文档库 最新最全的文档下载
当前位置:文档库 › 基于惯性传感器的机器人姿态监测系统设计

基于惯性传感器的机器人姿态监测系统设计

基于惯性传感器的机器人姿态监测系统设计
基于惯性传感器的机器人姿态监测系统设计

基于惯性传感器的机器人姿态监测系统设计

一、设计背景

空间飞行器的惯性测量系统、机器人的平衡姿态检测、机械臂伸展确定等许多方面都需要测量物体的倾斜和方向等姿态参数。机器人的运动过程中要不断的检测机器人的运动状态,以实现对机器人的精确控制。.本文研究的基于MEMS 惯性传感器姿态检测系统用于检测自平衡机器人运动时姿态,以控制机器人的平衡。

随着微机电系统(MEMS)技术的发展,采用传感器应用到姿态检测系统上的条件变得成熟。基于MEMS 技术的加速度传感器和陀螺仪具有抗冲击能力强、可靠性高、寿命长、成本低等优点,是适用于构建姿态检测系统的惯性传感器。利用MEMS 陀螺仪和加速度传感器等惯性传感器组成的姿态检测系统,能够通过对重力矢量夹角和系统转动角速度进行测量,从而实时、准确地检测系统的偏转角度。

由于惯性传感器随着时间、温度的外界变化,会产生不同程度的漂移。通过对陀螺仪和加速度计的采集数据进行数据融合,测量的角度与实际的角度相吻合,取得了良好的控制效果。同时该系统具有独立,易用的特点,其应用前景广泛。

二、基本原理

在地球上任何位置的物体都受到重力的作用而产生一个加速度,加速度传感器可以用来测定变化或恒定的加速度。把三轴加速度传感器固定在物体上,在相对静止状态下,当物体姿态改变时,加速度传感器的敏感轴相对于重力场发生变化,加速度传感器的三个敏感轴分别输出重力在其相应方向产生的分量信号。

当系统处于变速运动状态时,由于加速度传感器同时受到重力加速度和系统自身加速度的影响,其返回值是重力加速度同系统自身加速度的矢量和。对加速度传感器温度漂移及系统振动和机械噪声等方面的考虑,加速度传感器不能独立运用测量系统的姿态。陀螺仪能够提供瞬间的动态角度变化,由于其本身的固有特性、温度及积分过程的影响,它会随着工作时间的延长产生漂移误差。因此对

于姿态检测系统而言,单独使用陀螺仪或加速度计,都不能提供系统姿态的可靠估计。为了克服这些问题,数据融合算法需使用加速度传感器的测量值并使用陀螺仪测得的角速度数据对加速度传感器数据进行融合和矫正。

图1加速度传感器

系统依据上一时刻的重力矢量方向的估计值,结合陀螺仪测得的角度值计算出当前时刻的重力矢量方向,再与当前时刻加速度传感器返回的矢量方向进行加权平均,得到当前矢量方向的最优估计值。

三、系统框架

姿态平衡检测系统中,控制单元采用单片机来完成控制,数据采集与处理,数据通讯等功能。根据对资料的分析,同时对性能价格比的衡量,惯性测量单元采用Analog Device公司的ADXRS150 (陀螺仪)和ADXL202(加速度计)。其基本性能指标如下。

ADXRS150其输出电压与偏航角速度成正比,电压的极性则代表转动方向(顺时针转动或逆时针转动)。其测量偏航角速度(以下简称为角速度)的范围是±150 rad/s,灵敏度为12.5 mV/rad/s,零位输出电压为2.50 V,非线性误差为±0.1%F.S.,稳定度为±0.03 rad /s,-3 dB带宽为40 Hz,固有频率为14 kHz,角速

度噪声密度为0.05°s?HZ ?1

ADXL202是一款双轴的加速度传感器,可测量正负加速度,其最大测量范围为±2g n。灵敏度12.5 %/g n,-3 dB带宽为6 kHz。从技术指标可以知道能满足在测量角度±0.25°,但是单纯的使用,由于积分计算及噪声影响会使得角度测量

误差超出允许的测量范围,所以从硬件和滤波算法上进行校正和数据融合,以完成机器人偏转角度的精确测量。

系统框架图如图2所示.

图2 姿态检测系统框架图

四、电路设计

对于这个姿态检测系统,其检测电路分为两个部分:陀螺仪信号采集和加速度计信号采集。陀螺仪输出模拟信号,加速度计输出的是脉冲信号。

1 陀螺仪的电路设计

1.1 滤波电路

ADXRS150型微机械陀螺属于芯片级微机械陀螺,陀螺仪本身容易受到高频信号及其他外在因素的影响,导致其信号输出的不稳定。为了有效滤除陀螺仪的高频信号,在陀螺仪的输出上增加But-terworth低通滤波电路。经过滤波电路再连接到单片机的A/D端,从而减少了数据处理的干扰,提高了检测精度,滤波电路如图3所示。

图3 陀螺仪的滤波电路

1.2 陀螺仪的基本电路

陀螺仪的基本电路主要由ADXRS150组成,为提高可移植性,将它与必要的外围电阻,电容集成在同一模块,可以直接应用于其他的系统中,如图4所示,实际完成后的陀螺仪模块。

图4陀螺仪模块

2 加速度计的电路设计

2.1 加速度的基本电路

ADXL202是一个双轴的加速度计,可以测量运动和静态的加速度。静态加速度的一个特殊例子是重力加速度。当加速度传感器静止时(也就是侧面和垂直方向没有加速度作用),那么作用在它上面的只有重力加速度。重力(垂直)和加速

度传感器灵敏轴之间的夹角就是倾斜角。就是说可将加速度计用作倾角计。因为角度由灵敏轴和重力矢量组成的垂直平面决定,倾斜可以从各种初始的加速度传感器位置测得。在大多数设计中,加速度传感器的位置由水平或者垂直的PCB(印刷电路板)决定。这里选择了垂直的放置方法,如图5所示。

图5 加速度计的垂直放置及加速度的计算方法

基于垂直位置的倾斜角,可以测量大于90°的倾斜角时。通过加速度传感器的x和y轴的结合起来得到在360°范围内都有比较好分辨率。同时执行了这个转换过程后就不用对加速度传感器进行温度补偿了,因为两个轴的输出都是相同的变化幅度,所以灵敏度随温度的变化对比值的计算没有影响。

加速度计电路主要由ADXL202构成,并辅助以一些滤波及调节电路;通过系统控制电路处理ADXL202产生的占空比调制信号;采样电路中滤波电容选择Cx,Cy为0.1μF,滤波带宽为50 Hz,选择的周期T2的电阻为130kΩ,T2=1.04 ms。利用加速度计可以实现倾角传感器。ADXL202的原理图如图6所示:

图6 ADXL202的测量原理图

输出信号Xout,Yout连接到单片机,对与加速度成正比的占空比的方波进行处理,通过下面的公式得到偏转的角度。

A x=g?sinα A y=g?sinβα+β=90°

θ=tan?1(A x A y)

2.2 参数标定

由于器件参数的差异,芯片的基本参数(0g n,1g n)也不完全相同。因此,当要求测量精度较高时仍使用参数典型值就会引起误差。要提高测量的精度,就需要在测量前对相关参数认真标定。采用“1gn标定方法”来对加速度计的参数进行标定,标定后的参数如下:

Ax= (T1/T2-0.46327)/12.5%

Ay= (T1/T2-0.52941)/12.5%

以上就是机器人的姿态平衡控制系统,其相应的控制板如图7所示.控制系统由Mi-crochip公司的PIC18F458进行数据处理,完成数据处理后通过串口通信发送到电机控制系统板,以驱动电机来完成机器人的姿态平衡动作。

图7 姿态检测系统电路板

五、基于卡尔曼滤波的数据融合

对于姿态检测系统而言,单独使用陀螺仪或者加速度计,都不能提供有效的而且可靠的信息来保持机器人的平衡。陀螺仪能够提供瞬间的动态角度变化,但是由于其本身的固有特性、温度及积分过程的影响,它会随着工作时间的延长产生漂移误差,加速度计能够准确地提供静态的角度,但是它容易受到噪声的干扰,使得数据变化较大,为了克服这些问题,利用卡尔曼滤波来对信号进行数据融合。

经过卡尔曼滤波的处理,用加速度计的实现测量的倾斜角度来消除陀螺仪的漂移,在这个过程中,有害的噪声也被最小化了,从而得到精确的角度估计,通过卡尔曼滤波方法去跟踪机器人的倾斜角度与陀螺仪的偏差,来完成机器人的姿态检测工作。

六、软件设计

对于姿态检测系统的软件设计包括以下几个部分:系统的初始化与自校准,系统的中断处理程序,系统数据处理程序和数据通讯模块的设计。程序设计采用模块化思想,以便以后的功能扩展。对于姿态检测每次系统开启的时候都有一个校准的过程,这样是为了能够提高控制的精度。而在数据处理程序模块中,包括了数据的分类,滤波处理和自校准。计算得到的角度值通过数据通讯模块发送到相关的系统中。同时也可以接受命令来对姿态检测系统进行控制。

七、实验结果

通过卡尔曼滤波的方法,对采集的数据进行数据融合,使采集的数据更接近真实的值。图8所示是对采集到的数据,应用卡尔曼滤波前后得到的仿真曲线。

图8 滤波效果及实时数据

从图8可以看到,在没有使用卡尔曼滤波的情况下,角度的所受到的干扰噪声较大,误差在1.5°左右;使用了卡尔曼滤波后,角度的误差控制在0.25°以内。通过卡尔曼滤波之后的惯性传感器设计姿态检测系统,误差范围在允许的范围内±0.25°,完全能够满足检测机器人的倾斜角度的控制要求。

机器人的静态阶段中输出的由加速度信号处理所得的静态欧拉姿态角仅在1°范围内波动,有效提供了机器人在静态时的姿态数据,在动态阶段中,由角速度信号得出的动态欧拉姿态角大体在15°以内波动,横滚角因机器人行进中的横向摆动较大导致其输出较大,在20°以内波动,实验表明该传感器模块较为准确地获得了机器人自身的运动姿态。

八、结论

本文研究了基于惯性传感器的机器人姿态检测系统。应用MEMS的惯性传感器建立的姿态数据检测单元,完成了对机器人的姿态的检测,使机器人能够保持自平衡。通过仿真试验表明,运用卡尔曼滤波方法进行数据融合所得到的数据是有效的。在实际的工作中,机器人姿态检测系统也能保持较高的灵敏度,来完成两轮机器人的运动中的姿态检测,以达到精确控制的要求.姿态检测系统也可应用到其它的机器人控制中,具有较好的应用前景。

工业机器人的传感器

工业机器人的传感器 一.工业机器人的感觉系统 工业机器人的传感器主要分为:1.工业机器人的感觉系统2 .工业机器人内部传感器3 .工业机器人外部传感器4 .工业机器人传感器应用 其中工业机器人的感觉系统的基本组成为:视觉、听觉、触觉、嗅觉、味觉、平衡感觉和其他,而工业机器人传感器按用途可分为内部传感器和外部传感器。其中内部传感器装在操作机上,包括位移、速度、加速度传感器,是为了检测机器人操作机内部状态,在伺服控制系统中作为反馈信号。外部传感器,如视觉、触觉、力觉距离等传感器,是为了检测作业对象及环境与机器人的联系。工业机器人传感器的一般要求有精度高、重复性好,稳定性和可靠性好,抗干扰能力强,质量轻、体积小、安装方便。其特定要求有适应加工任务要求,满足机器人控制的要求,满足安全性要求以及其它辅助工作的要求。 二.工业机器人内部传感器在工业机器人内部传感器中,位置传感器和速度传感器,是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。内部传感器功能分类有:

1)规定位置、规定角度的检测 检测预先规定的位置或角度,可以用开/关两个状态值,用于检测机器人的起始原点、越限位置或确定位置。 微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用和水、油、尘埃的侵蚀。 光电开关:光电开关是由LED光源和光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源和光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用 2)位置、角度测量 测量机器人关节线位移和角位移的传感器是机器人位置反馈控制中必不可少的元件。 a)电位器 b)旋转变压器 c)编码器 3)速度、角速度测量 速度、角速度测量是驱动器反馈控制必不可少的环节。有时也利用测位移传感器测量速度及检测单位采样时间位移量,但这种方法有其局限性:低速时测量不稳定的危险;高速时,只能获得较低的测量精度。 最通用的速度、角速度传感器是测速发电机或成为转速表的

机器人传感器的类别及应用原理

机器人传感器的类别及应用原理 一般机器人系统由机械手、环境、任务和控制器四个互相作用的部分组成。我们称一般安装在机器人机械手上的传感器为内传感器(Inner Sensons),而称作为环境的一部分的传感器为外传感器(External Sensons)。下面将以此为主,结合机器人传感器其它分类方法进行阐述。 机器人产业近年来发展很快,2012年全球产量为16万台,欧、美、日等工业发达国家机器人市场已比较成熟,已处于平增长阶段。其机器人密度(万名员工使用机器人台数)韩国为347台,日本为339台,法国为261台,而我国为10台(有统计数据称为21台,仅供参考)。而我国机器人市场也发展很快,工业机器人每年装机量增长速度均超过20%,2010年装机量为52290台,2011年上涨到74317台,实现了42%的增长率。在2012年,我国出台了《智能制造科技发展十二五专项规划》,2013年4月21日还成立了中国机器人产业联盟,这些均证明了我国机器人产业将会有更大的发展。 机器人产品目前分类为工业机器人和服务机器人两大类。国内也有分为工业机器人和特种机器人两大类的;或分为一般机器人和智能机器人两大类;或分为一般机器人和移动机器人两类;或分为一般机器人和拟人机器人两类等。目前工业机器人多用于搬运、分拣、上下料、包装、码垛、焊接、喷涂、打磨、抛光、切割、摆放、装配等方面。 随着智能化的程度提高,机器人传感器应用越来越多。智能机器人主要有交互机器人、传感机器人和自主机器人3种。从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。 机器人的控制系统相当于人类大脑,执行机构相当于人类四肢,传感器相当于人类的五官。因此,要让机器人像人一样接收和处理外界信息,机器人传感器技术是机器人智能化的重要体现。 传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应

扫地机器人工业设计基本器件组合

扫地机器人工业设计基本器件组合 随着生活水平的提高,科技技术的慢慢成熟,使得扫地机器人被越来越多的的家庭接受,成为了家庭智能化的一个进步阶梯,扫地机器人对于工业设计的要求也不低,下面是创一设计的小编带来的扫地机器人工业设计的基本器件组合。 1、扫地机器人的LDS 激光测距传感器 扫地机器人工业设计时为了获取距离信息。当激光投射到障碍物上时,会在传感器里形成光斑。同时,图像传感器会根据光斑的像素序号来计算到激光测距传感器的中心距离。 2、扫地机器人的全向压力传感器 扫地机器人工业设计的LDS激光测距传感器上盖会配备全向压力传感器,顶面360度全方位灵敏感应轻微碰撞,防止机器人上方卡住。 3、扫地机器人的超声波传感器

扫地机器人工业设计时整颗传感器由负责发射超声和负责接收超声两部分组成,声波在空气中传播的速度是340m / s,根据发射和接收的时间差可以计算并得到与障碍物距离,从而避免碰撞,透明物体也能正确感应提前减速。 4、扫地机器人的沿墙传感器 扫地机器人工业设计在沿墙传感器的作用下,在清扫墙边缝隙的过程中始终和墙精确保持约10mm 的距离,同时配合边刷高速旋转可以彻底将墙边缝隙的灰尘清理干净。 以上就是创一设计给大家带来的简单介绍,如果您还想了解更多可以点击关注我们微信或者拨打我们的热线电话,也可以点击官网咨询我们。我们会有专业工作人员为您解答。 深圳市创一工业设计有限公司(简称:创一设计)充满活力和创造力的国内顶尖产品设计公司,拥有丰富的设计经验和成熟团队,先后为众多品牌客户创造出超过 300 个优质成功案例。设计团队由国内外优秀设计师组成,中西结合的理念使创一了解国内市场的同时,更具有超前创造性世界眼光,造就了创一对设计与商业两者奇妙关系的独到见解和预见。

机器人上用的传感器的介绍

机器人上用的传感器的介绍 作者:Ricky 文章来源:https://www.wendangku.net/doc/ef7837859.html,更新时间:2006年05月20日打印此文浏览数:18549 感知系统是机器人能够实现自主化的必须部分。这一章,将介绍一下移动机器人中所采用的传感器以及如何从传感器系统中采集所需要的信号。 根据传感器的作用分,一般传感器分为: 内部传感器(体内传感器):主要测量机器人内部系统,比如温度,电机速度,电机载荷,电池电压等。 外部传感器(外界传感器):主要测量外界环境,比如距离测量,声音,光线。 根据传感器的运行方式,可以分为: 被动式传感器:传感器本身不发出能量,比如CCD,CMOS摄像头传感器,靠捕获外界光线来获得信息。 主动式传感器:传感器会发出探测信号。比如超声波,红外,激光。但是此类传感器的反射信号会受到很多物质的影响,从而影响准确的信号获得。同时,信号还狠容易受到干扰,比如相邻两个机器人都发出超声波,这些信号就会产生干扰。 传感器一般有以下几个指标: 动态范围:是指传感器能检测的范围。比如电流传感器能够测量1mA-20A的电流,那么这个传感器的测量范围就是10log(20/0.001)=43dB. 如果传感器的输入超出了传感器的测量范围,那么传感器就不会显示正确的测量值了。比如超声波传感器对近距离的物体无法测量。 分辨率:分辨率是指传感器能测量的最小差异。比如电流传感器,它的分辨率可能是5mA,也就是说小于5mA的电流差异,它没法检测出。当然越高分辨率的传感器价格就越贵。 线性度:这是一个非常重要的指标来衡量传感器输入和输出的关系。 频率:是指传感器的采样速度。比如一个超声波传感器的采样速度为20HZ,也就是说每秒钟能扫描20次。 下面介绍一下常用的传感器: 编码器:主要用于测量电机的旋转角度和速度。任何用电机的地方,都可以用编码器来作为传感器来获得电机的输出。

机器人最实用的10种传感器盘点

机器人最实用的10种传感器盘点 随着智能化的程度提高,机器人传感器应用越来越多。智能机器人主要有交互机器人、传感机器人和自主机器人3种。从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。 内传感器 机器介机电一体化的产品,内传感器和电机、轴等机械部件或机械结构如手臂(Arm)、手腕(Wrist)等安装在一起,完成位置、速度、力度的测量,实现伺服控制。 位置(位移)传感器 直线移动传感器有电位计式传感器和可调变压器两种。角位移传感器有电位计式、可调变压器(旋转变压器)及光电编码器三种,其中光电编码器有增量式编码器和绝对式编码器。增量式编码器一般用于零位不确定的位置伺服控制,绝对式编码器能够得到对应于编码器初始锁定位置的驱动轴瞬时角度值,当设备受到压力时,只要读出每个关节编码器的读数,就能够对伺服控制的给定值进行调整,以防止机器人启动时产生过剧烈的运动。 速度和加速度传感器 速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。利用位移的导数,特别是光电方法让光照射旋转圆盘,检测出旋转频率和脉冲数目,以求出旋转角度,及利用圆盘制成有缝隙,通过二个光电二极管辨别出角速度,即转速,这就是光电脉冲式转速传感器。此外还有测速发电机用于测速等。 应变仪即伸缩测量仪,也是一种应力传感器,用于加速度测量。加速度传感器用于测量工业机器人的动态控制信号。一般有由速度测量进行推演、已知质量物体加速度所产生动力,即应用应变仪测量此力进行推演,还有就是下面所说的方法: 与被测加速度有关的力可由一个已知质量产生。这种力可以为电磁力或电动力,最终简化为对电流的测量,这就是伺服返回传感器,实际又能有多种振动式加速度传感器。

扫地机器人设计

扫地机器人设计报告

一、功能综述 1、清扫模式:随机清扫、螺旋式清扫、交叉清扫、沿边清扫、定点清扫、预约清扫等相结合,实现全方位立体清扫; 2、智能导航系统:实现对房间地形的重构,自动规划清扫路线; 3、智能安全监控:防撞,防跌落,防缠绕,电池电量监测; 4、创新功能:灰尘量识别,实现床底清扫,手机遥控模式,尖端气流滤尘技术,室内空气质量监测与提醒; 5、其他基础功能:自动返回并充电,灰尘盒安装检查,灰尘盒容量探测。 二、机械及系统设计 扫地机器人机械设计如图1所示。 前 图1 扫地机器人机械设计图 清扫机构,行走机构,吸尘机构是本次设计的重点,也是难点所在。由于机器人运动部件多,运动状态经常改变,必然产生冲击和振动。因此,增加机器人运动平稳性,提高机器人动力学特性尤为重要。为此,在设计时应注意在满足强度和刚度的前提下,尽量减小运动部件的质量,并注意运动部件对转轴的质心装

配。 (1)行走驱动轮及驱动电机 该部分主要保证机器人能够在平面内移动。为了保证小车良好的直线性,可采用双电机驱动左右两轮的方式,且在车体的后端装有一个不锈钢万向滚珠,这样可以使小车获取较好的机动性和灵活性及灵活性。前轮驱动的好处是:转向性能得到改善。前轮是转向轮,使得转向时的行驶方向容易控制,不容易出现过度转向的现象,转向安全性也得到提高。 (2)清扫机构 用电机带动两个清扫刷,使左面清扫刷顺时针转动,右面逆时针转动,这样就可以在清扫灰尘时将灰尘集中于吸风口处,为吸尘机构的工作做准备;清扫刷设计成可更换型的,可选择棉质纺织品或尼龙等化纤材料的,以适应不同的工作环境。 (3)吸尘机构 旨在强大的吸力、将灰尘吸入灰尘储存箱中;这里我们采用尖端气流滤尘技术,全方位,多层次将灰尘一网打尽。 (4)擦地机构 在清扫、吸尘之后,利用安装在壳体下面的清洁布擦出残留在地面上的细小灰尘,同时也能够擦除地面上的顽固污渍,从而保证清洁工作的质量。 扫地机器人功能框图如图2所示。

传感器在工业机器人中的应用

传感器在工业机器人中的应用 工业机器人的准确操作取决于对其自身状态、操作对象及作业环境的限确队识。这种准 确认识沟通过传感器的感觉功能实现。 机器人自身状态信息酌获取项过其内部信息传感25(位置、速度、加速度等)获取并为机 器人控制反馈信息。希迪电子操作刘象钟L部环境的队识通道外部传感器得到。 一、零位和极限位互的检测 答你的检测精度皇接影响—[业机器人的重复定位精度和轨迹精度,极限位置的检洲则起 保护机器人和安全动作曲作用。 工业机器人常川的位置传感器有接触式微动开关、精密电位计或非接触式光电外关、电讽 流传感器。通常在机器人的每个共计上各安装种接触式传感器或非接触式传感器及与其对 /匝的死挡块。在接近极限位置g1.传感器先产土限位停止信号,如果限位停止信号发出之后还 未停J:,则油死挡块强制停[L。肖无法确定机器人某关节的学位时.司“出位移传感器的输出信 号确定。利用微动开关、光电开关、电涡流等传感器确定零位的特点是零位的固定性。当传感器 位置调好后,此关哨的零位就确定丁,若要改变,则必须重新调整传感器的价黄。而用电位11或位移仕感器确定零位时.不需要至斯调理其位置.只要在LI宾机软件中修改车位参数他即可。 =、位移量的检测 位移传感器一股都安装在机器人各关节上,用于检测机器人各关节的位移量,提供机器人

的位置控制信息。选用时府考虑到女装传感器结构的*IJ行件以及传感器本身的精度、分辨率 及灵敏度等。机器人上常用的位移传感器打旋转变比2E、起动变压器、感应同步器、电位汁、光 栅、磁枷、光电编码器辞。 关啊型机器人大多采用光电编码器,Au采用光电增量码盘。经过处理后酌佰号是勺关节 转角角度成一定关系式的脉冲数.计算机在确定零位和正、负方向后.只要计脉冲数就可以得 到关节转角酌角位移值。如果将七安装在关节的木端转驯L:川lJ可以形成该关节的闭环控制。 理论—懒可以获得较高的控制精度。但这样对传感甜的分辨率要求高。 在机器人中使用速度传感器是为实现机器人番关节的速度闭环控制。在用应流、交流伺 服电动机作为工业机器人驱动元件时.钽电容一般采用测速发电机作为速度酌检测器。它勺电动机 同轴,电动机转速不同时,输出的电压位也不问、将其电压侦输入到速度控训罚环反馈回路中, 以提高机器人的动态性能。 加直度传感器被用于机器人中关节的加速度控制。钉时为了抑制振动而在关节上进行检 测,将测到的振动频率、幅值和相位输入计算机。然后在控制环节中叠An一个勺此频率相向、 幅值相等而相位相反的控制信号用于抑制振动。 四、外部信息传感器在电弧焊机器人中的应用 闭门—2为其应用之一。在垂直于坡u楷面的上方安装一窄缝光发射器.在抖L方用视

传感器技术在机器人技术中的应用研究

毕业论文 班级: 科目:工业机器人 姓名: 学号: 指导老师:

传感器技术在机器人技术中的应用研究【摘要】传感器是用来检测机器人自身的工作状态,以及机器人智能探测外部工作环境和对象状态的核心部件。能感受规定的被测量,并按照一定的规律转换成可用输出信号的器件或装置。本文首先介绍了常用传感器的工作原理、基本结构、使用特点,并讨论了传感器在智能机器人中的应用。 【关键词】传感器;机器人;视觉传感器;力觉传感器;触觉传感器 1.传感器的工作原理及典型应用 传感器在工业中的应用非常的广泛,是当今科技产业是新技术革命和信息社会的重要技术基础,是当今世界极其重要的高科技,一切现代化仪器、设备几乎都离不开传感器。它广泛应用于各种新型技术领域中,下面列举几种常见的传感器:应变式传感器:有应变效应、压阻效应的原理而来。力传感器、压力传感器液体重量传感器、加速度传感器是它的典型应用;电感式传感器:利用电磁感应(自感、互感)来工作,主要应用于测量位移、振幅、转速和无损探伤等;电容式传感器:将非电量转换为电容量,它的核心部分是可变参数的电容器。把被测的机械量,如位移、压力等转换为电容量变化的传感器;压电式传感器:是基于压电效应应用的传感器,它的核心部件是压电材料。应用于测量力和能变换为力的非电物理量;磁电式传感器:利用电磁感应来工作,适用于动态测量,例如霍尔传感器;热电式传感器:基于热电效应的原理而制造出来的传感器,利用温度的变化

来进行测量,一般用于温度测量、管道流量测量等;光电式传感器:基于光电效应的传感器,将光电信号转换成电信号输出,来测量位移、速度、温度等,例如CCD固体图像传感器、光纤传感器等;红外传感器:红外辐射,被动式人体移动检测仪红外测温仪、红外线气体分析仪;微波传感器:反射原理、吸附效应,微波液位计、辐射计、物位计,微波温度传感器、无损探测仪、多普勒传感器;超声波传感器:压电效应、磁致伸缩效应,测量物位、流量、厚度、探伤;数字式传感器:光栅原理、光电效应,机床定位、长度和角度的计量仪器; 2.传感器在机器人中的应用 机器人能智能探测发现工作对象及对工作对象进行处理加工,都是因为在机器人相应部位装备了传感器,机器人才具备了类似于人类的视觉功能、运动协调和触觉反馈。智能机器人能对工作对象进行检测或在恶劣环境中工作是因为装备了触觉传感器、视觉传感器、力觉传感器、光敏传感器、超声波传感器和声学传感器等,有了传感器的应用才大大改善智能机器人知觉功能和反应能力,使其能够更灵活、更妥善地完成各种复杂的工作。根据传感器在机器人中应用的不同可分为机器人部检测传感器和机器人外部探测传感器。(1)机器人部传感器是用于检测机器人自身的工作状态(如调整前进速度)的传感器。多为检测速度和角度的传感器。(2)机器人外部传感器检测机器人外部工作环境(如是什么工作对象,离工作对象的距离的远近等)及工作状况(如机器人手臂的抓取是否成功)的传感器。具体

传感器在工业机器人中应用

传感器在工业机器人中应用 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。 在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。绝大多数智能机器人的外部传感器,可以大致分为触觉传感器,接近传感器、力学传感器,以及视觉、滑觉、热觉等多种类型的传感器。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。 用于避障的传感器 避障可以说是各种机器人最基本的功能,不然机器人一走动就碰到花花草草就不好了。机器人并不一定要通过视觉感知自己前方是否有障碍物,它们也可以通过触觉或像蝙蝠那样通过声波感知。因此,检测机器人前方是否存在障碍物的传感器,可以分为接触式和非接触式的。 最典型的接触式测障传感器便是碰撞开关(图1)。碰撞开关的工作原理非常简单,完全依靠内部的机械结构来完成电路的导通和中断。 图1 碰撞开关 在机器人上的用法多数是将探测臂加长,扩大探测范围和灵敏度。当机器人撞到前面的障碍物,碰撞开关的信号端便可返回一个高电平,控制芯片由此可以知道小车面前存在着障碍物。 非接触式测障开关一般的工作原理与声纳和雷达相似,发射声波或某种射线,遇到

障碍物,声波或射线被反射回来,并被传感器接收,这时传感器就认为发现了障碍物。我们最常用的便是发射和接收红外线的传感器(图3,图4)。 图3 红外发射管 图4 红外接收管 红外测障传感器成本较低(当然比碰撞开关还是要高一点),电路简单,检测范围大。如果在电路中加上一个电位器,就可以随时调节传感器的检测范围。这种检测方式为非接触式,控制起来更加方便、灵活。但这种测障方式也有缺点,多个红外传感器之间容易互相干扰,因此在传感器的布局上需要多花心思,安装位置也要尽可能地避免红外信号的碰撞。 用于测距的传感器 机器人光知道哪个方向有障碍物并不够,还必须知道障碍物距离自己具体有多远,才好判断下一步的行动。这时我们就需要测距传感器。 测距传感器大多为非接触式的,目前在个人机器人制作领域用得比较多的是红外和超声波测距传感器两种。 提到红外测距传感器,就不能不提夏普的GP2D12红外测距传感器(图5)。GP2D12几乎可以说是机器人爱好者的必备传感器,在我们平时常看到的一些个人机器人作品中,绝大多数都可以看到它的身影。

触觉传感器

触觉传感器 触觉传感器是用于机器人中模仿触觉功能的传感器。按功能可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器。 触觉传感器- 触觉传感器 触觉传感器- 正文 用于机器人中模仿触觉功能的传感器。触觉是人与外界环境直接接触时的重要感觉功能,研制满足要求的触觉传感器是机器人发展中的技术关键之一。随着微电子技术的发展和各种有机材料的出现,已经提出了多种多样的触觉传感器的研制方案,但目前大都属于实验室阶段,达到产品化的不多。触觉传感器按功能大致可分为接触觉传感器、力-力矩觉传感器、压觉传感器和滑觉传感器等。 接触觉传感器用以判断机器人(主要指四肢)是否接触到外界物体或测量被接触物体的特征的传感器。接触觉传感器有微动开关、导电橡胶、含碳海绵、碳素纤维、气动复位式装置等类型。①微动开关:由弹簧和触头构成。触头接触外界物体后离开基板,造成信号通路断开,从而测到与外界物体的接触。这种常闭式(未接触时一直接通)微动开关的优点是使用方便、结构简单,缺点是易产生机械振荡和触头易氧化。②导电橡胶式:它以导电橡胶为敏感元件。当触头接触外界物体受压后,压迫导电橡胶,使它的电阻发生改变,从而使流经导电橡胶的电流发生变化。这种传感器的缺点是由于导电橡胶的材料配方存在差异,出现的漂移和滞后特性也不一致,优点是具有柔性。③含碳海绵式:它在基板上装有海绵构成的弹性体,在海绵中按阵列布以含碳海绵。接触物体受压后,含碳海绵的电阻减小,测量流经含碳海绵电流的大小,可确定受压程度。这种传感器也可用作压力觉传感器。优点是结构简单、弹性好、使用方便。缺点是碳素分布均匀性直接影响测量结果和受压后恢复能力较差。④碳素纤维式:以碳素纤维为上表层,下表层为基板,中间装以氨基甲酸酯和金属电极。接触外界物体时碳素纤维受压与电极接触导电。优点是柔性好,可装于机械手臂曲面处,但滞后较大。⑤气动复位式:它有柔性绝缘表面,受压时变形,脱离接触时则由压缩空气作为复位的动力。与外界物体接触时其内部的弹性圆泡(铍铜箔)与下部触点接触而导电。优点是柔性好、可靠性高,但需要压缩空气源。

工业机器人种类介绍

工业机器人种类介绍 关键词:机器人,种类介绍移动机器人 (AGV) 移动机器人(AGV)是工业机器人的一种类型,它由计算机控制,具有移动、自动导航、多传感器控制、网络交互等功能,它可广泛应用于机械、电子、纺织、卷烟、医疗、食品、造纸等行业的柔性搬运、传输等功能,也用于自动化立体仓库、柔性加工系统、柔性装配系统(以AGV作为活动装配平台);同时可在车站、机场、邮局的物品分捡中作为运输工具。 国际物流技术发展的新趋势之一,而移动机器人是其中的核心技术和设备,是用现代物流技术配合、支撑、改造、提升传统生产线,实现点对点自动存取的高架箱储、作业和搬运相结合,实现精细化、柔性化、信息化,缩短物流流程,降低物料损耗,减少占地面积,降低建设投资等的高新技术和装备。 点焊机器人 焊接机器人具有性能稳定、工作空间大、运动速度快和负荷能力强等 焊接机器人 特点,焊接质量明显优于人工焊接,大大提高了点焊作业的生产率。 点焊机器人主要用于汽车整车的焊接工作,生产过程由各大汽车主机厂负责完成。国际工业机器人企业凭借与各大汽车企业的长期合作关系,向各大型汽车生产企业提供各类点焊机器人单元产品并以焊接机器人与整车生产线配套形式进入中国,在该领域占据市场主导地位。 随着汽车工业的发展,焊接生产线要求焊钳一体化,重量越来越大,165公斤点焊机器人是当前汽车焊接中最常用的一种机器人。2008年9月,机器人研究所研制完成国内首台165公斤级点焊机器人,并成功应用于奇瑞汽车焊接车间。2009年9月,经过优化和性能提升的第二台机器人完成并顺利通过验收,该机器人整体技术指标已经达到国外同类机器人水平。 弧焊机器人 弧焊机器人主要应用于各类汽车零部件的焊接生产。在该领域,国际大 弧焊机器人 型工业机器人生产企业主要以向成套装备供应商提供单元产品为主。 关键技术包括:

2018机器人传感器习题题库 - 附答案

1.多传感器数据融合的结构形式有串联型融合,并联型融合,混联型融合。 2. 3 4自校准层中用到的算法包括自适应加权算法、和(贝叶斯估算法,分布图与分批估计算法)。 5传感器一般由敏感元件,转换元件,测量电路,辅助电路等组成。 6机器人由机械部分、传感部分、控制部分三大部分组成。 7.智能传感器是由传感器和微处理器相结合而构成。 8.根据信息融合处理方式的不同,可以将多传感器信息融合系统结构分为集中、分散、混合、反馈型等。 9.常用的多传感器信息融合方法可以分为以下四大类。 10.根据处理对象的层次不同,可以将信息融合分类为数据层融合、特征层融合、决策层融合。 12.11.序号跳了, 13.11、12并没有题目。 14.机器人的机械结构系统由机械构件和传动机构组成。 15.机器人的运动方式主要有、、、及。 16.机器人传感器分为内部传感器和外部传感器两种。 17.多传感器信息融合过程主要包括A/D、数据预处理、特征值提取、和融合计算等环节。 18.智能传感器的硬件结构模块要由以下六个部分组成一个或多个敏感器件、微处理器或为控制器、非易失性可擦写存储器、双向数据通信的接口、模拟量输入输出接口、高效的电源模块。 19.传感器的标定可分为动态标定和静态标定。 20.传感器按构成原理分类为结构型和物性型。 21.压电传感器是根据压电效应制造而成的。 22.机器人的机械结构系统中的机械构件由机身、手臂和末端执行器三大件组成。 23.机器人驱动系统的驱动方式主要有液压、气压和电气。 24.机器人内部传感器主要包括位置、速度、加速度、倾斜角、力觉传感器等五种基本种类。 25.智能传感器是由传感器和微处理器相结合而构成的。第7题重复 26.多传感器信息融合的常用方法可以分为估计、分类、推理、人工智能四大类。 26.传感器按能量关系分类为能量转换和能量控制型;按基本效应分类分为物理、化学、生物型。第19题合并 27传感器进行动态特性标定时常用的标准激励源有周期函数和瞬变函数两种。 28机器人的机械结构系统由机械构件和传动系统组成。第13题重复 29机器人外部传感器主要包括视觉传感器、触觉、接近度、激光等基本种类。 30.智能传感器的实现方式主要有非集成化的模块方式、集成化实现和混合实现三种形式。 31.多传感器信息融合的系统结构分为集中、分散、混合、反馈型四大类。第8题重复 32.机器人电器驱动系统中,马达是其执行元件。

机器人及常用传感器

机器人 机器人有三个发展阶段,一是第一代机器人,也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。抓一个鸡蛋,它能通过一个触觉,知道它的力的大小和滑动的情况。第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 那么从三代机器人发展过程中,从另一个方面,我们对机器人从应用的角度进行了分类,比如说工业机器人,它包括点焊、弧焊、喷漆、搬运、码垛,在工业现场中工作的这种机器人,我们统称为工业机器人,那么从不同的应用中,到水下去作业的叫水下机器人,到空间作业的叫空间机器人,同时又存在农业、林业、牧业,对医疗机器人叫医用机器人,还包括娱乐机器人,建筑和居室上用的机器人,所以从应用分类,它包括从行业、应用角度,也可以进行这样简单的分类。 机器人中常用的传感器主要有:用于避障的传感器,用于测距的传感器,用于亮度判断的传感器,用于测量速度的传感器,用于检测地面灰度的传感器。这里主要介绍用于Ⅰ、测距的传感器-GP2d12,Ⅱ、测量速度的传感器-光电编码器。Ⅲ、用于亮度判断的传感器-光敏电阻

工业机器人的传感器

工业机器人的传感器 一.工业机器人的感觉系统 工业机器人的传感器主要分为:1、工业机器人的感觉系统2 、工业机器人内部传感器3 、工业机器人外部传感器4 、工业机器人传感器应用 其中工业机器人的感觉系统的基本组成为:视觉、听觉、触觉、嗅觉、味觉、平衡感觉与其她,而工业机器人传感器按用途可分为内部传感器与外部传感器。其中内部传感器装在操作机上,包括位移、速度、加速度传感器,就是为了检测机器人操作机内部状态,在伺服控制系统中作为反馈信号。外部传感器,如视觉、触觉、力觉距离等传感器,就是为了检测作业对象及环境与机器人的联系。工业机器人传感器的一般要求有精度高、重复性好,稳定性与可靠性好,抗干扰能力强,质量轻、体积小、安装方便。其特定要求有适应加工任务要求,满足机器人控制的要求,满足安全性要求以及其它辅助工作的要求。 二.工业机器人内部传感器 在工业机器人内部传感器中,位置传感器与速度传感器,就是当今机器人反馈控制中不可缺少的元件。现已有多种传感器大量生产,但倾斜角传感器、方位角传感器及振动传感器等用作机器人内部传感器的时间不长,其性能尚需进一步改进。内部传感器功能分类有:

1)规定位置、规定角度的检测 检测预先规定的位置或角度,可以用开/关两个状态值,用于检测机器人的起始原点、越限位置或确定位置。 微型开关:规定的位移或力作用到微型开关的可动部分(称为执行器)时,开关的电气触点断开或接通。限位开关通常装在盒里,以防外力的作用与水、油、尘埃的侵蚀。 光电开关:光电开关就是由LED光源与光敏二极管或光敏晶体管等光敏元件组成,相隔一定距离而构成的透光式开关。当光由基准位置的遮光片通过光源与光敏元件的缝隙时,光射不到光敏元件上,而起到开关的作用 2)位置、角度测量 测量机器人关节线位移与角位移的传感器就是机器人位置反馈控制中必不可少的元件。 a)电位器 b)旋转变压器 c)编码器 3)速度、角速度测量 速度、角速度测量就是驱动器反馈控制必不可少的环节。 有时也利用测位移传感器测量速度及检测单位采样时间位移量,但这种方法有其局限性:低速时测量不稳定的危险;高速时,只能获得较低的测量精度。

解析工业机器人常用的传感器

解析工业机器人常用的传感器 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。机器人已经开始应用大量的传感器以提高适应能力。例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。在此枚举一些常用的可以集成到机器人单元里的各种传感器,供诸君参考。 二维视觉传感器 二维视觉基本上就是一个可以执行多种任务的摄像头。从检测运动物体到传输带上的零件定位等等。二维视觉在市场上已经出现了很长一段时间,并且占据了一定的份额。许多智能相机都可以检测零件并协助机器人确定零件的位置,机器人就可以根据接收到的信息适当调整其动作。 三维视觉传感器 与二维视觉相比,三维视觉是最近才出现的一种技术。三维视觉系统必须具备两个不同角度的摄像机或使用激光扫描器。通过这种方式检测对象的第三维度。同样,现在也有许多的应用使用了三维视觉技术。例如零件取放,利用三维视觉技术检测物体并创建三维图像,分析并选择最好的拾取方式。

如果说视觉传感器给了机器人眼睛,那么力/力矩传感器则给机器人带去了触觉。机器人利用力/力矩传感器感知末端执行器的力度。多数情况下,力/力矩传感器都位于机器人和夹具之间,这样,所有反馈到夹具上的力就都在机器人的监控之中。 有了力/力矩传感器,像装配,人工引导、示教,力度限制等应用才能得以实现。 碰撞检测传感器 这种传感器有各种不同的形式。这些传感器的主要应用是为作业人员提供一个安全的工作环境,协作机器人最有必要使用它们。一些传感器可以是某种触觉识别系统,通过柔软的表面感知压力,如果感知到压力,将给机器人发送信号,限制或停止机器人的运动。 有些传感器还可以直接内置在机器人中。有些公司利用加速度计反馈,还有些则使用电流反馈。在这两种情况下,当机器人感知到异常的力度时,触发紧急停止,从而确保安全。但是在机器人停止之前,你还是会被它撞到。因此最安全的环境是完全没有碰撞风险的环境,这就是接下来这个传感器的使命。 要想让工业机器人与人进行协作,首先要找出可以保证作业人员安全的方法。这些传感器有各种形式,从摄像头到激光等,目的只有一个,就是告诉机器人周围的状况。有些安全系统可以设置成当有人出现在特定的区域/空间时,机器人会自动减速运行,如果人员继续靠近,机器人则会停止工作。 最简单的例子就是电梯门上的激光安全传感器。当激光检测障碍物时,门会立即停止并倒退,以避免碰撞。在机器人行业里的大多数安全传感器也差不多是这样。 零件检测传感器 在零件拾取应用中,(假设没有视觉系统),你无法知道机器人抓手是否正确抓取了零件。而零件检测应用可以为你提供抓手位置的反馈。例如,如果抓手漏掉了一个零件,系统会检测到这个错误,并重复操作一次,以确保零件被正确抓取。

机器人传感器论文

机器人传感器 正文: 传感器是机器人完成感觉的必要手段,通过传感器的感觉作用,将机器人自身的相关特性或相关物体的特性转化为机器人执行某项功能时所需要的信息。根据传感器在机器人上应用的目的和使用范围不同,可分为内部传感器和外部传感器。 内部传感器用于检测机器人自身状态(如手臂间角度、机器人运动工程中的位置、速度和加速度等);外部传感器用于检测机器人所处的外部环境和对象状况等,如抓取对象的形状、空间位置、有没有障碍、物体是否滑落等。 机器人传感器的要求和选择 机器人传感器的选择取决于机器人工作需要和应用特点,对机器人感觉系统的要求时选择传感器的基本依据。 机器人传感器的选择的一般要求: 精度高、重复性好; 稳定性和可靠性好; 抗干扰能力强; 重量轻、体积小、安装方便。 内部传感器 位移传感器 按照位移的特征,可分为线位移和角位移。 线位移是指机构沿着某一条直线运动的距离,角位移是指机构沿某一定点转动的角度。 (1)电位器式位移传感器 电位器式位移传感器由一个线绕电阻(或薄膜电阻)和一个滑动触点组成。其中滑动触点通过机械装置受被检测量的控制。当被检测的位置量发生变化时,滑动触点也发生位移,从而改变了滑动触点与电位器各端之间的电阻值和输出电压值,根据这种输出电压值的变化,可以检测出机器人各关节的位置和位移量。 (2)直线型感应同步器 直线感应同步器的组成是由定尺和滑尺组成。定尺和滑尺间保证与一定的间隙,一般为左右。在定尺上用铜箔制成单项均匀分布的平面连续绕组,滑尺上用铜箔制成平面分段绕组。绕组和基板之间有一厚度为的绝缘层,在绕组的外面也有一层绝缘层,为了防止静电感应,在滑尺的外边还粘贴一层铝箔。定尺固定在设备上不动,滑尺则可以再定尺表面来回移动。 (3)圆形感应同步器 圆形感应同步器主要用于测量角位移。它由钉子和转子两部分组成。在转子上分布着连续绕组,绕组的导片是沿圆周的径向分布的。在定子上分布着两相扇形分段绕组。定子和转子的截面构造与直线型同步器是一样的,为了防止静电感应,在转子绕组的表面粘贴一层铝箔 绝对速度传感器 绝对速度传感器,图4-11为国产CD-1型绝对速度传感器的结构图。途中磁钢6借铝架5固定在壳体4内,并通过壳体形成磁回路。线圈2和阻尼环3安装在芯杆2上,芯杆用弹簧1和8支承在壳体内,构成传感器的活动部分。当传感器的壳体与振动物体一起振动时,如振动的频率较高,由于芯杆组件的质量很大,故产生的惯性力也大,可以阻止芯杆随壳体一起运动。当振动频率高到一定程度时,可以认为芯杆组件基本不动,只是壳体随被测物体振动。这时,线圈以物体的振动速度切割磁力线而在线圈两端产生感应电压。并且线圈输出的电压与线圈相对可替代运动速度成正比。当振动速度高到一定程度时,线圈与壳体的相对速度就是被测振动物体的绝对速度。

机器人视觉传感器的应用

机器人视觉传感器应用 庞浜 学号19920141152889 (厦门大学物理与机电工程学院,福建厦门 361005) 摘要:传感器是自动控制特别是机器人技术中一个很重要的部分。它类似人的五感(眼、耳、鼻、舌、身)对对象物,周围环境,系统内部状态进行快速、准确的感觉、检测、识别。本译文介绍了几种类似人视觉功能的传感器(红外线传感器,视觉—位置传感器,色识别传感器),及其原理、特点、应用及主要技术指标。在机器人发展日益成熟的今天,视觉传感器的重要作用日益显现。 关键词:视觉传感器,图像处理,机器人 Abstract:Sensor is a very important part of automatically controlled in particular robotics. It is similar to one of the five senses (eyes,ears,nose, tongue,body) to the object, the surroundings, the internal state of the system for fast, accurate feeling, detection, identification.The translation introduces several features similar to human vision sensors (infrared sensors, vision - position sensors,color recognition sensor),and its principles,characteristics,applications and main technical indicators.In today's increasingly sophisticated robot development, the important role of the visual sensor becomes increasingly obvious. 1引言 目前,在全世界的制造业中,工业机器人已经在生产中起到了越来越重要的作用。为了使机器人能够胜任更复杂的工作,机器人不但要有更好的控制系统,还需要更多地感知环境的变化。其中机器人视觉以其信息量 大、信息完整成为最重要的机器人感知功能。 机器人视觉伺服系统是机器视觉和机器人控制的有机结合,是一个非线性、强藕合的复杂系统,其内容涉及图象处理、机器人运动学和动力学、控制理论等研究领域。随着摄像设备性能价格比和计算机信息处理速度的提高,以及有关理论的日益完善,视觉伺服已具备实际应用的技术条件,相关的技术问题也成为当前研究的热点。 机器人视觉是使机器人具有视觉感知功能的系统。机器人视觉可以通过视觉传感器获取环境的一维、二维和三维图像,并通过视觉处理器进行分析和解释,进而转换为符号,让机器人能够辨识物体,并确定其位置及各种状态。机器人视觉视觉侧重于研究以应用为背景的专用视觉系统,只提供对执行某一特定任务相关的景物描述。机器人视觉硬件主要包括图像获取和视觉处理两部分,而图像获取由照明系统、视觉传感器、模拟-数字转换器和帧存储器等组成。根据功能不同,机器人视觉可分为视觉检验和视觉引导两种,广泛应用于电子、汽车、机械等工业部门和医学、军事领域。计算机视觉应用多采用光电传感器、视觉传感器或者视觉系统来实现。光电传感器结构简单,价格

机器人触觉系统的研究

机器人触觉传感技术的研究 班级:机电113 学号:110201313 姓名:钱娟摘要:机器人触觉传感技术是实现智能机器人的关键技术之一,触觉传感器是机器人与环境直接作用的必要媒介,是模仿人手使之具有接触觉、滑动觉、热觉等感知功能。首先,在深入了解各种触觉传感器设计原理和方法的基础上,利用压电原理和光电原理设计了一种体积小、结构简单、工作可靠、柔韧性好,并可同时检测触觉和滑动信号的三维力机器人触滑觉传感器。其次,对触觉传感头的压电层和结构进行有限元建模分析。最后,引入了自适应模糊控制方法,通过对滑动信号的模糊控制器设计,控制机械手与接触界面的夹持力。 关键词:机器人触觉、触觉传感器、压电原理 1.绪论 触觉是一种复合传感,通过人体表面的温度觉、力觉传感器等提供的复合信息可以识别物体的冷热、尺寸、柔软度、表面形状、表面纹理等特征,为人类感知世界提供了大量有用的信息。 在机器人领域使用触觉传感器的目的在于获取机械手与工作空间中物体接触的有关信息。例如,触觉信息可以用于物体的定位和识别以及控制机械手加在物体上的力。 2.触觉传感器的种类 触觉信息是通过传感器与目标物体的实际接触而得到的,因此,

触觉传感器的输出信号基本上是由两者接触而产生的力以及位置偏移的函数。一般来说,触觉传感器可以分为简单的接触传感器和复杂的触觉传感器。前者只能探测和周围物体的接触与否,只传递一种信息,如限位开关、接触开关等;后者不仅能够探测是否和周围物体接触,而且能够感知被探测物体的外轮廓。 1)压电式触觉传感器 压电式触觉传感器是利用晶体的压电效应进行触觉测量的触觉传感器。通常,这种传感器可以采用多个压电晶体来检测物体的表面轮廓。其工作原理是把多个压电晶体压在被测物体上,如果物体表面的高度不同,各个压电晶体的变形也不同,因此,压电晶体产生的电量和输出电压也不同,检测各压电晶体的输出电压就可以检测物体的表面轮廓。 2)压阻式阵列触觉传感器 对于开关式触觉传感器,阵列密度难以提高,阵列数增加时外接引线也是一个很大的问题。利用敏感材料和硅工艺制作的阵列触觉传感器可使阵列数及阵列密度得到很大的提高,并且减少外界引线,但这种传感器往往缺少应有的柔性,很难较通用地安装到不同形状的应用载体上。 3)成像型触觉传感器 成像型触觉传感器由若干个感知单元组成阵列结构,主要用于感知目标物体的形状。 4)超大规模集成计算传感器阵列

传感器在机器人中的应用

传感器在机器人中的应用 一名词解释 机器人:机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 传感器:接受物理或化学变量(输入变量)形式的信息,并按一定规律将其转换成同种或别种性质的输出信号的装置。 机器人是由计算机控制的复杂机器,它具有类似人的肢体及感官功能;动作程序灵活;有一定程度的智能;在工作时可以不依赖人的操纵。机器人传感器在机器人的控制中起了非常重要的作用,正因为有了传感器,机器人才具备了类似人类的知觉功能和反应能力。 机器人的全身布满了传感器,见图1。各传感器分别负责机器人的各部分功能,如:明暗觉传感器负责判断是否有无对象,并得到定量结果。 主要应用的传感器件:光敏管、光电断续器等。其他各类功能传感器见表1.

表1 二机器人中几种常见的传感器 霍尔传感器: (一)名词解释 霍尔传感器是根据霍尔效应制作的一种磁场传感器。实物见图2 霍尔效应:在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为U H的霍尔电压。 霍尔元件:根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。 (二)霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。 1。线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。 2。开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

相关文档
相关文档 最新文档