文档库 最新最全的文档下载
当前位置:文档库 › 初中数学最值问题集锦 几何的定值与最值

初中数学最值问题集锦 几何的定值与最值

初中数学最值问题集锦 几何的定值与最值
初中数学最值问题集锦 几何的定值与最值

几何的定值与最值

几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或

几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本

方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,

先探求出定值,再给出证明.

几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量

(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基

本方法有:

1.特殊位置与极端位置法;

2.几何定理(公理)法;

3.数形结合法等.

注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这

是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数

形结合、特殊与一般相结合、

逻辑推理与合情想象相结合等思想方法.

【例题就解】

【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以

AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 .

思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′,

DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2

1AB 一常数,当CQ 越小,CD 越小,

本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值.

注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特

殊位置与极端位置是指:

(1)中点处、垂直位置关系等;

(2)端点处、临界位置等.

【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度

数( )

A .从30°到60°变动

B .从60°到90°变动

C .保持30°不变

D .保持60°不变

思路点拨 先考虑当圆心在正三角形的顶点C 时,

其弧的度数,再证明一般情形,从而作出判断.

注:几何定值与最值问题,一般都是置于动态背景下,

动与静是相对的,我们可以研究问题中的变量,考虑当变

化的元素运动到特定的位置,使图形变化为特殊图形时,

研究的量取得定值与最值.

【例3】 如图,已知平行四边形ABCD ,AB=a ,BC=b (a >b ),P 为AB 边上

的一动点,直线DP 交CB 的延长线于Q ,求AP+BQ 的最小值.

思路点拨 设AP=x ,把AP 、BQ 分别用x 的代数式表示,运

用不等式ab b a 222≥+ (当且仅当b a =时取等号)来求最小值.

【例4】 如图,已知等边△ABC 内接于圆,在劣弧AB 上取异于A 、B 的点M ,设直线AC 与BM 相交于K ,直线CB 与AM 相交于点N ,证明:线段AK 和BN 的乘

积与M 点的选择无关.

思路点拨 即要证AK ·BN 是一个定值,在图形中△ABC

的边长是一个定值,说明AK ·BN 与AB 有关,从图知AB 为

△ABM 与△ANB 的公共边,作一个大胆的猜想,AK ·BN=AB 2,

从而我们的证明目标更加明确.

注:只要探求出定值,那么解题目标明确,定值问题就转化为一般的几何证

明问题.

【例5】 已知△XYZ 是直角边长为1的等腰直角三角形(∠Z=90°),它的

三个顶点分别在等腰Rt △ABC(∠C=90°)的三边上,求△ABC 直角边长的最大可

能值.

思路点拨 顶点Z 在斜边上或直角边CA(或CB)上,当顶点Z 在斜边AB 上时,

取xy 的中点,通过几何不等关系求出直角边的最大值,当顶点Z 在(AC 或CB)

上时,设CX=x ,CZ=y ,建立x ,y 的关系式,运用代数的方法求直角边的最大

值.

注:数形结合法解几何最值问题,即适当地选取变量,建立几何元素间的函

数、方程、不等式等关系,再运用相应的代数知识方法求解.常见的解题途径是:

(1)利用一元二次方程必定有解的代数模型,运用判别式求几何最值;

(2)构造二次函数求几何最值.

学力训练

1.如图,正方形ABCD 的边长为1,点P 为边BC 上任意一点(可与B 点或C

点重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′

+CC ′+DD ′的最大值为 ,最小值为 .

2.如图,∠AOB=45°,角内有一点P ,PO=10,在角的两边上有两点Q ,R(均

不同于点O),则△PQR 的周长的最小值为 .

3.如图,两点A 、B 在直线MN 外的同侧,A 到MN 的距离AC=8,B 到MN 的

距离BD=5,CD=4,P 在直线MN 上运动,则PB PA -的最大值等于 .

4.如图,A 点是半圆上一个三等分点,B 点是弧AN 的中点,P 点是直径MN

上一动点,⊙O 的半径为1,则AP+BP 的最小值为( )

A .1

B .2

2 C .2 D .13- 5.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿

看圆柱的侧面移动到BC 的中点S 的最短距离是( )

A .212π+

B .2412π+

C .214π+

D .242π+

6.如图、已知矩形ABCD ,R ,P 户分别是DC 、BC 上的点,E ,F 分别是AP 、

RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立的是( )

A .线段EF 的长逐渐增大

B .线段EF 的长逐渐减小

C .线段EF 的长不改变

D .线段EF 的长不能确定

7.如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N.

(1)求证:MN∥AB;

(2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由.

(20XX年云南省中考题)

8.如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,∠SPM是一定角.

9.已知△ABC是⊙O的内接三角形,BT为⊙O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F.

(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;

(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如果成立,请证明,如果不成立,请说明理由.

10.如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( )

25 D.14

A.8 B.12 C.

2

11.如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( ) A.2

3+

3+ D.2

1+ C.2

2+ B.2

12.如图,在△ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将△ABC分成面积相等的两部分,试求这样线段的最小长度.

13.如图,ABCD是一个边长为1的正方形,U、V分别是AB、CD上的点,AV 与DU相交于点P,BV与CU相交于点Q.求四边形PUQV面积的最大值.14.利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水.已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?

15.某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示).其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面

积的和为800平方米.

(1)设矩形的边AB=x(米),AM=y(米),用含x的代数式表示y为.

(2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元.

①设该工程的总造价为S(元),求S关于工的函数关系式.

②若该工程的银行贷款为235000元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由.

③若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由.

(镇江市中考题)

16.某房地产公司拥有一块“缺角矩形”荒地ABCDE,边长和方向如图,欲在这块地上建一座地基为长方形东西走向的公寓,请划出这块地基,并求地基的最大面积(精确到1m2).

参考答案

初中数学几何最值问题典型例题精修订

初中数学几何最值问题 典型例题 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

初中数学《最值问题》典型例题一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 几何最值问题中的基本模型举例

二、典型题型

1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若 ∠AOB=45°,OP=PMN的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解. 【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD. ∴△COD是等腰直角三角形. 则CD OC=6. 【题后思考】本题考查了对称的性质,正确作出图形,理解△PMN周长最小的条件是解题的关键. 2.如图,当四边形PABN的周长最小时,a= .

最新初中数学常见8种最值问题

最值问题,也就是最大值和最小值问题。它是初中数学竞赛中的常见问题。这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。本文以例介绍一些常见的求解方法,供读者参考。 一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则 的最大值为________。 解:设,易知 由,得 从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则 可取得的最小值为() A. 3 B. C. D. 6 解:设,则

从而可知,当时,取得最小值。故选(B)。 三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。 即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法 例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足 。设,记为m的最小值,y为m的 最大值。则__________。 解:由得 解得

由是非负实数,得 从而,解得。 又, 故 于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。解:设矩形B的边长为x和y,由题设可得。 从而x和y可以看作是关于t的一元二次方程的两个实数根,则 因为, 所以, 解得 所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为_________。

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷 一、单选题(共6道,每道16分) 1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( ) A.100° B.110° C.140° D.80° 答案:A 解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 2.如图,当四边形PABN的周长最小时,a的值为( ) A. B.1 C.2 D. 答案:A 解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题. 试题难度:三颗星知识点:最值问题 3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点

P在直线l上运动,则的最大值为( ) A. B.3 C.1 D.5 答案:D 解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题. 试题难度:三颗星知识点:最值问题 4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( ) A.2 B.1 C. D.3 答案:C 解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题. 试题难度:三颗星知识点:最值问题 5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中数学最值问题典型例题(含解答分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题3、二次函数中最值问题) 问题原型:饮马问题造桥选址问题(完全平方公式配方求多项式取值二次函数顶点)出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A、B是直线l同旁的两个定点. 问题:在直线l上确定一点P,使PA PB +的值最小. 方法:作点A关于直线l的对称点A',连结A B'交l于 点P,则PA PB A B' +=的值最小 例1、如图,四边形ABCD是正方形,△ABE是等边三 角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM. (1)求证:△AMB≌△ENB; (2)①当M点在何处时,AM+CM的值最小; ②当M点在何处时,AM+BM+CM的值最小,并说明理由; (3)当AM+BM+CM的最小值为时,求正方形的边长。 A B A'′P l

例2、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.

初中数学最值问题集锦 几何地定值与最值

几何的定值与最值 几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或 几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本 方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法, 先探求出定值,再给出证明. 几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量 (如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基 本方法有: 1.特殊位置与极端位置法; 2.几何定理(公理)法; 3.数形结合法等. 注:几何中的定值与最值近年广泛出现于中考竞赛中,由冷点变为热点.这 是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数 形结合、特殊与一般相结合、 逻辑推理与合情想象相结合等思想方法. 【例题就解】 【例1】 如图,已知AB=10,P 是线段AB 上任意一点,在AB 的同侧分别以 AP 和PB 为边作等边△APC 和等边△BPD ,则CD 长度的最小值为 . 思路点拨 如图,作CC ′⊥AB 于C ,DD ′⊥AB 于D ′, DQ ⊥CC ′,CD 2=DQ 2+CQ 2,DQ=2 1AB 一常数,当CQ 越小,CD 越小, 本例也可设AP=x ,则PB=x 10,从代数角度探求CD 的最小值. 注:从特殊位置与极端位置的研究中易得到启示,常能找到解题突破口,特 殊位置与极端位置是指: (1)中点处、垂直位置关系等; (2)端点处、临界位置等. 【例2】 如图,圆的半径等于正三角形ABC 的高,此圆在沿底边AB 滚动,切点为T ,圆交AC 、BC 于M 、N ,则对于所有可能的圆的位置而言, MTN 为的度 数( ) ⌒

初中数学最值问题典型例题

初中数学《最值问题》典型例题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段. 轴 对 称 最 值 图形 l P B A N M l B A A P B l 原理两点之间线段最短两点之间线段最短三角形三边关系 特征 A,B为定点,l为定直 线,P为直线l上的一 个动点,求AP+BP的 最小值 A,B为定点,l为定直线, MN为直线l上的一条动线 段,求AM+BN的最小值 A,B为定点,l为定直线, P为直线l上的一个动 点,求|AP-BP|的最大值转化 作其中一个定点关于定 直线l的对称点 先平移AM或BN使M,N 重合,然后作其中一个定 点关于定直线l的对称点 作其中一个定点关于定 直线l的对称点 折 叠 最 值 图形 B' N M C A B 原理两点之间线段最短 特征 在△ABC中,M,N两点分别是边AB,BC上的动点,将△BMN沿MN翻折, B点的对应点为B',连接AB',求AB'的最小值. 转化转化成求AB'+B'N+NC的最小值 1.如图:点P是∠AOB内一定点,点M、N分别在边OA、OB上运动,若∠AOB=45°,OP=32,则△PMN 的周长的最小值为. 【分析】作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN 的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等腰直角三角形,据此即可求解.【解答】解:作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长. ∵PC关于OA对称, ∴∠COP=2∠AOP,OC=OP 同理,∠DOP=2∠BOP,OP=OD ∴∠COD=∠COP+∠DOP=2(∠AOP+∠BOP)=2∠AOB=90°,OC=OD.

2013中考总结复习冲刺练:初中数学“最值问题” 集锦

2013中考总结复习冲刺练:“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。

分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P 点时A’P’+B’P’=A’B,所以这时PA+P B最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB ∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R 的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有

精选初中数学常见8种最值问题

初中数学最值问题常见的8种解题方法一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则的最大值为________。 解:设,易知 由,得

从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则可取得的最小值为() A. 3 B. C. D. 6 解:设,则 从而可知,当时,取得最小值。故选(B)。

三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法

例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得 由是非负实数,得 从而,解得。 又, 故

于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。 解:设矩形B的边长为x和y,由题设可得。从而x和y可以看作是关于t的一元二次方程 的两个实数根,则 因为, 所以, 解得

所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为 _________。 解:由得,代入得。 而由和可知的整数。 所以,当时,取得最大值,为。 七. 借助几何图形法 例8. (2004年四川省初中数学联赛)函数 的最小值是________。 解:显然,若,则。因而,当取最小值时,必然有。

2018中考数学专题复习 几何最值问题综合课(pdf,无答案)

知识板块 考点一:几何图形中的最小值问题 方法: 1.找对称点求线段的最小值; 步骤:①找已知点的对称点,动点在哪条线上动,就是对称轴; ②连接对称点与另一个已知点; ③与对称轴的交点即是要找的点;通常用勾股定理求线段长; 2.利用三角形三边关系:两边之差小于第三边; 3.转化成其他线段,间接求线段的最小值;例如:用点到直线的距离最短,通过作垂线求最值; 4.用二次函数中开口向上的函数有最小值; 考点二:几何图形中的最大值问题 方法: 1.当两点位于直线的同侧时,与动点所在的直线的交点,这三点在同一直线时,线段差有最大值; 2.当两点位于直线的异侧时,先找对称点,同样三点位于同一直线时,线段差有最大值; 3.利用三角形三边关系:两边之和大于第三边; 4.用二次函数中开口向下的函数有最大值; 例题板块 考点一:几何图形中的最小值问题 例1.如图1,在正方形ABCD 中,E 是AB 上一点,BE=2,AE=3BE ,P 是AC 上一动点,则PB+PE 的最小值是 _________ . 图1 图2 图3 例2.如图2,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是 . 例3.如图3,点P 是Rt △ABC 斜边AB 上的一点,PE ⊥AC 于E ,PF ⊥BC 于F ,BC=6,AC=8,则线段EF 长的最小值为 ; 第一节 几何最值问题专项

例4.如图,在Rt △ABC 中,AB=BC=6,点E ,F 分别在边AB ,BC 上,AE=3,CF=1,P 是斜边AC 上的一个动点,则△PEF 周长的最小值为 . 图4 图5 例5.如图,在平面直角坐标系中,Rt △OAB 的顶点A 的坐标为(9,0),点C 的坐标为(2,0),tan ∠BOA= A .67 B .231 C. 6 D .193+ 例6.如图6,等腰Rt △ABC 中,∠ACB=90°,AC=BC=4,⊙C 的半径为1,点P 在斜边AB 上,PQ 切⊙O 于点Q ,则切线长PQ 长度的最小值为( ) 图6 图7 图8 例7.如图7,矩形ABCD 中,AB=4,BC=8,E 为CD 的中点,点P 、Q 为BC 上两个动点,且PQ=3,当CQ= _________ 时,四边形APQE 的周长最小. 考点二:几何图形中的最大值问题 例1.已知点A (1,2)、B (4,-4),P 为x 轴上一动点. (1)若|PA |+|PB |有最小值时,求点P 的坐标; (2)若|PB |-|PA |有最大值时,求点P 的坐标. 例2.如图8所示,已知A 11 (,y )2,B 2(2,y )为反比例函数1y x =图像上的两点,动点P (x,0)在x 正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是 .

初中数学最值问题专题分类讲解全书

初中数学最值问题专题分类讲解全书 ●平面几何中的最值问题 ●几何的定值与最值 ●最短路线问题 ●对称问题 ●巧作―对称点‖妙解最值题 ●数学最值题的常用解法 ●求最值问题 ●有理数的一题多解

●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’, 在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’=AP,

在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可. 解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好?

中考数学中的最值问题解法

中考数学几何最值问题解法 在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。 解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。 应用两点间线段最短的公理(含应用三角形的三边关系)求最值 典型例题: 例1. 如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为【】 A1B C. 55 D. 5 2 例2.在锐角三角形ABC中,BC=2 4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN 的最小值是▲ 。 例3.如图,圆柱底面半径为2cm,高为9cm π,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为▲ cm。

练习题: 1. 如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开 始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 2.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC= 23 BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是【 】 A 、6 (4)π+㎝ B 、5cm C 、㎝ D 、7cm 3.如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 _ ▲ . 二、应用垂线段最短的性质求最值:典型例题: 例1. (2012山东莱芜4分)在△ABC 中,AB =AC =5,BC =6.若点P 在边AC 上移动,则BP 的最小值是 ▲ .

初中数学最值问题 专题

中考数学最值问题 【例题1】(经典题)二次函数y=2(x ﹣3)2﹣4的最小值为 . 【例题2】(2018江西)如图,AB 就是⊙O 的弦,AB=5,点C 就是⊙O 上的一个动点,且∠ACB=45° ,若点M 、N 分别就是AB 、AC 的中点,则MN 长的最大值就是 . 【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3. (1)求抛物线的解析式及顶点D 的坐标; (2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形; (3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ + 2 1QC 就是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由. 练 习 1、(2018河南)要使代数式x 32-有意义,则x 的( ) A 、最大值为32 B 、最小值为3 2 C 、最大值为2 3 D 、最大值为23 2、(2018四川绵阳)不等边三角形?ABC 的两边上的高分别为4与12且第三边上的高为整数,那么此高的最大值可能为________。 3、(2018齐齐哈尔)设a 、b 为实数,那么a ab b a b 22 2++--的最小值为_______。 -2-1 -13 2 1 321y x O M D C B A

4、(2018云南)如图,MN 就是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 就是直径MN 上的一个动点,则PA+PB 的最小值为 . 5、(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8、1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率; (2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存与损耗费用的相关信息如表所示、已知该种水果的进价为4、1元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大? 时间(天) 1≤x <9 9≤x <15 x ≥15 售价(元/斤) 第1次降价后的价格 第2次降价后的价格 销量(斤) 80-3x 120-x 储存与损耗费用(元) 40+3x 3x 2-64x +400 (3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127、5元,则第 15天在第14天的价格基础上最多可降多少元? 6、(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R(元),售价每只为P(元),且R 、P 与x 的关系式分别为 R x =+50030,P x =-1702。 (1)当日产量为多少时,每日获得的利润为1750元; (2)当日产量为多少时,可获得最大利润?最大利润就是多少? 7、(2018吉林)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别就是600元与1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少? 8、(经典题)求x x x x 2211 -+++的最大值与最小值。 9、(经典题)求代数式x x 12 -的最大值与最小值。 10、(经典题)求函数y x x =--+-||||145的最大值。

初中数学最值问题

最值问题 “最值”问题大都归于两类基本模型: Ⅰ、归于函数模型: 即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值 Ⅱ、归于几何模型,这类模型又分为两种情况: (1)归于“两点之间的连线中,线段最短”。凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。 (2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。 一、利用函数模型求最值 例1、如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃ABCD,设AB=x米,由于实际需要矩形的宽只能在4m和7m之间。设花圃面积为y平方米.求y与x之间的函数关系式和y的最值。 例2、如图(1),平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合),作EF⊥AB于F,设BE=x,△DEF的面积为S当E运动到何处时,S有最大值,最大值为多少? 例3、如图所示,已知AB是⊙O中一条长为4的弦,P是⊙O上一动点,且cos∠APB= 3 1 ,求△APB的面积的最大值? 例4、如图,已知Rt△ABC≌Rt△DEF,∠C=∠F=30°,AB=DE=a。当两三角形沿着直线FC移动时,求图中阴影部分的面积的最大值。 A B C E F 1 / 4

2 / 4 A O x y D C B 三、归入“两点之间的连线中,线段最短” 思路:不管在什么背景下,有关线段之和最短问题,总是化归到“两点之间的所有连线中,线段最短”,例5、(1)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( ) A.23 B.26 C.3 D.6 (2)如图,AB 、CD 是半径为5的⊙O 的两条弦,AB=8,CD=6,MN 是直径,AB ⊥MN 于点E ,CD ⊥MN 于点F ,P 为EF 上的任意一点,则PA+PC 的最小值为___________. 例6、几何模型: 条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于点P ,则PA PB A B '+=的值最小(不必证明). 模型应用: (1)如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连结BD ,由正方形对称性可知,B 与D 关于直线AC 对称.连结ED 交AC 于P ,则PB PE +的最小值是___________. (2)如图2,O ⊙的半径为2,点A B C 、、在O ⊙上,OA OB ⊥,60AOC ∠=°,P 是OB 上一动点,求PA PC +的最小值___________. (3)如图3,45AOB ∠=°,P 是AOB ∠内一点,10PO =,Q R 、分别是OA OB 、上的动点,求PQR △周长的最小值___________. 例7、如图,锐角△ABC 的边AB=42,∠BAC=45°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM+MN 的最小值是___________. 例8、如图(1),直线23+-=x y 与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,⊙A 经过点B 和点O ,直线BC 交⊙A 于点D 。 (1)求点D 的坐标; (2)过O ,C ,D 三点作抛物线,在抛物线的对称轴上是否存在一点P ,使线段PO 与之差的值最大?若存在,请求出这个最大值和点P 的坐标。若不存在,请说明理由。 A B A ' P l O A B P R Q 图3 O A B C 图2 A B E C P D 图1 P

初中数学经典最值问题提高题

初中数学的几何最值问题经典例题 1. (2016山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】 A .21+ B .5 C .1455 5 D .52 2.(2016湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值 是 。 3.(2016四川凉山5分)如图,圆柱底面半径为2cm ,高为9cm π,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺 着圆柱侧面绕3圈到B ,求棉线最短为 cm 。 4. (2016四川眉山3分)在△ABC 中,AB =5,AC =3,AD 是BC 边上的中 线,则AD 的取值范围是 . 5.(2016湖北荆门3分)如图,长方体的底面边长分别为2cm 和4cm ,高为 5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为【 】 A.13cm B.12cm C.10cm D.8cm 6.(2016广西贵港2分)如图所示,在边长为2的正三角形ABC 中,E 、F 、G 分别为AB 、AC 、BC 的中点,点P 为线段EF 上一个动点,连接BP 、GP ,则△BPG 的周长的最小值是 . 7.(2016浙江台州4分)如图,菱形ABCD 中,AB=2,∠A=120°,点P , Q ,K 分别为线段BC ,CD ,BD 上的任意一点,则PK+QK 的最小值为 A . 1 B .3 C . 2 D .3+1 8.(2016四川广元3分) 如图,点A 的坐标为(-1,0),点B 在直线 y x =上运动,当线段AB 最短时,点B 的坐标为【 】 A.(0,0) B.(2 1-,21-)

中考数学压轴题突破:几何最值问题大全

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡 不归、阿波罗尼斯圆等) 一、基本图形 所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。 由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。 余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。 例3.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上

精彩初中几何最值问题全总结

一、基本图形 余不赘述,下面仅举一例证明: [定点到定圆]:点圆之间,点心线截距最短(长)。 已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO, AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。 上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。 二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。 类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。 (一)直接包含基本图形。 例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。 (二)动点路径待确定。 例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB 边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。 简析:A是定点,B'是动点,但题中未明确告知B'点的运动路径,所以需先确定B'点运动路径是什么图形,一般有直线与圆两类。此题中B'的路径是以C为圆心,BC为半径的圆弧,从而转化为定点到定圆的最短路径为AC-B'C=1。

初中数学最值问题专题

中考数学最值问题 【例题1】(经典题)二次函数y=2(x ﹣3)2 ﹣4的最小值为 . 【例题2】(2018江西)如图,AB 是⊙O 的弦,AB=5,点C 是⊙O 上的一个动点,且∠ACB=45°,若点M 、N 分别是AB 、AC 的中点,则MN 长的最大值是 . 【例题3】(2019湖南张家界)已知抛物线y =ax 2 +bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3. (1)求抛物线的解析式及顶点D 的坐标; (2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形; (3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值; (4)若点Q 为线段OC 上的一动点,问AQ +2 1 QC 是否存在最小值若存在,求岀这个最小值;若不存在,请说明理由. 练 习 1.(2018河南)要使代数式x 32-有意义,则x 的( ) A.最大值为 32 B.最小值为32 C.最大值为23 D.最大值为2 3 2.(2018四川绵阳)不等边三角形?ABC 的两边上的高分别为4和12且第三边上的高为整数,那么此高的最大值可能为________。 -2 -1 -1321 3 21 y x O M D C B A

3.(2018齐齐哈尔)设a 、b 为实数,那么a ab b a b 22 2++--的最小值为_______。 4.(2018云南)如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为 . 5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率; (2)从第一次降价的第1天算起,第x 天(x 为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为元/斤,设销售该水果第x (天)的利润为y (元),求y 与x (1≤x <15)之间的函数关系式,并求出第几天时销售利润最大 时间(天) 1≤x <9 9≤x <15 x ≥15 售价(元/斤) 第1次降价后的 价格 第2次降价后的 价格 销量(斤) 80-3x 120-x 储存和损耗费用 (元) 40+3x 3x 2 -64x +400 (3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少元,则第 15天在第14天的价格基础上最多可降多少元 6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为 R x =+50030,P x =-1702。 (1)当日产量为多少时,每日获得的利润为1750元; (2)当日产量为多少时,可获得最大利润最大利润是多少 7.(2018吉林)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少

相关文档
相关文档 最新文档