文档库 最新最全的文档下载
当前位置:文档库 › (完整版)太阳辐射波长

(完整版)太阳辐射波长

(完整版)太阳辐射波长
(完整版)太阳辐射波长

太阳辐射

一、太阳辐射光谱和太阳常数

太阳辐射光谱

太阳辐射中辐射能按波长的分布,称为太阳辐射光谱,见图2.4。从图中可看出,大气上界太阳光谱能量分布曲线,与用普朗克黑体辐射公式计算出的6000K的黑体光谱能量分布曲线非常相似。因此可以把太阳辐射看作黑体辐射。太阳是一个炽热的气体球,其表面温度约为6000K,内部温度更高。根据维恩位移定律可以计算出太阳辐射峰值的波长λmax为0.475μm,这个波长在可见光的青光部分。太阳辐射主要集中在可见光部分(0.4~0.76μm),波长大于可见光的红外线(>0.76μm)和小于可见光的紫外线(<0.4μm)的部分少。在全部辐射能中,波长在0.15~4μm之间的占99%以上,且主要分布在可见光区和红外区,前者占太阳辐射总能量的约50%,后者占约43%,紫外区的太阳辐射能很少,只占总量的约7%。

太阳常数

太阳辐射通过星际空间到达地球表面。当日地距离为平均值,在被照亮的半个地球的大气上界,垂直于太阳光线,每秒每平方米的面积上,获得的太阳辐射能量称为太阳常数,用Rsc(Solar constant)表示,单位为(W/m2)。太阳常数是一个非常重要的常数,一切有关研究太阳辐射的问题,都要以它为参数。关于太阳常数的研究已有很长历史了,早在20世纪初,人们就已经通过各种观测手段估计它的取值,认为大约应在1350~1400W/m2之间。太阳常数虽然经多年观测,由于观测设备、技术以及理论校正方法的不同,其数值常不一致。据研究,太阳常数的变化具有周期性,这可能与太阳黑子的活动周期有关。在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。近年来,气候学家指出,只要地球的长期气候发生1%的变化,就会引起太阳常数的变化。目前已有许多无人或有人操作的空间实验对太阳辐射进行直接观测,并在宇宙空间实验站设计了名为“地球辐射平衡”的课题,其中一个重要项目就是对太阳辐射进行长期监视。这些观测数据将对进一步了解大气物理过程及全球气候变迁的原因有很大帮助。1981年世界气象组织推荐的太阳常数值Rsc=1367±7(W/m2),通常采用1367W/m2。

二、太阳辐射在大气中的衰减

太阳辐射通过大气层后到达地球表面。由于大气对太阳辐射有一定的吸收、散射和反射作用,使投射到大气上界的辐射不能完全到达地表面。图2.4最下面的实曲线表示太阳辐射通过大气层被吸收、散射、反射后到达地表的太阳辐射光谱。

图2.4 大气上界和地面的太阳辐射光谱

与大气上界的太阳辐射光谱相比较,可以看出:通过大气层后,太阳总辐射能有明显地减弱;波长短的辐射能减弱得最为显著;辐射能随波长的分布变得极不规则。产生这些变化有以下几方面原因:1大气对太阳辐射的吸收太阳辐射穿过大气层到达地面时,要受到一定程度的减弱,这是因为大气中某些成分具有选择吸收一定波长辐射能的特性。大气中吸收太阳辐射的成分主要有水汽、液态水、二氧化碳、氧、臭氧及尘埃等固体杂质等。太阳辐射被吸收后变成了热能,因而使太阳辐射减弱。水汽吸收最强的波段是位于红外区的0.93~2.85μm,据估计,太阳辐射因水汽的吸收可减弱约4%~15%。氧只对波长小于02μm的紫外线吸收很强,在可见光区虽然也有吸收,但较弱。臭氧在大气中的含量很少,但在紫外区和可见光区都有吸收带,在0.2~0.3μm波段的吸收带很强,由于臭氧的吸收,使小于0.29μm波段的太阳辐射不能到达地面,因而保护了地球上的一切生物免遭紫外线过度辐射的伤害。臭氧在0.44~0.75μm还有吸收,虽不强,但因这一波段正好位于太阳辐射最强的区域内,所以吸收的太阳辐射量相当多。二氧化碳对太阳辐射的吸收比较弱,仅对红外区2.7μm和4.3μm附近的辐射吸收较强,但该区域的太阳辐射较弱,被吸收后对整个太阳辐射的影响可忽略。悬浮在大气中的水滴、尘埃、污染物等杂质,对太阳辐射也有吸收作用,大气中这些物质含量越高,对太阳辐射吸收越多,如在工业区、森林火灾、火山爆发、沙尘暴等,太阳辐射都有明显减弱。总之,大气对太阳辐射的吸收,在平流层以上主要是氧和臭氧对紫外辐射的吸收,平流层至地面主要是水汽对红外辐射的吸收。被大气成分吸收的这部分太阳辐射,将转化为热能而不再到达地面。由于大气成分的吸收多位于太阳辐射光谱两端,而对可见光部分吸收较少,因此可以说大气对可见光几乎是透明的。

2大气对太阳辐射的散射

太阳辐射进入大气时将遇到空气分子、尘粒、云雾滴等质点,都要产生散射现象。散射不像吸收那样是把辐射转变为热能,而只是改变辐射的方向,使太阳辐射以质点为中心向四面八方传播,使原来传播方向上的太阳辐射减弱。见图2.5。如果太阳辐射遇到的散射质点的直径比入射辐射的波长要短(如空气分子),则对入射辐射中波长较短的辐射的散射强,也即辐射波长愈短,散射愈强;而对波长较长的辐射散射弱。对于一定大小的分子来说,散射能力与波长的四次方成反比。这种散射是有选择性的,称为分子散射,也叫雷利(Rayleigh)散射。

表2.3为可见光的散射系数相对值,即若将红光(0.70μm)的散射系数定为1.0,则紫光(0.44μm)的散射系数为红光的6.4倍。当大气中的水汽、尘粒等杂质较少时,主要是空气分子散射,太阳辐射中波长较短的蓝紫光被散射得多,所以晴朗的天空呈蔚蓝色。日出、日落时,因光线通过大气路程长,可见光中波长较短的光被散射殆尽,所以看上去太阳呈桔红色。

当太阳辐射遇到的散射质点的直径是比入射的波长大的粗粒质点,辐射虽然也被散射,但这种散射是没有选择性的,即辐射的各种波长都同样地被散射。这种散射称粗粒散射,也称米(Mie)散射。例如当空气中污染较严重或存在较多的雾粒或尘埃等杂质时,一定范围的长短波都同样地被散射,使天空呈灰白色。

大气云层及颗粒物对太阳辐射的反射

大气中的云层和较大颗粒物能将部分太阳辐射反射回宇宙空间。其中云的反射能力最强。云的反射能力随云状、云量和厚度的不同而不同。见图 2.6,一般情况下云的平均反射率为0.50~0.55。如果按地球平均云量为5计算,太阳辐射就有近25%被云反射回空间,因此云的反射作用对太阳辐射影响很大。上述提到的大气对太阳辐射的衰减三种方式中,以反射作用最为重要,尤其以云层对太阳辐射的反射最为明显,散射作用次之,吸收作用相对最小。

三、到达地面的太阳辐射

到达地面的太阳辐射由两部分组成:一是太阳以平行光的形式直接投射到地面上的,称为太阳直接辐射用Rsb(Direct beam solarradiation)表示;另一个是经过散射后到达地面的,称为散射辐射用Rsd (Diffuse solar radiation)表示,两者之和就是到达地面的太阳总辐射,用Rs(Solar radiation)表示,Rs=Rsb+Rsd。

直接辐射

太阳以平行光形式投射到地面的直接辐射Rsb是地球表面获得太阳辐射最主要来源。它的强弱由下式表示:

Rsb=am·Rc·sinh⊙(2.8)

式中Rsc是太阳常数1367W/m2,h⊙是太阳高度角,a是大气透明系数,m是大气质量数。从式中可以看出,太阳直接辐射与太阳高度角、大气质量数和大气透明系数有关。

(1)太阳高度角

太阳平行光线与水平面之间的夹角称为太阳高度角。太阳直接辐射随太阳高度角的增大而增大。一方面是由于太阳高度角(h⊙)愈小时,等量的太阳辐射能散布的面积愈大,则单位面积上接受到的能量就愈少。另一方面,因为太阳高度角愈小时,太阳光穿过的大气层就愈厚,大气对太阳辐射的减弱作用就愈强。所以到达地面上的辐射就愈少。太阳高度角的计算式为:

h⊙=arcsin[sinφsinδ+cosφcosδcos 15°(t-12)](2.9)式中φ是当地的纬度;δ是太阳赤纬(也称太阳倾角),可根据天文年历查到;t是地方时,按24 h计算每小时15°。例如:北京(φ=40°N)6月22日(夏至δ=23.4°)下午1点半(t=13.5)的太阳高度角:

h⊙=arcsin[sin 40°sin 23.4°+cos 40°cos 23.4 cos 15°(13.5-12)]=65°(2)大气质量数

在标准状况下,海平面气压为1013hPa,气温为0℃时,太阳光垂直投射到地面所经路程中,单位截面积空气柱的质量称为一个大气质量数m。不同太阳高度角,阳光经过的大气质量数也不同。当太阳高度角很小时,m值很大,随着太阳高度角的增大,m值很快减少。太阳在地平面时所通过的m值比在天顶时大35.4倍。在计算大气质量数时需要考虑如下几个问题:(a)地球是一个弯曲的表面,所以地球大气上界是一条曲线。(b)光线在大气中传播的路径也是一条曲线,这是由于大气密度随高度而递减,光线穿过不同密度的介质时发生折射而形成的。(c)空气密度在水平方向上也是不均匀的。为解决上述困难,要作如下假设:(a)光线在大气中传播的路径是一条直线。(b)大气上界的表面设为平面。(c)水平方向上的密度是均一的。常用的大气质量数计算式为:

m=(P/P0)/ h⊙

式中P/P0代表观测地气压与经过纬度订正的海平面气压之比,h⊙是太阳高度角。

(3)大气透明度

太阳辐射从大气上界进入大气层后还要受大气透明度的影响。大气透明度的特征量用透明系数a表示。它是指透过一个大气质量数后的辐射强度与透过前的辐射强度之比。也就是当太阳位于天顶时,在大气上界的太阳辐射通量密度即太阳常数Rsc与到达地面的太阳辐射通量密度Rs之比值。

a=Rs/Rsc

a值表明辐射通过大气后的削弱程度。实际上,不同波长的削弱也不相同,a仅表征对各种波长的平均削弱情况。JP1大气透明系数与大气中的水汽、水汽凝结物、尘埃杂质等有关。这些物质越多,大气透明程度越差,透明系数越小。因而太阳辐射受到的减弱越强,地面获得的太阳辐射也越少。a是一个小于1的数,其取值是:当天空特别晴朗,污染较少时a=0.9;当污染特别严重,天空特别混浊时a=0.6;一般情况下a=0.84左右。JP由于太阳直接辐射主要是由太阳高度角决定的,所以有明显的日变化、年变化和随纬度的变化。一天中,无云的天气条件下,一般是中午太阳高度角最大,直接辐射最强;日出、日落时太阳高度角最小,直接辐射最弱。一年中,对一个地区来说,直接辐射夏季最大,冬季最小。但如果夏季,大气中的水汽含量增加,云量增多,会使直接辐射减弱很多,使得直接辐射的最大月平均值出现在春末夏初季节。

太阳直接辐射还随纬度而改变。一年中低纬地区比高纬的太阳高度角大,所以获得的直接辐射也多,但全年直接辐射的最大值出现在回归线附近,而不在赤道的原因是赤道上空云雨较多,太阳被遮蔽时间长。

2散射辐射

大气对太阳辐射有散射作用,其中散射向地面的那部分称为散射辐射Rsd,它的强弱由下式表示:

Rsd=0.5Rsc(1-am)sinh⊙(2.11)

式中各项意义同前。散射辐射是一种短波辐射,其能量分布,比直接辐射更集中于波长较短的光区。从上式可以看出,散射辐射的大小也与太阳高度角、大气透明度、大气质量数等因素有关。当太阳高度角增大时,直接辐射增加,散射辐射也增大。在太阳高度角一定时,如果大气透明度不好,散射质点多,散射辐射增强;而大气透明度好,散射质点少,散射辐射减弱。散射辐射的日、年变化也主要取决于太阳高度角的变化。一天中散射辐射的最大值出现在正午前后,一年中散射辐射的最大值出现在夏季。

3总辐射

到达地面的太阳直接辐射和散射辐射之和称为总辐射Rs,它的表达式如下:

Rs=Rsb+Rsd=0.5Rsc(1+am)sinh⊙)(2.12)

总辐射的日变化与直接辐射的日变化基本一致。见图29。日出以前,地面上获得的总辐射不多,只有散射辐射;日出以后,太阳高度角不断增大,当太阳高度角增到20°以前,散射辐射大于直接辐射,以后由于直接辐射增加得较快,使散射辐射在总辐射中所占比例逐渐减小;当太阳高度角达到50°左右,散射辐射只占总辐射的10%~20%;到中午时,直接辐射和散射辐射均达最大值;中午以后二者又按相反的次序变化。有云时总辐射一般会减少,因为这时直接辐射的减弱比散射辐射的增强要多。只有当云量不太多,太阳视面无云,直接

辐射没受到影响,而散射辐射因云的增加而增大时,总辐射才比晴空时稍大。辐射的年变化与直接辐射的年变化基本一致,中高纬度地区,总辐射强度(指月平均值)夏季最大,冬季最小;赤道附近(纬度0~20°左右),一年中有两个最大值分别出现在春分和秋分。总辐射随纬度的分布一般是,纬度愈低总辐射愈大。反之就愈小。但由于赤道附近云很多,对太阳辐射削弱得也很多,所以,总辐射年总量最大值不是出现在赤道,而是出现在纬度20°附近。

其主要特点是太阳辐射年平均总量在380×107~840×107J/(m2·a)范围内。一般西部多于东部,山区多于平原。四川盆地为低值区,最低值仅为310×107J/(m2·a)。青藏高原为高值区,年平均总量达790×107J/(m2·a),比同纬度东部地区几乎高出一倍。

四、地面对太阳辐射的反射

到达地面的太阳总辐射不能完全被地面吸收,有一部分将被地面反射。地面反射辐射的大小与地面对太阳辐射或称短波辐射的反射率α(Albedo)有关。短波辐射反射率主要与下垫面的颜色、湿度、粗糙度、不同植被、土壤性质及太阳高度角等因素有关。

1颜色对反射率的影响

颜色不同的各种下垫面,对太阳辐射可见光部分有选择反射的作用。各种颜色表面的最强反射光谱,就是它本身颜色的波长。白色表面具有最强的反射能力,黑色表面的反射能力较小,绿色植物对黄绿光的反射率大。颜色不同,反射率有很大差别,例如新白雪的反射率可高达80%~95%,而黑钙土的反射率只有5%~12%。

2土壤湿度对反射率的影响

反射率将随土壤湿度的增大而减小。例如白沙土,随着湿度的增加其反射率从40%降到18%,减少了22%。这是因为水的反射率比陆面小的缘故。有试验指出,地面反射率与土壤湿度呈负指数关系。

3粗糙度对反射率的影响

随着下垫面粗糙度的增加,反射率明显减小。这是由于太阳辐射在起伏不平的粗糙地表面,有多次反射,另外太阳辐射向上反射的面积相对变小,所以导致反射率变小。

4太阳高度角对反射率的影响

当太阳高度角比较低时,无论何种表面,反射率都较大。随着太阳高度角的增大,反射率减小。一日中太阳高度有规律的日变化,使地面反射率也有明显的日变化,中午前后较小,早、晚较大。

5几种下垫面的反射率植被反射率的

大小与植被种类、生长发育状况、颜色和郁闭程度有关。植物颜色愈深,反射率愈小,绿色植物在20%左右。植物苗期与裸地相差不多,反射率较大;生长盛期反射率变小,多在20%左右;成熟期,茎叶枯黄,反射率又增大。水面的反射率一般比陆面小,波浪和太阳高度角对水面的反射率有很大的影响。一般太阳高度角愈大,水面愈平静,反射率愈小,例如当太阳高度角大于60°时,平静水面的反射率小于2%,高度角为30°时,反射率增至6%,高度角为2°时,反射率可达80%。新雪面的反射率可高达90%以上,脏湿雪面的反射率只有20%~30%,冰面的反射率大致为30%~40%。由于反射率随各地自然条件而变化,所以它在季节上的变化也是很大的。由此可见,即使总辐射的强度一样,不同性质的地表真正获得的太阳辐射仍有很大差别,这也是导致地表温度分布不均匀的重要原因之一。

太阳直接辐射计算

太阳直接辐射计算导则 1 范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163—2014,定义] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射 direct normal radiation 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。

[GB/T 31163—2014,定义] 3.3 水平面直接辐射 direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义] 3.4 散射辐射 diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义] 3.5 [水平面]总辐射 global [horizontal] radiation 水平面从上方2π立体角(半球)范围内接收到的直接辐射和散射辐射之和。 注:改写GB/T 31163—2014,定义。 3.6 地外太阳辐射 extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163—2014,定义] 3.7 辐照度 irradiance 物体在单位时间、单位面积上接收到的辐射能。 注:单位为瓦每平方米(W/m2)。 [GB/T 31163—2014,定义] 3.8 辐照量 irradiation 曝辐量 radiance exposure 在给定时间段内辐照度的积分总量。 注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2:1 kWh/m2= MJ/m2;1MJ/m2≈ kWh/m2。

各种波长及其颜色

1、芯片发光颜色(COLW) 红(Red):R(610nm-640nm)黄(Yellow):Y(580nm-595nm)兰(Blue):B(455nm-490nm)兰绿(Cyan):C(490nm-515nm)绿(Green):G(501nm-540nm)紫(Purple):P(380nm-410nm)琥珀(Amber):A(590nm-610nm)白(White):W2 黄绿(Kelly):K(560nm-580nm)暖白(Warm white)W3 2、颜色波长 ★红: R1:610nm-615nm R2:615nm-620nm R3:620nm-625nm R4:625nm-630nm R5:630nm-635nm R6:635nm-640nm ★黄: Y1:580nm-585nm Y2:585nm-590nm Y3:590nm-595nm ★琥珀色: A1:600nm-605nm A2:605nm-610nm ★兰绿: G1:515nm-517.5nm G2:517.5-520nm G3:520nm-525nm G4:525nm-530nm G5:530nm-535nm G6:535nm-540nm ★兰: B1:455nm-460nm B2:460nm-462.5nm B3:462.5nm-465nm B4:460nm-465nm B5:465nm-470nm B6:470nm-475nm B7:475nm-480nm B8:480nm-485nm B9:485nm-490nm ★黄绿: K1:560nm-565nm K2:565nm-570nm K3:570nm-575nm K4:575nm-580nm ★纯绿: C1:490nm-495nm C2:495nm-500nm C3:500nm-515nm

波长与发光颜色知识汇总

白色光有完美的颜色特性,但它会损害适应暗光的视觉,一定光源熄灭后需要一定的时间来重新适应。 红色光通常是用作夜视。红光不会引起你瞳孔过分收缩和一旦红光熄灭时眼睛不需要重新适应黑暗。红色也通常在单色相片处理被用作为“安全”颜色因为它不会损坏正在冲印的底片黄色光有着红色光和白色光的一些优点。黄色光另外一优点就是当你阅读时减少因为长时间阅读而导致眼睛疲劳的反射和眩目的光。 绿色光也可以用作为夜视,绿色光还特别适用于在夜晚的时候阅读地图或图表。它还不那么容易被夜视装备发现,便很容易被人眼发现,绿色光的亮度比红色光低。 蓝色光可被用作在夜晚阅读地图和通常很受军事人员青睐,因为蓝色光增加了对比度的水平。它还可以用作戏院和演出时的后台工作灯色。 蓝绿光有着相似绿光和蓝光的夜视优点,但随着蓝绿光的颜色特性的提高,一些用户因为这个原因喜欢用蓝绿光。 红外线红光是与夜视装备一起使用的。否则人的眼睛是看不到红外线光的。 紫外光通常是用作识别钞票是否伪造,一些紫外发光二极管照明物在夜总会和派对上很受欢迎,它们被用来使荧光物质发出更亮的光。 光的颜色和它的波长 光的颜色是否可以看见是由它的波长决定的,光的波长是以纳米为单位的也说是十亿分之一米。发光二极管发出的光几乎都是一致的也就是说它几乎都是在一个波长,发出非常纯的颜色。以下是光的颜色和它的波长。 中红外线红光 4600nm - 1600nm --不可见光 低红外线红光 1300nm - 870nm --不可见光 850nm - 810nm -几乎不可见光 近红外线光 780nm -当直接观察时可看见一个非常暗淡的樱桃红色光 770nm -当直接观察时可看见一个深樱桃红色光 740nm -深樱桃红色光 红色光 700nm - 深红色 660nm - 红色 645nm - 鲜红色 630nm - 橘红 620nm - 橙红 橙色光

光源辐射能(含思考题答案)

课程: 专业班号:姓名:学号: 同组者: 一、实验目的 1.了解辐射度学的一些基本概念; 2.了解光源的光谱特性及标准光源、二级标准光源的概念; 3.了解单色仪、光电倍增管的结构、工作原理和方法; 4.学习测定光源的光谱特性—辐射能谱曲线的原理和方法; 5.对计算机在物理实验中的应用有较好的了解。 二、实验原理 1.基本概念 (1) 光源辐射通量、辐射度及辐射能谱 辐射通量(功率):光源在单位时间辐射出的辐射 能量,其单位为瓦特。 辐射度:光源上单位面积在单位时间辐射出的辐 射能量,其单位为瓦特每平方米。 辐射能谱:给定光源只能辐射出一定波长范围内 的光,且所辐射出的不同波长的光的辐射通量亦不同, 光源辐射通量随波长的分布称为光源的辐射能谱 (亦称光谱能量分布),记为E(λ)。图1 黑体及钨带灯的相对辐射能谱 (2) 标准光源及其辐射能谱 标准光源:已知辐射能谱分布的光源称为标准光源,理相的标准光源是绝对黑体。其相对辐射能谱如图1所示。 (3) 光源的发射率、二级标准光源及其辐射能谱 发射率:其它光源和物体都是非黑体,它们的辐射本领都小于黑体。通常把非黑体光源 ε。 在一定温度下的辐射度与黑体的辐射度之比称为该光源的发射率,记为) (λ二级标准光源及其辐射能谱:作为标准光源的黑体其制作和使用都比较复杂。钨丝是非黑体,它在某一温度下的辐射能谱与同一温度下黑体的辐射能谱形式相同,只是辐射度比黑体小,其相对辐射能谱如图1所示。因此,在要求不高的情况下,通常用温度等于2800K

的钨带灯作为二级标准光源。 二级标准光源—钨带灯的辐射能谱:)(钨λE 之值可由黑体的辐射能谱) (黑体λE 及钨带灯的光谱发射率) (钨λε求得,即 ) ()()(钨黑体钨λελλ?=E E (1) 或给标定过的钨带灯通以额定电流,由钨带灯出厂时附带的数表直接查得。 2. 测定给定光源的辐射能谱 (1) 测量装置 实验装置框图如图2所示。光栅单 色仪作为分光仪;光电倍增管作为光探 测器;电控系统在计算机软件的控制下, 为单色仪的扫描系统及光电倍增管提供 驱动电压及负高压,并将光电倍增管所 探测的光电压信号进行处理后送 图2 实验装置框图 入A/D 转换系统;计算机的软件系统与A/D 转换系统一起完成数据采集、处理及控制整个系统的工作。 光栅单色仪 光栅单色仪是能将复色光分解成一系列独立单色光的分光仪器。其原理光路图如图3所示。入射到光栅单色仪的复色光经入射狭缝S 1后投射到球面反射镜M 1上,S 1处于M 1的焦平面上,因此,经球镜M 1反射后的光束为平 行光束,这平行光束经平面光栅G 分光后,分 成不同波长的平行光束以不同的衍射角投向球 面反射镜M 2,球镜M 2起照相物镜的作用,将 这些平行光束经平面镜M 3反射后成像于它的焦 平面上,从而得到一系列的光谱。出射狭缝位于 球镜M 2的焦平面上,根据它开启的宽度大小, 允许波长间隔非常狭窄的一部分光束射 图 3 光栅单色仪原理光路图 出狭缝 S 2,当光栅按顺时针方向旋转时(在本实验中光栅的旋转是由计算机来控制的),可以在狭缝S 2处得到光谱纯度高的不同波长的单色光。这样单色仪就起到了将入射的复色光分解成一系列独立单色光的作用。 光电倍增管 光电倍增管是利用外光电效应制 成的能将光信号转变为电信号的光电 器件。其结构及工作电路如图4所示。

我国太阳辐射分布详解

我国太阳辐射分布详解 我国西部太阳能的年总辐射约为140-200 Kcal/cm2·year,高于东部的80-160Kcal/cm2·year;我国东部、北部地区的年总辐射约为120-160 Kcal/cm2·year,高于南部地区的80-120 Kcal/cm2·year;我国三分之二以上的地区的年日照时数达2000小时,年总辐射大于140 Kcal/cm2?year,应用太阳能空调的前景很好。 特点:1。太阳能资源最好的地区和最差的地区,都分布在北纬22°~35°区域内。尤其是青藏高原,是我国太阳能资源最理想的地区,年辐射量达180~200Kcal/cm2·year。而四川盆地由于处在南北两股暖冷气流交汇处,云雨天气多,形成太阳能资源的低值中心。 2。在北纬30°~40°之间,太阳能资源随纬度增加而增加。 3。北纬40°以上,太阳能资源自东向西逐渐增加。 4。新疆地区太阳能资源分布由东南向西北逐渐减少。 5。台湾地区太阳能资源由东北向西南逐渐增加,海南岛太阳能资源和台湾基本相当。 太阳能利用潜力巨大太阳能资源按日照时间和太阳能辐射量的大小,大致上可分为五类。甘肃省大部分地区属于一、二类地区,太阳辐射比较丰富,平均年日照时间在2300—2700小时。有专家测试,在相同水量和温度的前提下,兰州市夏季每天每平方米所接受的太阳热量相当于4千瓦时电转化的热量,冬季则大约相当于2千瓦时到3千瓦时电。 其实这个太阳能的能源分布是有表格的.国内最好的是西藏,青海,最差的是四川,贵州一部 太阳辐射能量不仅具大,对于我们的生产和生活有着非常重要的影响,目前被人类利用的能量几乎都是直接或者间接来自太阳辐射的能量。所以了解和认识我国太阳辐射能分布规律对于充分利用太阳能和指导工农业生产有着重要意义。太阳辐射能分布是影响农业生产光照热量条件的重要因素,也是考试重要的知识点,因此在知识上我们既要了解太阳辐射的分布规律又要会分析太阳辐射分布不同的原因。 一、我国太阳辐射能时空分布规律 1、就时间而言,我国大部分地区们于北半球的中纬度,夏季太阳高度角大光照时间长,各个地区的太阳辐射能夏半年多于冬半年。 2、就空间而言,我国太阳辐射能分布大体上东南向西北递增。 大体上的界线,从大兴安岭向西南,,经北京西侧,兰州,昆明再折向北到西藏南部,这一条线以西、以北广大地区,太阳辐射特别丰富。 二、影响太阳辐射差异的原因分析 影响太阳辐射的因素主要包括纬度高低、地形地势、气候气象条件等方面。我们结合中国太阳年辐射总量的分布图来仔细分析贫乏区、可利用区、较丰富区、丰富区的差异的原因。整体上来看,在我国西部地区由南向北,由青藏高原丰富区向北到新疆中北部地区较丰富区过渡,体现了由于太阳高度的大小关系,太阳年辐射总量由低纬向较高纬度递减规律;东部地区从沿海地区向内陆地区,太阳年辐射总量由可利用区向较丰富区和丰富区过渡,这种和经度地带类似的变化过程,由于距海远近降水多少或者说气候气象条件影响的结果;而几乎在同一纬度地带的青藏高原由于地势较高,空气稀薄形成了丰富区,四川盆地由于盆地地形影响,形成了贫乏区。 具体到太阳年辐射总量高值和低值中心来看,高值和低值中心都处在北纬22º-35º之间,高值的中心在青藏高原,低值的中心在四川盆地。青藏高原能成

光电检测常用光源及其参数

光电检测技术调研报告 光电检测常用光源及其参数 班级:光电工程142 学号:2014032082 :王和远 2017年3月24日

目录 摘要 (1) 正文 (1) 光源的分类 (1) 光源的特性参数 (1) 辐射效率 (1) 发光效率 (1) 光谱功率 (1) 空间光强分布 (2) 光源的颜色 (2) 光源的色温 (3) 光电检测常用光源 (3) 热辐射源 (3) 气体放电光源 (3) 固体发光光源 (3) 激光器 (4) 总结 (4)

摘要 由于生产技术的发展和对产品质量的保证,对产品进行检测就成了一个重要的环节,光电检测则是其中比较常见的手段之一。在光电检测中,光源的选择当然是关键的一个环节。选取光源,则必须了解和熟悉其参数,才能选出好的、适合的光源。可以说,光源的选择是光电检测中至关重要的一环。 正文 光源的分类 光源是能产生光辐射的辐射源。天然光源是自然界中存在的,恒星(太阳)等;人造光源是人为将各种形式的能量(热能、电能、化学能)转化成光辐射的器件,其中利用电能产生光辐射的器件称为电光源。在光电检测系统中,电光源是最常用的光源。 按照光波在时间、空间上的相位特征可分为相干光源和非相干光源;按照发光机理可以分为热辐射光源、气体发光光源、固体发光光源和激光器光源。 光源的特性参数 辐射效率 在给定波长围,某一辐射源发出的辐射通量与产生这些辐射通量所需的电功率之比。 发光效率 某一光源所发射的光通量与产生这些光通量所需的电功率之比。 光谱功率 分布四种情况

在选择光源时,它的光谱功率分布应由测量对象的要求来决定。在目视光学系统中,一般采用可见光谱辐射比较丰富的光源。对于彩色摄像用光源,应采用类似于日光色的光源,如卤钨灯、氙灯等。在紫外分光光度计中,通常使用氘灯、汞氙灯等紫外辐射较强的光源。 空间光强分布 常用发光强度矢量和发光强度曲线来描述光源的这种空间光强分布特性。在空间某一截面上,自原点向各径向取矢量,矢量的长度与该方向的发光强度成正比,称其为发光强度矢量;将各矢量的端点连起来,就得到光源在该截面上的发光强度分布曲线,也称配光曲线。 光源的颜色 包含了色表和显色性两方面的含义。用眼睛直接观察光源时所看到的颜色称为光源的色表;当用这种光源照射物体时,物体呈现的颜色(也就是物体反射光在人眼产生的颜色感觉)与该物体在完全辐射体照射下所呈现的颜色的一致性,称为该光源的显色性。 光源对于物体颜色呈现的程度称为显色性,通常叫做显色指数(Ra)。显色性是指事物的真实颜色(其自身的色泽)与某一标准光源下所显示的颜色的关系。Ra值的确定,是将DIN6169标准中定义的8种测试颜色在标准光源和被测试光源下做比较,色差越小的则表明被测光

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

太阳辐射的特性

太阳辐射的特性 昼夜是由于地球自转而产生的,而季节是由于地球的自转轴与地球围绕太阳公转的轨道的转轴呈23°27′的夹角而产生的。地球每天绕着通过它本身南极和北极的“地轴” 自西向东自转一周。每转一周为一昼夜,所以地球每小时自转15°。地球除自转外还循偏心率很小的椭圆轨道每年绕太阳运行一周。地球自转轴与公转轨道面的法线始终成23.5°。地球公转时自转轴的方向不变,总是指向地球的北极。因此地球处于运行轨道的不同位置时,太阳光投射到地球上的方向也就不同,于是形成了地球上的四季变化(见下图)。每天中午时分,太阳的高度总是最高。在热带低纬度地区(即在赤道南北纬度23°27′之间的地区),一年中太阳有两次垂直入射,在较高纬度地区,太阳总是靠近赤道方向。在北极和南极地区(在南北半球大于90°~23°27′),冬季太阳低于地平线的时间长,而夏季则高于地平线的时间 长。 由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距辐射源的距离的平方成反比,这意味着地球大气上方的太阳辐射强度会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球大气层外的太阳辐射强度几乎是一个常数。因此人们就采用所谓“太阳常数”来描述地球大气层上方的太阳辐射强度。它是指平均日地距离时,在地球大气层上界垂直于太阳辐射的单位表面积上所接受的太阳辐射能。近年来通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于日地距离的变化所引起太阳辐射强度的变化不超过上3.4%。 2.2 到达地面的太阳辐射 太阳照射到地平面上的辐射或称“日射”由两部分组成——直达日射和漫射日射。太阳辐射穿过大气层而到达地面时,由于大气中空气分子、水蒸气和尘埃等对太阳辐射的吸收、反射和散射,不仅使辐射强度减弱,还会改变辐射的方向和辐射的光谱分布。因此实际到达地面的太阳辐射通常是由直射和漫射两部分组成。直射是指直接来自太阳其辐射方向不发生改变的辐射;漫射则是被大气反射和散射后方向发生了改变的太阳辐射,它由三部分组成:太阳周围的散射(太阳表面周围的天空亮光),地平圈散射(地平圈周围的天空亮光或暗光),及其他的天空散射辐射。另外,非水平面也接收来自地面的反射辐射。直达日射、漫射日射和反射日射的总和即为总日射或环球日射。可以依靠透镜或反射器来聚焦直达日射。如果聚光率很高,就可获得高能量密度,但却损耗了漫射日射。如果聚光率较低,也可以对部分太阳周围的漫射日射进行聚光。漫射日射的变化范围很大,当天空晴朗无云时,漫射日射为总日射的10%。但当天空乌云密布见不到太阳时,总日射则等于漫射日射。因此聚式收集器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但当地面有冰雪覆盖时,垂直面上的反射日射可达总日射的40%。 到达地面的太阳辐射主要受大气层厚度的影响。大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。显然太阳辐射穿过大气层的路径长短与太阳辐射的方向有关。参看下图,A为地球海平面上的一点,当太阳在天顶位置S时,太阳辐射穿过大气层到达A点的路径为OA。城阳位于S点时,其穿过大气层到达A 点的路径则为0A。 O,A与 OA之比就称之为“大气质量”。它表示太阳辐射穿过地球大气的路径与太阳在天顶方向垂直入射时的路径之比,通常以符号m表示,并设定标准大气压和O℃时海平面上太阳垂

中国光资源分布

中国三北地区太阳能资源分布 按接受太阳能辐射量的大小,全国大致上可分为五类地区,如表1.1所示 五类地区分布图见图1.1

内蒙古太阳能资源状况: 内蒙古全区太阳能资源的分布自东部向西南增多,以巴彦淖尔市西部

及阿拉善盟最 多,太阳能总辐射量高达6490~6992兆焦耳/平方米,仅次于青藏高原,处我国的第二位。 一年之中,4~9月辐射总量与日照率都在全年的50%以上。特别是4~6月,东南季风还未推 进到内蒙古境内,所以空气干燥,阴云天气少,日照充足。内蒙古大部分年日照时数都大 于2700小时,其中: 1、巴彦淖尔市西部,日照时数为3100—3300小时。 巴彦淖尔市太阳能资源十分丰富,属我国太阳能资源富集区域。全市各地太阳年总辐 射量为198.8-208.5瓦/平方米之间,由东向西逐步增多。其中,杭锦后旗、五原为200-204 瓦/平方米之间,临河、乌中旗200瓦/平方米。各月总辐射的高值在5、6、7月,其次为8月 、4月和9月,其中5月达到极高值。5、6、7月的太阳高度角为一年中最高的时候,而5月是 降水量最少的月份,此时的云量少,晴天多,日照足,因而辐射强烈;6、7月份随云量和降 水天气的逐渐增多,总辐射量有所下降;8月为降水量多的时期,且日照时数也减少,辐射进一步减弱,其他月份由于太阳高度角低,日照时间短,比5月平均少30小时以上。

青海省位于青藏高原东北部,境内80%以上地区海拨高度3000m。大气层相对稀薄,目 光透过率高,加之气候干旱,降雨量少,无霜期长,云层遮蔽率低,故太阳能辐射资源十 分丰富。其特征为:一是年日照时间长,全省各地年日照时间达2300~3650h,年平均日照 率达60%~80%;二是光辐射强度大,省内各地的辐射总量达586×104~754×104kJ/m2·h。 三是直接辐射比例高。境内西、北部地区一般超过60%,全省直接辐射年平均值为419× 104kJ/m2·h以上。 新疆太阳能资源状况: 新疆水平表面太阳辐照度年总量为5×105~6.5×105 J / (cm2·a),年平均值为5.8 ×105J/(cm2·a),年总辐射量比同纬度地区高10%~15%,比长江中下游高15%~25%,仅次 于青藏高原,居全国第二位。太阳辐射峰值出现在东疆和南疆东部一带,最低值出现在博 州、阿尔泰和天山北麓部分地区,年总辐照度的区域分布大致是由东南向西北不均匀递减 。东南部太阳总辐照度多在5.8×105J/(cm2·a)以上,西北部均为5.2×105 J/(cm2·a)。

各种颜色的吸收波长

人的眼睛能感觉到的光称为可见光(visible light)。在可见光区内,不同波长的光具有不同的颜色,只具有一种波长的光称为单色光,由不同波长组成的光称为复合光。日常我们所看到的太阳光、白炽灯光、日光灯光等白光都是复合光,它是由400~760 nm波长范围内的红、橙、黄、绿、青、蓝、紫等各种颜色的光按一定比例混合而成的。 实验证明,如果将两种适当颜色的单色光按一定强度比例混合,也可以得到白光,我们通常将这两种颜色的单色光称为互补色光。图(8—1)为互补色光示意图,图中处于直线关系的两种颜色的光是互补色光,它们彼此按一定比例混合即成为白光。 2.溶液的颜色和对光的选择性吸收 物质呈现的颜色与光有密切的关系,当光照射到物质上时,由于物质对于不同波长的光的反射、散射、折射、吸收、透射的程度不同,使物质呈现不同的颜色。 对于溶液来说,它所呈现的不同颜色,是由于溶液中的质点选择性地吸收了某种颜色的光而引起的。当一束白光通过某溶液时,如果溶液对各种颜色的光均不吸收,入射光全透过,或虽有吸收,但各种颜色的光透过程度相同,则溶液是无色的;如果溶液只吸收了白光中一部分波长的光,而其余的光都透过溶液,则溶液呈现出透过光的颜色,在透过光中,除吸收光的互补色光外,其它的光都互补为白光,所以溶液呈现的恰是吸收光的互补色光的颜色。例如,CuSO4溶液选择性地吸收了白光中的黄色光而呈现蓝色;KMnO4溶液选择性地吸收了白光中的绿色光而呈现紫红色。表8—2列出了溶液颜色与吸收光颜色和波长的关系,可以作为测定时选择入射光波长范围的参考。 表8-2溶液颜色与吸收光颜色和波长的关系 吸收光 溶液颜色 颜色λ/ nm 黄绿紫400 ~450 黄蓝450 ~480 橙绿蓝480 ~490 红蓝绿490 ~500 紫红绿500 ~560 紫黄绿560 ~580 蓝黄580 ~600 绿蓝橙600 ~650 蓝绿红650 ~760 3.吸收光谱 物质对光的吸收具有选择性,如果要知道某溶液对不同波长单色光的吸收程度,我们使各种波长的单色光依次通过一定浓度的某溶液,测量该溶液对各种单色光的吸收程度,并记录每一波长处的吸光度,然后以波长为横坐标,吸光度为纵坐标作图,得一曲线,即该物质的光吸收曲线或吸收光谱(absorption spectrum)。对应于光吸收程度最大处的波长称最大吸收波长(maxi mu m absorption),以λ最大或λmax 表示,如图(8-2)所示。在λmax处测定吸光度灵敏度最高,故吸收光谱是吸光光度法中选择入射光波长的重要依据。 图8-2吸收光谱示意图 吸收光谱可以清楚、直观地反映出物质对不同波长光的吸收情况。图(8-3)是四种不同浓度的KMnO4溶液的吸收光谱。由图可知:①在可见光范围内,KMnO4溶液对不同波长的光的吸收情况不同,对波长为525 nm的绿色光吸收最多,有一吸收高峰;②四条曲线的最大

不同波长光线的颜色

色彩的本质是电磁波。电磁波由于波氏的不同诃分为通讯波.红外线.可见光.紫外线、X线.R线和宇宙线等。其中波K 为380-780NM的电磁波为可见光。町见光透过三棱镜町以呈现出红.橙、黄、绿、权盎、紫七种颜色组成的光谱。红色光波鼓匕640-780NM:紫色光波最短.380-430NM在真空中: M0E-7M 红光:7700- 6400 橙黄光:6400-5800 绿光:5800- 4950 蓝龊光:4950?4400 紫光:4400-4000 波长为380-780NM的电磁波为町见光。町见光透过三棱镜可以呈现出红、檢?黄、绿、青、蓝.紫七种濒色组成的光谱。红色光波最匕640-780NM:紫色光波最短,380—430NM: 上网搜索图片:连续光谱。 红640—780NM.橙640—610,黄610—530.绿505—525.蓝505—470.紫470—380。 红640—780NM 橙640—610NM 黄610—530NM 绿505—525NM 蓝505—470NM 紫470—380NM 肉眼看得见的是电磁波中很短的一段.从0.4-0.76微米这部分称为町见光。町见光经三棱镜分光后?成为一条由红、橙、黄、绿、Wx蓝.紫七种颜色组成的光带.这光带称为光谱。其中红光波长僉tC紫光波长城短?其它备色光的波长则依次介干其间。波长氏于红光的(>0.76微米)有红外线有无线电波:波长短于紫色光的(<0.4微米)有紫外线 可见光波长(4*10-7m—7*10-7ni) 光色 波长X (nm) 代表波长 红(Red) 7S0-630 700 橙 630-600 620 黄(Yellow) 600?570 5S0 绿(Green) 570-500

我国太阳辐射分布详解.

我国太阳辐射分布详解 发布时间: 2009-05-31 15:49:03 文章来源:光电新闻网 导读:太阳能利用潜力巨大太阳能资源按日照时间和太阳能辐射量的大小,大致上可分为五类。甘肃省大部分地区属于一、二类地区,太阳辐射比较丰富,平均年日照时间在2300—2700小时。 太阳能辐射资源 我国西部太阳能的年总辐射约为140-200 Kcal/cm2·year,高于东部的80- 160Kcal/cm2·year;我国东部、北部地区的年总辐射约为120-160 Kcal/cm2·year,高于南部地区的80-120 Kcal/cm2·year;我国三分之二以上的地区的年日照时数达2000小时,年总辐射大于140 Kcal/cm2?year,应用太阳能空调的前景很好。 特点: 1。太阳能资源最好的地区和最差的地区,都分布在北纬22°~35°区域内。尤其是青藏高原,是我国太阳能资源最理想的地区,年辐射量达180~200Kcal/cm2·year。而四川盆地由于处在南北两股暖冷气流交汇处,云雨天气多,形成太阳能资源的低值中心。 2。在北纬30°~40°之间,太阳能资源随纬度增加而增加。 3。北纬40°以上,太阳能资源自东向西逐渐增加。 4。新疆地区太阳能资源分布由东南向西北逐渐减少。 5。台湾地区太阳能资源由东北向西南逐渐增加,海南岛太阳能资源和台湾基本相当。 太阳能利用潜力巨大太阳能资源按日照时间和太阳能辐射量的大小,大致上可分为五类。甘肃省大部分地区属于一、二类地区,太阳辐射比较丰富,平均年日照时间在2300—2700小时。有专家测试,在相同水量和温度的前提下,兰州市夏季每天每平方米所接受的太阳热量相当于4千瓦时电转化的热量,冬季则大约相当于2千瓦时到3千瓦时电。

光源参数

主波長 【主波长】任何一个颜色都可以看作为用某一个光谱色按一定比例与一个参照光源(如CIE标准光源A、B、C等,等能光源E,标准照明体D65等)相混合而匹配出来的颜色,这个光谱色就是颜色的主波长。颜色的主波长相当于人眼观测到的颜色的色调(心理量)。若已获得被测LED器件的色度坐标,就可以采用等能白光E光源(x0=0.3333,y0=0.3333)作为参照光源来计算决定颜色的主波长。计算时根据色度图上连接参照光源色度点与样品颜色色度点的直线的斜率,查表读出直线与光谱轨迹的交点,确定主波长。 自然界的色彩是千差万别的,人们之所以能对如此繁多的色彩加以区分,是因为每一种颜色都有自己的鲜明特征。 日常生活中,人们观察颜色,常常与具体事物联系在一起。人们看到的不仅仅是色光本身,而是光和物体的统一体。当颜色与具体事物联系在一起被人们感知时,在很大程度上受心理因素(如记忆,对比等)的影响,形成心理颜色。为了定性和定量地描述颜色,国际上统一规定了鉴别心理颜色的三个特征量即色相、明度和饱和度。心理颜色的三个基本特征,又称为心理三属性,大致能与色度学的颜色三变数---主波长、亮度和纯度相对应。色相对应于主波长,明度对应于亮度,饱和度对应于纯度。这是颜色的心理感觉与色光的物理刺激之间存在的对应关系。每一特定的颜色,都同时具备这三个特征。 LED光电参数定义及其详解 2.1 LED发光原理 LED的实质性结构是半导体PN结,核心部分由P型半导体和N型半导体组成的晶片,在P型半导体和N型半导体之间有一个过渡层,称为PN结。其发光原理可以用PN结的能带结构来做解释。制作半导体发光二极管的半导体材料是重掺杂的,热平衡状态下的N区有很多迁移率很高的电子,P区有较多的迁移率较低的空穴。在常态下及PN结阻挡层的限制,二者不能发生自然复合,而当给PN结加以正向电压时,由于外加电场方向与势垒区的自建电场方向相反,因此势垒高度降低,势垒区宽度变窄,破坏了PN结动态平衡,产生少数载流子的电注入[16]。空穴从P区注入N区,同样电子从N区注入到P区,注入的少数载流子将同该区的多数载流子复合,不断的将多余的能量以光的形式辐射出去。2.2可见光谱

太阳直接辐射计算

太阳直接辐射计算导则 1 围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角发出的辐射。 [GB/T 31163—2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为0.5°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct normal radiation 与太线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163—2014,定义5.12] 3.3 水平面直接辐射direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义5.13] 3.4 散射辐射diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义5.14] 3.5 [水平面]总辐射global [horizontal] radiation

波长及颜色

三、芯片发光颜色(COLW) 红(Red):R(610nm-640nm)黄(Yellow):Y(580nm-595nm)兰(Blue):B(455nm-490nm)兰绿(Cyan):C(490nm-515nm)绿(Green):G(501nm-540nm)紫(Purple):P(380nm-410nm)琥珀(Amber):A(590nm-610nm)白(White):W2 黄绿(Kelly):K(560nm-580nm)暖白(Warm white)W3 四、颜色波长 ★红: R1:610nm-615nm R2:615nm-620nm R3:620nm-625nm R4:625nm-630nm R5:630nm-635nm R6:635nm-640nm ★黄: Y1:580nm-585nm Y2:585nm-590nm Y3:590nm-595nm ★琥珀色: A1:600nm-605nm A2:605nm-610nm ★兰绿: G1:515nm-517.5nm G2:517.5-520nm G3:520nm-525nm G4:525nm-530nm G5:530nm-535nm G6:535nm-540nm ★兰: B1:455nm-460nm B2:460nm-462.5nm B3:462.5nm-465nm B4:460nm-465nm B5:465nm-470nm B6:470nm-475nm B7:475nm-480nm B8:480nm-485nm B9:485nm-490nm ★黄绿: K1:560nm-565nm K2:565nm-570nm K3:570nm-575nm K4:575nm-580nm ★纯绿: C1:490nm-495nm C2:495nm-500nm C3:500nm-515nm

太阳辐射波长

太阳辐射 一、太阳辐射光谱和太阳常数 太阳辐射光谱 太阳辐射中辐射能按波长的分布,称为太阳辐射光谱,见图2.4。从图中可看出,大气上界太阳光谱能量分布曲线,与用普朗克黑体辐射公式计算出的6000K的黑体光谱能量分布曲线非常相似。因此可以把太阳辐射看作黑体辐射。太阳是一个炽热的气体球,其表面温度约为6000K,内部温度更高。根据维恩位移定律可以计算出太阳辐射峰值的波长λmax为0.475μm,这个波长在可见光的青光部分。太阳辐射主要集中在可见光部分(0.4~0.76μm),波长大于可见光的红外线(>0.76μm)和小于可见光的紫外线(<0.4μm)的部分少。在全部辐射能中,波长在0.15~4μm之间的占99%以上,且主要分布在可见光区和红外区,前者占太阳辐射总能量的约50%,后者占约43%,紫外区的太阳辐射能很少,只占总量的约7%。 太阳常数 太阳辐射通过星际空间到达地球表面。当日地距离为平均值,在被照亮的半个地球的大气上界,垂直于太阳光线,每秒每平方米的面积上,获得的太阳辐射能量称为太阳常数,用Rsc (Solar constant)表示,单位为(W/m2)。太阳常数是一个非常重要的常数,一切有关研究太阳辐射的问题,都要以它为参数。关于太阳常数的研究已有很长历史了,早在20世纪初,人们就已经通过各种观测手段估计它的取值,认为大约应在1350~1400W/m2之间。太阳常数虽然经多年观测,由于观测设备、技术以及理论校正方法的不同,其数值常不一致。据研究,太阳常数的变化具有周期性,这可能与太阳黑子的活动周期有关。在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。近年来,气候学家指出,只要地球的长期气候发生1%的变化,就会引起太阳常数的变化。目前已有许多无人或有人操作的空间实验对太阳辐射进行直接观测,并在宇宙空间实验站设计了名为“地球辐射平衡”的课题,其中一个重要项目就是对太阳辐射进行长期监视。这些观测数据将对进一步了解大气物理过程及全球气候变迁的原因有很大帮助。1981年世界气象组织推荐的太阳常数值Rsc=1367±7(W/m2),通常采用1367W/m2。 二、太阳辐射在大气中的衰减 太阳辐射通过大气层后到达地球表面。由于大气对太阳辐射有一定的吸收、散射和反射作用,使投射到大气上界的辐射不能完全到达地表面。图2.4最下面的实曲线表示太阳辐射通过大气层被吸收、散射、反射后到达地表的太阳辐射光谱。

地球表面太阳光波长以及分布

地球表面太阳光波长以及分布 太阳辐射通过大气,一部分到达地面,称为直接太阳辐射;另一部分为大气的分子、大气中的微尘、水汽等吸收、散射和反射。太阳辐射经过整层大气时,被散射的太阳辐射一部分返回宇宙空间,另一部分到达地面,到达地面的这部分称为散射太阳辐射。太阳辐射通过大气后,其强度和光谱能量分布都发生变化。到达地面的太阳辐射能量比大气上界小得多(全球平均45%),在太阳光谱上能量分布在紫外光谱区几乎绝迹(0.29μm以下的紫外线几乎全部被吸收),仅剩3%左右,在可见光谱区减少到44%,而在红外光谱区增至53%。详见附图。 另外地球大气上界的太阳辐射光谱:99%以上在波长0.15~4.0微米之间。大约50%的太阳辐射能量在可见光谱(波长0.4~0.76微米),7%在紫外光谱区(波长<0.4微米),43%在红外光谱区(波长>0.76微米),最大能量在波长0.475微米处。在地面上观测的太阳辐射的波段范围大约为0.295~2.5微米。 减反射膜的厚度经过特殊设计,刚好为入射光的波长的四分之一。计算过程如下,对于折射率为n1薄膜材料,入射光波长为λ0,则使反射最小化的薄膜厚度为d1: d1=λ0/4n1尽管,通过上面的公式,选用相应厚度、折射率膜和相应波长的光,能使反射的光减少到零,但是每一种厚度和折射率只能对应一种波长的光。在光伏应用中,人们设计薄膜的厚度和反射率,以使波长为0.6μm的光的反射率达到最小。因为这个波长的能量最接近太阳光谱能量的峰值。 如果减反射膜的折射率为膜两边的材料的折射率的几何平均数,反射将被进一步降低。即 如果镀上多层减反射膜,能减少反射率的光谱范围将非常宽。但是,对于多数商业太阳能电池来说,这样的成本通常太高。

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

相关文档