文档库 最新最全的文档下载
当前位置:文档库 › 非隔离DC-DC 技术的速发展

非隔离DC-DC 技术的速发展

李龙文

.04.13

但是在节能减排的今天,我们会看到它的效率太低了。

过高的发热会降低可靠性。

大的散热器会使设备体积太大。

变换器

今天,我向大家推荐和介绍几种新的

BUCK(STEP-DOWN)

BOOST(STEP-UP)

INVERTING

SEPIC CONVERTOR

高效率的BUCK-BOOST电路

最优秀的BUCK-BOOST电路

集成了MOSFET的BUCK

集成了MOSFET的BOOST

集成了MOS的BUCK-BOOST

集成的SEPIC

倍以上。从而可靠性也提高一个数量级以

同步BUCK控制IC

两相的同步BUCK

多相的同步BUCK电路

在增加,成本在增加。

但是输入,输出电容容量大幅度减小,电源的体积大幅度减小,功率密度大幅度提输入输出电流的纹波也大幅度减小,更加

近代以来世界的科学发展历程.doc

近代以来世界的科学发展历程 考点提示 近代科学技术 (1)经典力学、相对论、量子论 (2)进化论 (3)蒸汽机的发明和电气技术的应用 知识清单 知识梳理 一、物理学的重大进展 (一)近代自然科学产生的背景 经济基础——资本主义经济发展,生产经验的积累。 思想准备——文艺复兴、宗教改革、启蒙运动解放了思想。 个人因素——科学家具有科学精神。 (二)经典力学 1、伽利略——意大利文艺复兴后期伟大的天文学家、物理学家。 (1)主张:为了解自然界,必须进行系统地观察和实验。 (2)通过实验证实,外力并不是维持运动状态的原因,只是改变运动状态的原因。 (3)通过实验,发现了自由落体定律等物理学定律,大大改变了古希腊哲学家亚里士多德以来有关运动的观念。 (4)开创了以实验事实为依据并具有严密逻辑体系的近代科学,为牛顿经典力学的创立和发展奠定了基础,被誉为近代科学之父。 2、牛顿——17世纪英格兰伟大的物理学家、数学家、天文学家、自然哲学家。 (1)牛顿在其经典著作《自然哲学的数学原理》一书中,提出了物体运动三大定律和万有引力定律。把地球上的物体运动和天体运动概括到同一理论之中,形成了一个以实验为基础、以数学为表达形式的牛顿力学体系,即经典力学体系。 (2)牛顿经典力学体系对解释和预见物理现象,具有决定性意义。海王星的发现是证明牛顿力学和万有引力定律有效性的最成功的范例。 (3)数学方面,牛顿是微积分的发明者之一。另外牛顿还发现了太阳光的光谱,发明了反射式望远镜等。 (三)相对论的创立: 1、背景:19世纪,随着物理学研究的进展,经典力学无法解释研究中遇到的新问题。20 世纪初,德国物理学家爱因斯坦提出相对论。 2、内容:包括狭义相对论和广义相对论。 狭义相对论——物体运动时,质量随着物体运动速度增大而增加,同时空间和时间也会随着物体运动速度的变化而变化,即会发生尺缩效应和钟慢效应。

基因工程的发展历程

基因技术的发展历程 2011级初等教育理科代林宏 [摘要]基因技术作为21世纪生物科技的核心技术之一,通过操纵、改变DNA上基因的容易来改变生物属性和特点,包括胰岛素生物工程、干细胞技术、克隆技术等。基因科技术的每一次突破和发展对人类的生产生活都有着重要的影响。 [关键词] 基因技术;成就;发展历程; 基因技术是指通过操纵、改变(增加或减少)DNA上基因的容易来改变生物属性和特点,以达到有利于人类目的的生物科学技术。如把胰岛素基因置入大肠杆菌产生人类稀缺的胰岛素生物工程;干细胞技术,克隆技术等。这一系列的技术由基因到伟大的人类基因组计划以及后来的一系列生物高科技的发展有一个漫长的历程。 19世纪60-80年代间确定了细胞中的两种核算,脱氧核糖核算及核糖核酸;染色质,染色体等物质,对细胞结构有了基本的认识。 1909年,丹麦的约翰逊把遗传因子命名为“基因”。随后美国人摩尔根和他的学生发表了《遗传的物质基础》和《基因论》。证明了基因是染色体上的遗传单位。 1944年美国的艾弗里证明了遗传基因就在DNA上。剑桥大学的卡文迪许实验室里,沃森和克里克研究发现了DNA分子双螺旋结构,并在科学期刊《自然》上面发表了论文,这位之后的基因技术发展奠定了基础。 1956年,美国的肯恩伯格从大肠杆菌里分离出了一种催化核苷酸形成DNA 的酶-DNA聚合酶,作为DNA体外复制技术的起始。随后提出了中心法则、操纵子学说,并成功的破译了遗传密码,使生物学的发展进入了另一个阶段。 所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入了人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的豆和四分之一的玉米都是转基因的。 运用胚胎遗传病筛查技术可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。[1] 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,二是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新性状,如抗虫西红柿,生长迅速的鲫鱼,转基因烟草等。1997

中国科技发展历程

中国科技发展历程 古代中国——科学技术成就辉煌 中华民族的科技活动有着悠久的历史,曾经为人类发展作出过巨大的贡献,并且在16世纪中期以前一直处于世界科技舞台的中心。早在距今3300多年以前的甲骨文中就有有关日食的记载。距今2500年以前的战国时期问世的《考工记》准确地记载了六种不同成份的铜锡合金及其不同用途。公元1世纪初期的西汉时期,中国人发明了造纸术,公元105年左右中国科学家蔡伦又改进和提高了造纸技术,从而使造纸技术在中国迅速推广开来。公元3世纪左右,中国人发明了瓷器,这一技术在11世纪传到波斯,由那里经阿拉伯于1470年左右传到意大利以及整个欧洲。到唐朝,中国科学家发明了火药,并在公元9世纪首次将其用于战争之中。在11世纪中期的宋朝,中国科学家发明的指南针和活字印刷技术得到了广泛的应用。15世纪中期,中国医学家时珍所著的《本草纲目》成为中国古代医学发展的集大成者。到此时为止,中国古代科学的发展达到了顶峰时期,四大发明已经先后登上了历史舞台。著名英国科学家约瑟博士认为,中国“在3世纪到13世纪之间保持一个西方所望尘莫及的科学知识水平”,现代西方世界所应用的许多发明都来自中国,中国是一个发明的国度。 由于从明代14世纪60年代末始以来,中国对外长期实行“闭关锁国”政策,影响了近代科学技术在中国的传播和发展,并使之处于相对停滞状态。 与此同时,欧洲成为现代科学的发源地,生产力突飞猛进,科学技

术获得迅速进展。中国逐渐拉大了与世界先进国家的距离。 近现代中国——科技发展历经曲折 在近代历史上,积贫积弱的中国不仅在科技发展上乏善可,而且自1840年鸦片战争以后还逐步沦为半殖民地半封建的国家。一个有着光辉灿烂历史的文明古国就这样退出了世界科技舞台。 19世纪中叶,一批向西方寻求救国真理的中国先行者,倡导科学救国、教育救国,主学习西方的先进科学技术。 于是中国开始有了出国求学者。1847年,来自香山南屏镇的容闳来到美国,3年后,他考入耶鲁大学。1854年,他又以优异的成绩从这所大学毕业,成为历史上毕业于美国大学的第一位中国人。1872年至1875年,清朝政府先后派出四批共120名青少年到美国留学。1905年,中国废除了科举制度,清政府举行了第一次归国留学生考试。这些归国人员为引进西方的先进科学技术发挥了一定的作用。 1911年10月10日,在武昌爆发了辛亥革命。在革命先行者领导下,终于推翻了延续两千多年的封建专制帝制,中国走向。 是近代中国主科学救国的先驱。但是,20世纪前叶的中国,动荡不安,科学技术事业发展的物质条件极差,所以发展依然很缓慢。 第一次世界大战结束后,为反对“巴黎和会”上帝国主义列强强加给中国的不平等条约,1919年5月4日,中国爆发了伟大的爱国救亡运动,即“五四运动”。“五四运动”提倡与科学,为中国近代科学的诞生扫清了道路。当时的留美学生元任、任鸿隽、铨、胡适等在美国发起组织了中国科

新型分离技术

新型分离技术 化学专业学生:汤婷(11130225) 指导教师:彭钢 摘要:目前运用较多且有很大发展前景的新型分离技术有超临界流萃取技术、分子蒸馏技术和膜分离技术,在中药制药、农产品加工和工程中都得到了广泛应用。 关键词:C5 馏分分离技术超临界流体萃取分子蒸馏膜分离技术分离技术 引言 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有分子蒸馏技术、超临界流体萃取技术和膜分离技术。[1] C5馏分分离技术 传统技术虽经历了时间的考验,但也存在一些问题,像流程、能耗、二烯烃的损失、吸收剂的合理配置等方面,都需要研究者或使用者进行近一步合理的改善,以满足企业发展及工艺先进化的需要。下面的几种新技术都在研究中尚未进入工业化,也是 C5馏分分离技术未来的发展趋势。 1.1 催化加氢除炔技术 该技术是为了克服第二吸收单元的能耗高、溶剂损失多的缺点而设计的,这也就是现在常说的一段吸收工艺。来自第一吸收单元的化学级异戊二烯进入选择性加氢反应器中,在多金属催化剂的作用下,将占总量的0.1% ~2%异戊烯炔和2 -丁炔等炔烃加氢除去,在经过脱轻塔、脱重塔的处理,最终在塔顶得到聚合级异戊二烯。北京化工研究院[2]经过模拟加氢前后的流程,得出结论: 加氢后的异戊二烯的收率和质量都要高于加氢前的,而且能耗和生产成本都大幅降低,提高了整个分离过程的经济效益。美国专利显示[3],催化加氢反应器中的适合温度为 20~ 80 ℃,压力为 0.3 ~ 4.0 MPa,其中的一种催化剂的配方为:3% 铜+ 0.03% 银 + 0.03% 钯 + 0.3% 钾。 1. 2 反应精馏技术 该技术的核心就是集原有的二聚反应器和其配套的蒸馏塔为一体的反应精馏塔。在该塔中,既可以选择性的发生环戊二烯的二聚反应,又能分出粗环戊二烯。北京化工总院[4]采用此技术做相关实验,与现有技术比较,发现环戊二烯的转化率相应的提高了,而且双环戊二烯的纯度也要高于现有技术下的。该技术的的独特之处在于简化了流程及操作,从而降低

1基因工程发展史

实践证明,利用重组DNA技术,可以对不同生物的基因进行新的组合,得到性状发生改变的新生物。这意味着人类可以根据自己的意愿设计新的生物,并把它构建出来。人的创造性有一次性得到生动的体现。从此,生物科学完全超越了经验科学的阶段,第一次具备了工程学科的性质,以至于我们今天把基于重组DNA技术的新的学科分支,称为目前众所周知的“基因工程”。 第一节基因工程的诞生与发展 一、基因工程的定义 基因工程(Gene engineering)原称遗传工程(Genetic engineering)。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿遗传并表达出新的性状甚至创造新的物种。因此,供体、受体和载体称为基因工程的三大要素,其中相对于受体而言,来自供体的基因属于外源基因。除了少数RNA病毒外,几乎所有生物的基因都存在于DNA结构中,而用于外源基因重组拼接的载体也都是DNA分子,因此基因工程亦称为重组DNA技术(DNA recombination technique)。另外,DNA重组分子大都需在受体细胞中复制扩增,故还可将基因工程表征为分子克隆或基因的无性繁殖(Molecular cloning)。 广义的基因工程定义为DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是外源基因重组、克隆和表达的设计与构建(即狭义的基因工程);而下游技术则涉及到含有重组外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因表达产物的分离纯化过程。因此,广义的基因工程概念更倾向于工程学的范畴。 二、基因工程诞生的理论基础 (一)DNA是遗传物质 1944年,Avery进行的肺炎双球菌转化实验,证明了基因的分子载体是DNA,而不是蛋白质;1952年,Alfred Hershy和Marsha Chase通过噬菌体转染实验证明了遗传物质是DNA。 (二)DNA双螺旋结构和半保留复制

三种新型分离技术的综述

1引言 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 2超临界流体萃取技术及其应用 超临界流体萃取是_种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术。其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具 作者简介:周芙蓉,女,中北大学化工与环境学院研究生有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 超临界流体萃取技术特点 ⑴由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使萃取后溶剂与溶质容易分离。 ⑵由于超临界流体具有与液体接近的溶解能力,同时又保持了气体所具有的传递性,有利于高效分离的实现。 (3)利用超临界流体可在较低温度下溶解或选择性地提取出相应难挥发的物质,更好地保护热敏性物质。 (4)萃取效率高,萃取时间短。可以省却清除溶剂的程序,彻底解决了工艺繁杂、纯度不够且易残留有害物质等问题。 (5)萃取剂只需再经压缩便可循环使用,可大大降低成本。 (6)超临界流体萃取能耗低,集萃取、蒸馏、分离于_体,工艺简单,操作方便。 (7)超临界流体萃取能与多种分析技术,包括气相色谱、高效液相色谱、质谱等联用,省去了传统方法中蒸馏、浓缩溶剂的步骤。避免样品的损失、降解或污染,因而可以实现自动化。

基因工程技术的发展历史-现状及前景

学号 1234567 基因工程课程论文 ( 2013 届本科) 题目:基因工程技术发展历史、现状及前景 学院:农业与生物技术学院 班级:生物科学 091 班 作者姓名: X X X 指导教师: XXX 职称:教授 完成日期: 2013 年 3 月 16 日 二○一三年三月

基因工程技术发展历史、现状及前景 摘要:生物学已是现代最重要学科之一,而从20世纪70年代初发展起来的基因工程技术,经过30多年来的发展与进步,已成为生物技术的核心。基因工程技术现应用范围涉及农业、工业、医药、能源、环保等诸多领域。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程技术及相关领域将成为21世纪的主导产业之一。 关键词:基因工程技术、发展历史、现状、前景 引言 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞-DNA 的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 一、基因工程技术的发展历史 (一)基因工程发展简述 人类与动物的许多病害都是由单细胞原核生物——细菌引起的。在一段时间,细菌成为人类的第一大杀手,成千上万的生命被其感染吞噬。虽然青霉素以及磺胺类等搞菌药物的出现拯救了无数的生命,但是,好景不长,青霉素使用不到期10年,即在世界上20世纪50年代中期,就发现了严重的细菌抗药性,并且这种抗药性还具有“传染性”,也就是说,一种细菌的抗药性可以传给另一种细菌。

现代分离技术论文

分离技术的发展现状和展望 摘要: 简要阐述了分离技术的产生和发展概况,各主要常规和新型分离技术的发展现状、研究前沿及未来的发展方向,并讨论了分离技术将继续推动现代化工和相关工业的发展,并在高新技术领域的发展中大显身手。 关键词:分离技术;发展现状;展望 Development Status and prospect on separation technology Abstract:The history of produce and development on separation engineering is briefly introduced. The status and study advance of most traditional and new separation techniques and its developing direction in future is briefed. In the past, separation technology brought into important play in chemical engineering.It is discussed that it will also impel modern chemical engineering and relative industries in future. Moreover it will strut its stuff in high technology. Key words: separation technology; development; prospect 本文从分离技术的产生和发展概况入手,综述了精馏、吸附、干燥等常规分离技术和超临界流体分离、膜分离、耦合分离等新型分离技术的研究,并分析了各种技术在现代化工中的重要作用。

转基因技术的研究进展

作物转基因技术的研究进展 摘要:作为生物技术领域的前沿,转基因技术已在多种植物上取得重大进展。本文主要介绍了当前作物转基因技术的三大主流方法:农杆菌介导法、基因枪介导法和花粉管通道法,并阐述了这几种转基因技术在水稻、小麦、棉花、玉米、大豆,甘薯等几种主要农作物的应用进展状况。 关键词:转基因技术、农作物、应用 Genetically Modified---转基因,简称GM,是指运用科学手段从某种生物体中提取所需要的基因,将其转入另一种生物中,使与另一种生物的基因进行重组,再从结果中进行数代的人工选育,从而获得特定的具有变异遗传性状的物质。而其衍生出的转基因技术就是将人工分离和修饰过的基因导入到目的生物体的基因组中,从而达到改造生物的目的,即把一个生物体的基因转移到另一个生物体DNA中的生物技术。 1983年比利时科学家Montagu 等人和美国Monsanto 公司Fraley等人分别将T- DNA上的致瘤基因切除并代之以外源基因,获得了世界上第一株转基因植株———转基因烟草。自此之后,作物转基因技术得到了迅速发展.截至目前,几乎所有的作物都开展了转基因研究,育种目标涉及到高产、优质、高效兼抗性及多用途等诸多方面.一批抗病、抗虫、抗逆、抗除草剂等转基因作物已进入商品化生产阶段. 国际农业生物技术应用服务组织2 月13 日在京发布的1 份报告显示,全球27 个国 家超过1800 万农民,2013 年种植转基因作物,种植面积比2012 年增加了500 万公顷。此外,首个具有耐旱性状的转基因玉米杂交品种亦于2013 年在美国开始商业化。 据该报告显示,全球转基因作物的种植面积于转基因作物商业化的18 年中增加了100 倍以上,从1996 年的170 万公顷增加到2013 年的1.75 亿公顷,其中美国仍是全球转基因作物的领先生产者,种植面积达7010 万公顷,占全球种植面积的40%。国际农业生物技术应用服务组织创始人兼荣誉主席、本年度报告作者Clive James 表示,目前排名前10 位的国家种植转基因作物的面积均超过100 万公顷,这为将来转基因作物的多样化持续发展打下了广泛基础。在种植转基因作物的国家中,有19 个为发展中国家,8 个为发达国家;发展中国家的种植面积连续2 年超越发达国家。 目前,作物遗传转化的方法有农杆菌介导法、基因枪法、电激法、PEG 法、脂质体法、低能离子束法、超声波介导法、显微注射法、花粉管通道法等.但在当前作物基因工程研究中,主要采用农杆菌介导法、基因枪法、花粉管通道法,这三种转基因技术也相对较为成熟. 一、农杆菌介导法 农杆菌介导法是指农杆菌侵染植物时,受到植物受伤后释放的酚类物质的刺激,活化质粒上Vir 区基因的表达,将质粒上的另一段DNA(T-DNA)共价整合到植物基因组上,在植物体内表达而改变植物的遗传特性。农杆菌介导法的转化效率受众多因素影响,如农杆菌侵染外植体的影响因素、外植体再生能力的内在因素和环境条件(pH、温度和光照条件)等[32],此法具有流程简单、仪器设备便宜、拷贝数低[33],且基因沉默少,转移的基因片段长等优点。 农杆菌介导法是获得第一个转基因植物的方法,迄今为止,农杆菌介导法获得的转基因植物占转基因植物总数85%,已成为植物基因转化首选方法。 二、基因枪介导法 基因枪法又称微弹轰击法,是将外源基因包裹在直径1~2 nm的钨或金颗粒表面,加速轰击植物外植体靶组织,穿过植物细胞壁和细胞膜而将外源基因带入植物细胞。因此,通过该方法进行DNA的转移过程不受外植体基因型的限制,可以将外源基因转移至几乎所有的植物细胞、组织器官和原生质体中。 最早的基因枪是由美国Cornel 大学的Sanford 等在1987 年研制成功的。目前基因枪介

分离技术-

1、列举一个给你日常生活带来很大益处,而且是得益于分离科学的事例。分析解决这个分离问题时可采用哪几种分离方法,这些分离方法分别依据分离物质的那些性质。 2、中国科学家屠呦呦因成功研制出新型抗疟疾药物青蒿素,获得2015年诺贝尔医学奖。青蒿素是从中医文献中得到的启发,用现代化学方法提取的,请通过查阅资料说明提取分离中药有效成分都有哪些具体的实施方法。 3、了解国内纯净水生产的主要分离技术是什么,该技术掉了原水中的哪些物质(写出详细工艺流程)。 4、活性炭和碳纳米管是否有可能用来做固相萃取的填料?如果可以,你认为它们对溶质的保留机理会是一样的吗? 5、固体样品的溶剂萃取方法有哪几种,从原理、设备及复杂程度、适用物质对象和样品、萃取效果等方面总结各方法的特点。 1答:海水的淡化可采用膜分离技术 膜分离技术( Membrane Separation,MS) 是利用具有选择透过性的天然或人工合成的薄膜作为分离介质,以外界能量或化学位差为推动力,对双组分或多组分药材进行分离、分级、提纯或富集的技术。膜分离技术包括微滤、纳滤、超滤和反渗透等。 2答: 1.经典的提取分离方法传统中草药提取方法有:溶剂提取法、水蒸汽蒸馏法两种。溶剂提取法有浸渍法、渗源法、煎煮法、回流提取法、连续提取等。分离纯化方法有,系统溶剂分离法、两相溶剂举取法、沉淀法、盐析法、透析法、结晶法、分馏法等。 2.现代提取分离技术超临界流体萃取法、膜分离技术、超微粉碎技术、中药絮凝分离技术、半仿生提取法、超声提取法、旋流提取法、加压逆流提取法、酶法、大孔树脂吸附法、超滤法、分子蒸馏法。 超临界流体萃取法(SFE):该技术是80年代引入中国的一项新型分离技术。其原理是以一种超临界流体在高于临界温度和压力下,从目标物中萃取有效成分,当恢复到常压常温时,溶解在流体中成分立即以溶于吸收液的

膜分离技术的发展趋势

膜分离技术的发展趋势 膜分离过程作为一门新型的高效分离、浓缩提纯及净化技术,已成为解决当代能源、资源和环境污染问题的重要高新技术及可持续发展技术的基础。膜分离技术的发展趋势可由以下两个方面说明。一、技术上的发展趋势 从技术上看,虽然膜分离已经获得了巨大的进展,但多数膜分离过程还处在探索和发展阶段,具体可概括为下列四点。 (1)新的膜材料和膜工艺的研究开发 为了进一步提高膜分离技术的经济效益,增加竞争能力,扩大应用范围,要求降低膜成本,提高膜性能,具有更好的耐热、耐压、耐酸、耐碱、耐有机溶剂、抗污染、易清洗等特点,这些要求推动了膜材料和膜工艺的研究开发。 ①高聚物膜在今后相当长的一段时间内,高聚物仍将是分离膜的主要材料。其发展趋向是开发新型高性能的高聚物膜材料,加强研究使膜皮层"超薄"和"活化"的技术,具体包括四个方面。 a.适合各种膜分离过程的需要,合成各种分子结构的新型高聚物膜并定量地研究膜材料的分子结构与膜的分离性能之间的关系。 开发新型高聚物膜的另一种途径是制造出高聚物"合金"膜材料,将两种或两种以上已有的高聚物混合起来作为膜材料。这样,此分离

膜就会具有两种或两种以上高聚物的功能特性。这种制膜方法比合成法更经济、更迅速。 c. 对制成的高聚物膜进行表面改性,针对不同的分离过程引入不同的活化基团,使膜表面达到"活化"。 d. 高性能的膜材料确定后,同样重要的是要找到一个能使其形成合适形态结构的制膜工艺。进一步开发出制造超薄、高度均匀、无缺陷的非对称膜皮层的工艺。 ②无机膜由于存在不可塑、受冲击易破碎、成型差以及价格较贵等缺点,一直发展较慢。无机膜今后的发展方向是研究新材料和新的制膜工艺。 ③生物膜与高聚物膜在分子结构上存在巨大差异。高聚物膜以长链状大分子为基础;生物膜的基本组成为脂质、蛋白质和少量碳氢化合物。生物膜具有最好的天然传递性能,具有高选择性、高渗透性的特点。但近几年来研究的合成生物膜都不稳定,寿命很短,今后的发展趋势是制造出真正能在工业上实际应用的生物膜。 (2)开发集成膜过程和杂化过程 所谓"集成"是指几种膜分离过程组合来用。"杂化"是指将膜分离过程与其他分离技术组合起来使用。原因是∶单一的膜分离技术有它的局限性,不是什么条件下都适用的。在处理一些复杂的分离过程时,为了获得最佳的效益,应考虑采用集成膜过程或杂化过程。近年来膜技术与其他技术的联合应用已得到了一定的发展,如∶反渗透与超滤

科学技术发展史论文

成都理大学 科学技术史论文题目:世界科技发展史回顾与未来科技发展展望 彭静 201206020228 核自学院 指导老师:周世祥

世界科技发展史回顾与未来科技发展展望 科学技术发展史是人类认识自然、改造自然的历史,也是人类文明史的重要组成部分。今天,当人类豪迈地飞往宇宙空间,当机器人问世,当高清晰度数字化彩电进入日常家庭生活,当克隆羊多利诞生惊动整个世界之时,大家是否会感受到,人类经历了一个多么漫长而伟大的科学技术发展历程。 一.古代科技发展概况 大约在公元前4000年以前,人类由石器时代跨入青铜器时代,并逐渐产生了语言和文字。在于自然界的长期斗争中,人类不断推动着生产工具和生产技术的进步,与此同时,人类对自然界的认识也不断丰富,科学技术的萌芽不断成长起来。 世界文明发端于中国,埃及,印度和巴比伦四大文明古国。中国古代科学技术十分辉煌,但主要在技术领域。中国的四大发明对世界文明产生巨大影响。古代中国科技文明的主要支桂有天文学、数学、医药学、农学四大学科和陶瓷、丝织、建筑三大技术,及世界闻名的造纸、印刷术、火药、指南针四大发明。四大发明:造纸、印刷术、火药、指南针。 生活在尼罗河和两河流域的古埃及和巴比伦人在天文学,数学等方面创造了杰出的成就,埃及金字塔名垂史册,印度数学为世界数学发展史大侠光辉的一页。 古希腊是科学精神的发源地,古希腊人创造了辉煌夺目的科学奇迹,在人类历史上第一次形成了独具特色的理性自然观,为近代科学的诞生奠定了基础。在人类历史上第一次形成了独具特色的的理性自然观,为近代科学的诞生奠定了基础。毕达哥拉斯,希波克拉底,以及百科全书式的学者亚里士多德都是那一时期的解除代表人物。公元前3世纪,进入希腊化时期的古希腊获得更大的发展,出现了欧几里得,阿基米德和托勒密三位杰出的科学家,使得古代科学攀上三座高峰。 公元最初的500多年中,欧洲的科学技术持续衰落,5世纪后进入黑暗的年代,并且延续了1000多年,科学一度成为宗教的婢女。但是科学精神在14世纪发出自己的呐喊,近代实验科学的始祖逻辑尔-培根像一颗新星,点亮了欧洲的天空。 在整个古代,技术发展的水平不高,科学也没有达到系统的程度,不同地域的人民之间还未建立起长期稳定的经济、文化联系, 但许多古代的科学技术成果, 如阳历和阴历, 节气、月、星期和其它时间单位的划分, 恒星天区的划分和名称,数学的基础知识和十进制记数法、印度——阿拉伯数字、轮车技术、杠杆技术、造纸术、印刷术等等,都已深深镶入了整个人类文明大厦的基础。 古代自然科学的发展还停留在描述现象,总结经验的阶段,个学科的分野并不明确,因而具有实用性,经验性和双重性,但它给近代科学的发展准备了充分的条件。 2.近现代科学技术的发展

农业转基因技术运用及发展

农业转基因技术运用及发展/h1 -- -- 本站首页 免费课件 免费试题 整册教案 教育资讯 计划总结 英语角 幼儿教育 文书写作 海量教案 免费论文

网站地图设为首页收藏本站 语文科数学科英语科政治科物理科化学科地理科历史科生物科中考备战高考备战高考试题中考试题教学论文作文园地

教学论文 经济论文 理工论文 管理论文 法律论文 行政论文 艺术论文 医学论文 文史论文 农科论文 英语论文 课程改革 教育法规 教育管理 家长频道 您现在的位置:3edu教育网免费论文农科论文农科论文正文3edu教育网,百万资源,完全免费,无需注册,天天更新!

农业转基因技术运用及发展 我国是一个人口众多的农业大国,应用最新的科学技术迅速发展农业是一项十分紧迫的任务。生物技术是二十世纪七十年代发展起来的一门新兴学科,它包括四大技术:基因工程,细胞工程,酶工程和微生物工程。基因工程是生物工程中的后起之秀。1转基因技术在农业领域的发展概况自1953年英国科学家沃森和克里克提出了DNA的分子结构双螺旋模型以来,人们对遗传基因密码的了解有了突破性进展,现代生物技术在此基础上发展起来。此后,生物技术研究倍受青睐,得到了快速的发展。在短短的几十年时间里,应用范围已经涉及到农业,医药,环境,食品和化工等多个领域。目前世界上许多国家如美国,日本等一些发达国家早已在进行这方面的研究,并且取得了可喜的成果。美国等国家投资了上亿美元的资金对人类基因组进行研究,并于今年4月完成人类基因图谱,我们国家承担了全部工作的l%左右。我国的863计划,攀登计划等对动植物的转基因及水稻的基因组进行了研究。人类在生物基因工程研究领域已经取得了许多重大成果。19%年,中国水稻研究所以黄大年研究员为首的课题组,在世界上首次研究出了抗除草剂转基因杂交稻,为解决长期以来困扰杂交稻制种纯度问题提供了新方法。微生物农药因具有对环境和生态安全的突出优点而受到国内外高度重视。将毒蛋白抗虫基因和抗除草剂基因分别导人水稻,使得新种质不仅有显着的抗虫性,而且有较强的抗除草剂效果。控制谷蛋白产生的基因植人“越光”号水稻中,使它的谷蛋白含量减少了四分之三,大大提高了它在食用和造酒方面的质量。瑞士培育出能产生p一胡萝卜素的转基因水稻,在不久的将来,出现在餐桌上的米饭不是白色的而是金黄色的。全世界估计有24亿人口以大米为主食,还有上千万人因铁的摄人量不足而使智力和身体发育受到影响;因维生素A的摄人量不足而在少年时期就失明。并且受影响的人群无法通过食用蔬菜、水果和肉类补充主食中缺乏的铁和维生素。瑞士科学家把黄水仙等植物的基因植人水稻,从而提高大米的营养价值,

蛋白质分离技术的发展及意义

蛋白质分离技术的发展及其意义 中国科学院病毒研究所王春林201328012415044 摘要:蛋白质作为生命活动的承担者,在生物体的生活周期中扮演了至关重要的角色。因此针对蛋白质的研究技术是生命科学领域中的一个关键点。为了对蛋白质进行进一步的研究,首先我们要通过分离蛋白,得到纯化的蛋白样品,才能对其进行结构大小物理及化学性质等的鉴定研究。本文主要介绍了几种常用的分离技术:层析技术、电泳技术、沉淀技术、超滤技术、色谱技术等。蛋白质分离技术的发展,对人类探索生物奥妙起到了很大的推动作用,促进了生命科学的快速发展。 关键词:蛋白质、分离纯化、层析、电泳、色谱技术 The Development and Significance of Protein Separation Technology WuHan Institute of Virology, CAS Wang Chunlin 201328012415044 Abstract: In recent decades, biological research has made a great progress .Therefore , the technology for protein research is a key points in life sciences. In order to have further studies, we h--ave to get the purified protein samples by separation technology. Then, we can identify th e ph--ysical and chemical properties o f the protein. In this article, We have introduced several normal separation methods, such as chromatography, electrophoresis, precipitation,ultrafiltrati on, and chromatogram. The development of protein separation technology has play a role to he lp human to reveals the mysteries of biology, as well as promoting the rapid growth of life scienc es. key words:protein, isolation, chromatography, electrophoresis, chromatogram 蛋白质存在于一切生物生物体中,是非常重要的大分子。是生物功能的执行者,担负着生物催化、物质运输远动防御调控及记忆识别等多种生理功能。由于深入研究蛋白质的结构与功能需要用到高纯度的蛋白质,因此蛋白质分离与纯化技术是生物产业中的核心技术。然而该技术难度、成本均高;例如一个生物药品的成本75%都花在下游蛋白质分离纯化当中。所以对该项技术的改良与创新在实际应用中具有重要意义。 1 蛋白质分离纯化技术 1.1超滤 超滤技术由于具有通量高,操作条件温和,易于放大等特点,特别适合生物活性大分子的分离。在生物技术领域,超滤技术目前已广泛应用于细胞收集分离、除菌消毒、缓冲液置换、分级(fractionation)、脱盐及浓缩[1]。近年来越来越多的研究表明,通过选择适当的膜或膜表面改性,以及对分离过程进行优化,充分利用和调控膜-蛋白质以及蛋白质-蛋白质之间的静 电相互作用,可以实现分子量相近的两种蛋白质的高选择性超滤分离[2-7]。蛋白质超滤分离快,,通过脉冲进样技术,载体相超滤技术、参数连续变化超滤技术以及在这些技术基础上建立的

转基因技术发展历程及前景展望

转基因技术发展历史 1945年首次使用分子生物学这一术语,主要指针对生物大分子的化学与物理结构的研究。 生物学经历了一个漫长的研究历程,最早人们从研究动物与植物的形态、解剖与分类开始,以后进一步研究细胞学、遗传学、微生物学、生理学、生物化学,进入细胞水平的研究。到20世纪中叶以来,生物学以生物大分子为研究目标,分子生物学开始形成了独立的学科。 分子生物学就是针对所有生物学现象的分子基础进行研究。这一术语由Willian Astbury于1945年首次使用,主要指针对生物大分子的化学与物理结构的研究。 1871年,Miescher从死的白细胞核中分离出DNA。 1871年,Miescher从死的白细胞核中分离出DNA。1928年,Griffith发现肺炎链球菌的无毒菌株与其被杀死的有毒菌株混合,即变成致病菌株。1944年Aver y等发现从强致病力的S型肺炎链球菌中提取的DNA能使致病力弱的R型转化成S型。如果加入少量DNA酶,这种转化立即消失,但加入各种蛋白水解酶则不能改变这种变化。这一著名的实验证明了引起细菌遗传改变的物质为DNA。1949年发现了了Chargaff规律:G=C,A=T;以及DNA具有典型的螺旋结构随着核酸化学研究的不断发展,1949年Chargaff从不同来源的DNA测定出4种核酸碱基(胸腺嘧啶T、胞嘧啶C、腺嘌呤A与鸟嘌呤G)中(A+T)/(G+C)的比值随不同来源的DNA而有所不同,但鸟嘌呤的量与胞嘧啶的量总就是相等,腺嘌呤与胸腺嘧啶的量相等,即G=C,A=T,这个规律称为。与此同时,Willkins

及Franklin用X射线衍射技术测定了DNA纤维的结构,表明了DNA具有典型的螺旋结构,并由两条以上的多核苷酸链组成。 1953年,Watson与Crick提出了DNA双螺旋模型 1953年,Watson与Crick提出了DNA双螺旋模型。该模型表明,DNA具有自身互补的结构,根据碱基配对原则,DNA中贮存的遗传信息可以精确地进行复制。这一理论奠定了现代分子生物学的基础。 1970年Smith从大肠杆菌中分离出第一个限制性内切酶 于1970年从大肠杆菌中分离出第一个能切割DNA的酶,它可以在DNA核苷酸序列的专一性位点上切割DNA分子,这种酶被称为限制性内切酶,以后很多种限制性酶陆续被分离出来,目前已有数百种。 限制性内切酶的分离成功使得重组DNA成为可能。因为DNA就是一个长链的生物高分子,在研究DNA重组、表达质粒的构造即它的碱基序列分析之前需要将DNA切割成为较短的片段,限制性内切酶这把?分子剪刀?正好可以实现这一功能。 1972年Berg首次成功进行了重组DNA的克隆 而在此以前,科学家已经发现了细菌中存在的DNA连接酶。1972年Berg首次将不同的DNA片段连接起来,并且将这个重组的DNA分子有效地插入到细菌细胞之中,重组的DNA进行繁殖,产生了重组DNA的克隆。Berg就是重组DNA或基因工程技术的创始人,并于1980年获得了诺贝尔奖。 重组DNA技术的出现奠定了现代转基因技术的基础。转基因技术的基本原理就就是在生物体中插入新的遗传物质。1973年,科学家在大肠杆菌中表达了一个来自沙门氏菌的基因,从而首次在科学界引发了关于转基因安全性的深入思考。

低温空气分离技术的探讨和发展趋势

178 自从人们发现并认识空气以来,通过科学家和化学家的探寻和试验,当今的空气分离的工艺技术已经达到了最新的现代技术程度,本文将近80多年以来,我们国家的大中型的空分流程技术发展的经历做一个回顾,展现了当代空分技术的核心内容,并同时对7次空分流程的优胜劣汰的变化做了阐述,最后在文末阐述了实现我国大中型空分流程再次变化的目标应当是进一步地提高单元设备技术水平、控制水平和节能和智能型的大型内压机缩流程。? 1?制冷技术的历史回顾 第一阶段:1823年,英国的科学家法拉第用实验方法-加压和冷却,产生液氨、液氯、液二氧化碳等,是世界上第一位涉足低温领域的人 第二阶段:1852年,英国的科学家汤姆孙、焦耳在科学实验中发现气体在节流后,温度会降低,这就是著名的“焦耳汤姆孙效应”,这个著名理论的发现是气体液化低温冷冻技术里程碑。 第三阶段:1902年,法国的工程师克拉特研究发明出活塞式膨胀机,建立了“克拉特液化循环”,“法国液化空气公司”由此诞生。 第四阶段:1939年,前苏联的科学家卡皮察发明了高效的径向流向心反击式透平膨胀机,这就是著名的卡皮察低压液化循环“空分设备”。 2?深冷法空气分离的发展历程 鉴于第三阶段的回顾,我们知道了“克拉特液化循环”,在1902年,德国卡尔.林德博士采用这个循环理论设计和制造了世界上第一台10m 3/h单级精馏的制氧机,并1903年试车成功,开辟了工业化制取液氧的工艺先河。在1905年320m 3/h双级精馏的制氧机又研制成功,1910年法液空公司在制氧机技术方面也去得了阶段性的胜利,世界第一台中压活塞式膨胀机研制成功,此制氧机也是采用“克拉特液化循环”工艺。 在1932年,“拉赫曼原理”诞生,这个是前苏联科学家拉赫曼提出了得近点理论,就是将一部分的膨胀空气直接送入高低压塔的上塔参与精馏。 气体工艺发展到20世纪40年代,切换式板翅式换热器在美国发明。60年代,新型的空气净化流程被德国的林德公司开发,使用分子筛吸附净化空气,此流程延长了板翅式换热器的寿命;再到70年代林德公司再次开发了液氧泵内压缩的流程;时间换到80年代,林德公司又加紧开发了分子筛净化附带增压透平膨胀机的新空分流程;最后来到90年代,全精馏制氩技术在林德公司诞生。 3?中国的空气分离行业的发展历程 我国的空分从1958年试制成功第一套3350m 3 /h?空分设备开始至今也有五六十年的历史。中国空分最早是在1953 年底的哈尔滨第一机械厂试制成功2套30m 3/h制氧机开始的,截止到目前,中国已累计生产空分设备10000多套。其中,1000m 3/h以上大中型空分设备也有900多套。 4?空气分离行业流程的发展变革 我国的空分流程主要经历了6次大的变革。以下简述了各个流程的特点: 4.1?第1代空分:铝带蓄冷器冻结高低压空分流程 流程组织较为复杂,主要由空气过滤压缩、高压空气压缩、C02碱洗、氨预冷、膨胀制冷、换热、精馏等系统组成。 这个流程复杂,膨胀机效率低,而且氧气的提取率低,能耗高。? 4.2?第2代空分:石头蓄冷器冻结全低压空分流程 相对于第一代空分流程大为简化,主要由空气过滤压缩、空气预冷、膨胀制冷、换热、精馏等系统组成。 此流程相比较于第一代空分能耗有明显的下降,但使冷箱内的设备和管道?变得复杂,工程费用高。 4.3?第3代空分:切换式换热器冻结全低压空分流程 空分流程水平在这个阶段有了很大的提高,这个流程主要是由空气过滤压缩、空气预冷、膨胀制冷、换热、精馏(含提氩设备)等系统组成。 此流程采用了传热效率高、结构紧凑轻巧板翅式换热器?,提高了空分设备的技术经济性?,温度分布较为稳定,膨胀机的效率提高了,所以能耗大大降低而且氧气的提取率提高了。 4.4?第4代空分:常温分子筛净化全低压空分流程 随着分子筛净化技术在空分领域的广泛应用,我国的空风也衍变到第四代,加紧了分子筛净化空气冷箱外“前端净化”技术。 第四代空分的流程采用常温分子筛,虽然操作维护方便,但是为了保证在再生时污氮气有足够的压力,空压机的排压要提高,导致能耗增加。? 4.5?第5代空分:常温分子筛净化增压膨胀空分流程 为了体现节能这个主题,第五代空分主要在降低能耗上下功夫,所以在运用常温分子筛的流程中引入了增加膨胀机,使氧提取率进一步提高,能耗进一步下降。 4.6?第6代空分:常温分子筛净化填料型上塔全精馏制氩流程 空分流程不断细化,精化,包括填料?技术的应用,诞生了第六代空分,它主要由空气过滤压缩、高效空气预冷、分子筛双层床净化、增压膨胀制冷、换热、精馏及全精馏制氩等系统组成。? 5?现代空分设备(第6代空分)的核心技术详述 低温空气分离技术的探讨和发展趋势 刘大勇 空气化工产品(中国)投资有限公司?上海?201203 摘要:以当今空气化工分离行业的发展为背景,探讨了如何运用低温空气分离技术,阐述了空气分离行业的整体发展经历,以及我们空分产业历经的六次技术变革发展,总结了行业发展趋势和奋斗目标。 关键词:低温?空气分离?安全可靠?发展需求 (下转第185页)

相关文档