也有的压轴题设 问彼此独立,即前问不影响后问,那就细致地把该子过程分析解答完整。分析过程,看清设问间关系才能使解答胸有成竹。 分析原因与结果针对每一道压轴题,无论从整体还是局部考虑,物理过程都包含有原因与结果。所以,分析原因与结果成为解压轴题的必经之路。譬如:引起电磁感应现象的原因,是导体棒切割磁感线、还是穿过回路的磁通量发生变化,或者两者同作用。导体棒切割磁感线,是受外作用(恒力、变力),还是具有初速度。正是原因不同、研究问题所选用的 物理规律就不同,进而,我们结合题意分析这些原因导致怎样的结果。针对题目需要我们回答的问题,不外乎从受力情况、运动状态、能量转化等方面着手研究,最终得出题目要求的结果。 确定思路方法解压轴题不必刻意追求方法的创新,因为试题知识容量大,综合性强,很难做到解题方法大包大揽的巧妙与简捷。还是踏踏实实地从读题、审题开始。提取复杂情境中有价值信息,明确已知条件、挖掘隐含条件、预测临界条

最新2021年高考物理压轴题训练含答案 (5)

1.如图所示,质量为m 的小物块以水平速度v 0滑上原来静止在光滑水平面上质量为M 的小车上,物块与小车间的动摩擦因数为μ,小车足够长。求: (1) 小物块相对小车静止时的速度; (2) 从小物块滑上小车到相对小车静止所经历的时间; (3) 从小物块滑上小车到相对小车静止时,系统产生的热量和物块相对小车滑行的距离。 解:物块滑上小车后,受到向后的摩擦力而做减速运动,小车受到向前的摩擦力而做加速运动,因小车足够长,最终物块与小车相对静止,如图8所示。由于“光滑水平面”,系统所受合外力为零,故满足动量守恒定律。 (1) 由动量守恒定律,物块与小车系统: mv 0 = ( M + m )V 共 ∴0 mv V M m =+共 (2) 由动量定理,: (3) 由功能关系,物块与小车之间一对滑动摩擦力做功之和(摩擦力乘以相对位移)等于系统机械能的增量: 2201()21 - f l M+m V mv 2 = -共 ∴2 02()Mv l μM+m g = 2如下图所示是固定在水平地面上的横截面为“”形的光滑长直导轨槽,槽口向上(图为俯视图)。槽内 放置一个木质滑块,滑块的左半部是半径为R 的半圆柱形光滑凹槽,木质滑块的宽度为2R ,比“ ”形槽 的宽度略小。现有半径r(r<

高考物理压轴题电磁场汇编

⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1,由洛伦兹力的表达式和牛顿第二定律得: 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O / 是粒子在磁场中圆弧轨道的圆心,连接O / Q ,设O / Q =R /。 由几何关系得: / OQO ?∠= // OO R R d =+- 由余弦定理得:2 /22//()2cos OO R R RR ?=+- 解得:[] / (2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方 向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转90o,半径qB mv d r = =φsin ,得m qBd v φsin =; 由平抛规律,质点进入电场时v 0=v cos φ,在电场中经历时间 t=d /v 0,在电场中竖直位移2 21tan 2t m qE d h ??== φ,由以上各式可得 O O

高考物理压轴题模拟题

高考物理压轴题模拟题 1如图所示,一滑雪运动员(可看做质点)自平台A 上由静止开始沿光滑滑道滑下,滑到一平台B ,从平台B 的边缘沿水平抛出,恰好落在临近平台的一倾角为θ =53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台B 的高度差h =20m ,斜面顶端高H 1=88.8m ,重力加速度g = 10 m/s 2,sin53° = 0.8,cos53° = 0.6,。则: (1)滑雪运动员开始下滑时的高度H 是多少? (2)斜面顶端与平台B 边缘的水平距离s 是多少? (3)滑雪运动员离开平台B 后经多长时间到达斜面底端C 。 2如图甲所示,物块A 、B 的质量分别是 m A = 4.0kg 和 m B = 3.0kg ,用轻弹簧栓接相连放在光滑的水平地面上,物块B 右侧与竖直墙相接触。另有一物块C 从t =0时以一定速度向右运动,在 t = 4 s 时与物块A 相碰,并立即与A 粘在一起不再分开。物块C 的 v-t 图象如图乙所示。求: (1)物块C 的质量m C ; (2)墙壁对物块B 的弹力在 4 s 到12 s 的时间内对B 做的功W 及对B 的冲量I 的大小和方向; (3)B 离开墙后的过程中弹簧具有的最大弹性势能E P 。 3质量为M 的滑块由水平轨道和竖直平面内的四分之一光滑圆弧轨道组成,放在光滑的水平面上。质量为m 的物块从圆弧轨道的最高点由静止开始滑下,以速度v 从滑块的水平轨道的左端滑出,如图所示。已知M:m =3:1,物块与水平轨道之间的动摩擦因数为μ,圆弧轨道的半径为R 。 (1)求物块从轨道左端滑出时,滑块M 的速度的大小和方向; (2)求水平轨道的长度; (3)若滑块静止在水平面上,物块从左端冲上滑块,要使物块m 不会越过滑块,求物块冲上滑块的初速度应满足的条件。 4如图所示,两个圆形光滑细管在竖直平面内交叠,组成“8”字形通道,在“8”字形通道底端B 处连接一内径相同的粗糙水平直管AB 。已知E 处距地面的高度h =3.2m ,一质量m =1kg A C B v 图甲 4 9 -3 3 0 v /(ms -1) 12 图乙 8 t /s M m R

高三物理压轴题及其答案

高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其 正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某 同学设计如图所示实验,在小木板上固定一个轻弹簧, 弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行, 现将木板连同弹簧、小球放在斜面上,用手固定木板 时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后 弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动 摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12

高考物理(法拉第电磁感应定律提高练习题)压轴题训练及详细答案(1)

一、法拉第电磁感应定律 1.如图甲所示,一个圆形线圈的匝数n=100,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示。求: (1)线圈中的感应电流的大小和方向; (2)电阻R两端电压及消耗的功率; (3)前4s内通过R的电荷量。 【答案】(1)0﹣4s内,线圈中的感应电流的大小为0.02A,方向沿逆时针方向。4﹣6s 内,线圈中的感应电流大小为0.08A,方向沿顺时针方向;(2)0﹣4s内,R两端的电压是0.08V;4﹣6s内,R两端的电压是0.32V,R消耗的总功率为0.0272W;(3)前4s内通过R的电荷量是8×10﹣2C。 【解析】 【详解】 (1)0﹣4s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为: 由楞次定律知感应电流方向沿逆时针方向。 4﹣6s内,由法拉第电磁感应定律有: 线圈中的感应电流大小为:,方向沿顺时针方向。 (2)0﹣4s内,R两端的电压为: 消耗的功率为: 4﹣6s内,R两端的电压为: 消耗的功率为: 故R消耗的总功率为: (3)前4s内通过R的电荷量为:

2.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。重力加速度为g ,求: (1)匀强电场的电场强度 (2)流过电阻R 的电流 (3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR (3)()B mgd R r t NQRS ?+=? 【解析】 【详解】 (1)由题意得: qE =mg 解得 mg q E = (2)由电场强度与电势差的关系得: U E d = 由欧姆定律得: U I R = 解得 mgd I qR = (3)根据法拉第电磁感应定律得到: E N t ?Φ =? B S t t ?Φ?=?? 根据闭合回路的欧姆定律得到:()E I R r =+ 解得:

2016年——2020年高考物理压轴题汇编(含解题过程)

2016年——2020年高考物理压轴题汇编 一、力学综合:考察运动规律、牛顿定律、动能定理,功能关系、动量定理、动量守恒 定律、物体受力分析、运动过程分析、数理综合应用能力等 1、【2017·新课标Ⅲ卷】(20分)如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1。某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s 。A 、B 相遇时,A 与木板恰好相对静止。设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2。求 (1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离。 【答案】(1)1 m/s (2)1.9 m 【解析】(1)滑块A 和B 在木板上滑动时,木板也在地面上滑动。设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别是a A 和a B ,木板相对于地面的加速度大小为a 1。在物块B 与木板达到共同速度前有 ① ② ③ 由牛顿第二定律得④ ⑤ ⑥ 设在t 1时刻,B 与木板达到共同速度,设大小为v 1。由运动学公式有 ⑦ ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得⑨ (2)在t 1时间间隔内,B 相对于地面移动的距离为⑩ 设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2,对于B 与木板组成的体系,由牛顿第二定律有 ? 由①②④⑤式知,a A =a B ;再由⑦⑧可知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反。由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2,设A 的速度大小从v 1变到v 2所用时间为t 2 ,则由运动学公式,对木板有11A f m g μ=21B f m g μ=32()A B f m m m g μ=++1A A f m a =2B B f m a =2131f f f ma --=101B v v a t =-111v a t =1 1 m/s v =2 01112 B B s v t a t =- 132()B f f m m a +=+2122 v v a t =-

高考物理压轴题(整理1学生)

压 轴 题 训 练 1 个人感觉最近几年最后的计算题的特点:1、江苏、北京在力求创新,全国卷稳定,过程复杂,对思维的长度,细心程度要求较高。2、高考最后压轴题的命题来源(1)、旧题翻新(2)、力求建模(3)思维长度上要求高,力求分层次设计问题。 1.【2016·海南卷】水平地面上有质量分别为m 和4m 的物A 和B ,两者与地面的动摩擦因数均为μ。细绳的一端固定,另一端跨过轻质动滑轮与A 相连,动滑轮与B 相连, 如图所示。初始时,绳出于水平拉直状态。若物块A 在水平向右的 恒力F 作用下向右移动了距离s ,重力加速度大小为g 。求: (1)物块B 克服摩擦力所做的功;(2)物块A 、B 的加速度大小。 【答案】(1)2μmgs (2) 32F mg m μ- 34F m g m μ- 2.(15分)【2016·四川卷】中国科学院2015年10月宣布中国将在2020年开始建造世界上最大的粒子加速器。加速器是人类揭示物质本源的关键设备,在放射治疗、食品安全、材料科学等方面有广泛应用。如图所示,某直线加速器由沿轴线分布的一系列金属圆管(漂移 管)组成,相邻漂移管分别接在高频脉冲电源的两极。质子从K 点沿 轴线进入加速器并依次向右穿过各漂移管,在漂移管内做匀速直线运 动,在漂移管间被电场加速,加速电压视为不变。设质子进入漂移管B 时速度为8×106 m/s ,进入漂移管E 时速度为1×107 m/s ,电源频率为 1×107 Hz ,漂移管间缝隙很小,质子在每个管内运动时间视为电源周 期的1/2。质子的荷质比取1×108 C /kg 。求: (1)漂移管B 的长度;(2)相邻漂移管间的加速电压。 【答案】(1)0.4 m (2)4610V ? 3.【2011·上海卷】如图,质量2m kg =的物体静止于水平地面的A 处,A 、B 间距L =20m 。用大小为30N ,沿水平方向的外力拉此物体,经 02t s =拉至B 处。(已 知cos370.8?=,sin 370.6?=。取210/g m s =)

2016年高考物理压轴题及答案

2016年高考理科模拟试题及答案 2016年高考物理模拟试题及答案 2016年高考物理模拟试题 一、选择题(每题3分,共24分。在每题给出的四个选项中,只有一项是符合题目要求的) 1.以下说法符合物理学史的是 A.笛卡尔通过逻辑推理和实验对落体问题进行了研究 B.奥斯特发现了电流的周围存在磁场并最早提出了场的概念 C.静电力常量是由库仑首先测出的 D.牛顿被人们称为“能称出地球质量的人” 2.如图所示,a、b两条曲线是汽车甲、乙在同一条平直公路上运动的速度时间图像,已知 在t2时刻,两车相遇,下列说法正确的是 A.t1时刻两车也相遇 B.t1时刻甲车在前,乙车在后 C.甲车速度先增大后减小,乙车速度先减小后增大 D.甲车加速度先增大后减小,乙车加速度先减小后增大 3.如图所示,粗糙的水平地面上的长方形物块将一重为G的 光滑圆球抵在光滑竖直的墙壁上,现用水平向右的拉力F缓慢拉动长方体物块,在圆球 与地面接触之前,下面的相关判断正确的是 A.球对墙壁的压力逐渐减小 B.水平拉力F逐渐减小 C.地面对长方体物块的摩擦力逐渐增大 D.地面对长方体物块的支持力逐渐增大 4.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹。质点从M点出发经P点到达 N 点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点的时间相等。下列说法中正确的是 A.质点从M到N过程中速度大小保持不变 B.质点在这两段时间内的速度变化量大小相等,方向相同 C.质点在这两段时间内的速度变化量大小不相等,方向相同 D.质点在MN间的运动是加速运动 5.水平面上放置两根相互平行的长直金属导轨,导轨间距离为L,在导轨上垂直导轨放置 质量为m的与导轨接触良好的导体棒CD,棒CD与两导轨间动摩擦因数为μ,电流从一 条轨道流入,通过CD后从另一条轨道流回。轨道电流在棒CD处形成垂直于轨道面的磁 场(可视为匀强磁场),磁感应强度的大小与轨道电流成正比。实 验发现当轨道电流为I0时,导体棒能匀速运动,则轨道电流为2I0 时,导体棒运动的加速度为 A.μg B.2μg C.3μg D.4μg 6.空间存在着平行于x轴方向的静电场,其电势φ随x的分布如图所示,A、M、O、N、B 为x轴上的点,|OA|<|OB|,|OM|=|ON|。一个带电粒子在电场中仅在电场力作用下从M

高考物理压轴题-电磁场计算题

08全国 如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120°,在OC 右侧有一匀强电场。在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出,粒子射出磁场的速度方向与x 轴的夹角θ=30°,大小为v ,粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期。忽略重力的影响。求 (1)粒子经过A 点时速度的方向和A 点到x 轴的距离; (2)匀强电场的大小和方向; (3)粒子从第二次离开磁场到再次进入电场时所用的时间。 (08宁夏)24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角?,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角为?,求: (1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。 答:(1)?sin m qBd v =;(2)2 3 sin cos qB d E m φφ= x y φ )θ O C A v B × × × × × × × × × × × × × × × × × × × × ×

相关文档
相关文档 最新文档