文档库 最新最全的文档下载
当前位置:文档库 › 三角形全等辅助线训练

三角形全等辅助线训练

三角形全等辅助线训练
三角形全等辅助线训练

D

C

B A

全等三角形辅助线

常见辅助线的作法有以下几种:

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变

换中的“对折”法构造全等三角形.

2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的

思维模式是全等变换中的“旋转” 法构造全等三角形.

3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平

移”或“翻转折叠”

5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条

线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.

6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连

线,出一对全等三角形。

特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等

1:(“希望杯”试题)已知,如图△ABC 中, AB=5,AC=3,则中线AD 的取值范围是_________

2:如图,已知ΔABC 中,AD 是∠BAC 的平分线,AD 又是BC 边上的中线。求证:ΔABC 是等腰三角形。

E

D

C

B A

解题后的思考:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。

二遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交

AC 于点D ,CE 垂直于BD ,交BD 的延长线于点E 。求证:BD=2CE 。

解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。

三、截长补短

2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。

O

E

D

C

B

A

D

C

B

A

解题后的思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:

截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;

补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。

1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。

2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。

四、借助角平分线造全等

1、如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD

4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠, 求证: 0

180=∠+∠C A

五.过图形上某一点作特定的平行线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”

例4:如图,ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF 交BC于D,若EB=CF。

求证:DE=DF。

解题后的思考:此题的辅助线还可以有以下几种作法:

小结:三角形

图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角形。三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

专题:全等三角形常见辅助线做法及典型例题

《全等三角形》辅助线做法总结 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 一、截长补短法(和,差,倍,分) 截长法:在长线段上截取与两条线段中的一条相等的一段,证明剩余的线段与另一段相等(截取----全等----等量代换) 补短法:延长其中一短线段使之与长线段相等,再证明延长段与另一短线段相等(延长----全等----等量代换) 例如:1,已知,如图,在△ABC中,∠C=2∠B,∠1=∠2。求证:AB=AC+CD。 2,已知:如图,AC∥BD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:(1)AE⊥BE;(2)AB=AC+BD. 二、图中含有已知线段的两个图形显然不全等(或图形不完整)时,添加公共边(或一其中 一个图形为基础,添加线段)构建图形。(公共边,公共角,对顶角,延长,平行)例如:已知:如图,AC、BD相交于O点,且AB=DC,AC=BD,求证:∠A=∠D。 三、延长已知边构造三角形 例如:如图6:已知AC=BD,AD⊥AC于A ,BC⊥BD于B,求证:AD=BC D C B A 1 10 图 O A B C D E O

四、遇到角平分线,可自角平分线上的某个点向角的两边作垂线(“对折”全等) 例如:已知,如图,AC 平分∠BAD ,CD=CB ,AB>AD 。求证:∠B+∠ADC=180。 五、遇到中线,延长中线,使延长段与原中线等长(“旋转”全等) 例如:1如图,AD 为 △ABC 的中线,求证:AB +AC >2AD 。(三角形一边上的中线小 于其他两边之和的一半) 2,已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 。 3,如图,已知:AD 是△ABC 的中线,且CD=AB ,AE 是△ABD 的中线,求证:AC=2AE. E C B D A 六、遇到垂直平分线,常作垂直平分线上一点到线段两端的连线(可逆 :遇到两组线段相等, 可试着连接垂直平分线上的点) 例如:在△ABC 中,∠ACB=90,AC=BC,D 为△ABC 外一点,且AD=BD,DE ⊥AC 交AC 的延长 线于E,求证:DE=AE+BC 。 七、遇到等腰三角形,可作底边上的高,或延长加倍法(“三线合一”“对折”) A D B C C A E B D

全等三角形中常见辅助线的添加方法

全等三角形中常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍 此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造 全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 A B C D E F N 1 图1234 2 图A B C D E F M 123 4A B C D E A B C D E F 4 图

四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 六、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 7 七、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC ,AC =BD ,求证:∠A =∠D 。 八、取线段中点构造全等三有形。 例如:如图10:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D N M P 5图12A B C D E 6 图O D B A 110 图O 10图D C B A M N

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求证:CD=AD+BC。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC,如图乙 ∴△FCE≌△BCE(SAS), ∴∠2=∠1。 又∵AD∥BC,

全等三角形中常用辅助线(经典)

三角形中的常用辅助线 课程解读 一、学习目标: 归纳、掌握三角形中的常见辅助线 二、重点、难点: 1、全等三角形的常见辅助线的添加方法。 2、掌握全等三角形的辅助线的添加方法并提高解决实际问题的能力。 三、考点分析: 全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。 典型例题 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等; (3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等; (4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: (1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。

全等三角形辅助线经典做法习题 (1)

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

初中数学全等三角形辅助线技巧

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。求证:BD=2CE。 思路分析: 1)题意分析:本题考查等腰三角形的三线合一定理的应用 2)解题思路:要求证BD=2CE,可用加倍法,延长短边,又因为有BD平分∠ABC的条件,可以和等腰三角形的三线合一定理结合起来。 解答过程: 证明:延长BA,CE交于点F,在ΔBEF和ΔBEC中, ∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°, ∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。 又∠1+∠F=∠3+∠F=90°,故∠1=∠3。 在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°, ∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。 解题后的思考:等腰三角形“三线合一”性质的逆命题在添加辅助线中的应用不但可以提高解题的能力,而且还加强了相关知识点和不同知识领域的联系,为同学们开拓了一个广阔的探索空间;并且在添加辅助线的过程中也蕴含着化归的数学思想,它是解决问题的关键。 (2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 例2:如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。求证:ΔABC是等腰三角形。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识。 2)解题思路:在证明三角形的问题中特别要注意题目中出现的中点、中线、中位线等条件,一般这些条件都是解题的突破口,本题给出了AD又是BC边上的中线这一条件,而且要求证AB=AC,可倍长AD得全等三角形,从而问题得证。 解答过程:

全等三角形几种常见辅助线精典题型

全等三角形几种常见辅助线精典题型 一、截长补短 1、已知ABC ?中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明. 2、如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=?,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系? 3、如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,求AB 的长。 4、已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE . N E B M A D D O E C B A M D C B A F D A

5、以ABC ?的AB 、AC 为边向三角形外作等边ABD ?、ACE ?,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠. 6、如图所示,ABC ?是边长为1的正三角形,BDC ?是顶角为120?的等腰三角形,以D 为顶点作一个60?的MDN ∠,点M 、N 分别在AB 、AC 上, 求AMN ?的周长. 7、如图所示,在ABC ?中,AB AC =,D 是底边BC 上的一点,E 是线段AD 上的一点,且2BED CED BAC ∠=∠=∠,求证2BD CD =. 8、 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE F A B C D E O O E D C B A N M D C B A E D B A E B A

全等三角形辅助线技巧

注意全等三角形的构造方法 搞清了全等三角形的证题思路后, 还要注意一些较难的一些证明问题, 只要构造合适 的 全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了?下面举例说明几 种常见的构造方法,供同学们参考. 1 ?截长补短法 例1.如图(1)已知:正方形 ABCD 中, 求证:AB+BE=AC 由已知△ AEF ^A AEC, ???/ F=Z ACE=45), ??? BF=BE ?- AB+BE=AB+BF=AF=AC 解法(二)(截长法或分割法)在AC 上截取AG=AB,由已知 △ ABE BA AGE, ? EG=BE, / AGE=Z ABE,: / ACE=45o, ? CG=EG, ? AB+BE=AG+CG=AC 2 .平行线法(或平移法) 若题设中含有中点可以试过中点作平行线或中位线,对 Rt △,有时可作出斜边的中线. 例 2. △ ABC 中,/ BAC=60 , / C=40° AP 平分/ BAC 交 BC 于 P , BQ 平分/ ABC 交 AC 于 Q , 求证:AB+BP=BQ+AQ 证明:如图(1),过 O 作 OD// BC 交 AB 于 D , ?/ ADO=/ ABC =180 ° - 60°- 40 ° =80°,又???/ AQO=/ C+/ QBC=80°, ???/ ADO=/ AQO ,又I/ DAO=/ QAO , OA=AO, ? △ ADO BA AQO ,「. OD=OQ , AD=AQ ,又T OD / BP, ? / PBO=/ DOB ,又 T/ PBO=/ DBO, ?/ DBO=/ DOB , ? BD=OD,「. AB+BP=AD+DB+BP 解法(一) (补短法或补全法)延长AB 至F 使AF=AC F

全等三角形经典辅助线做法汇总

全等三角形问题中常见的辅助线的作法(有答 案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之 间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。角平分线平行线,等腰三角形来添。线段垂直平分线,常向两端把线连。三角形中两中点,连接则成中位线。也可将图对折看,对称以后关系现。角平分线加垂线,三线合一试试看。要证线段倍与半,延长缩短可试验。三角形中有中线,延长中线等中线。 1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中倍长中线,使延长线段与原中线长相等,构造全等三角形 3. 角平分线在三种添辅助线 4. 垂直平分线联结线段两端 5.用“截长法”或“补短法” :遇到有二条线段长之和等于第三条线段的长, 6. 图形补全法:有一个角为60 度或120 度的把该角添线后构成等边三角形 7.角度数为30 、60 度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从 角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90 的特殊直角三角形, 或40-60-80 的特殊直角三角形, 常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变

全等三角形中做辅助线的技巧

全等三角形中做辅助线的技巧 口诀: 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 一、由角平分线想到的辅助线 口诀: 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等。对于有角平分线的辅助线的作法,一般有两种。 ①从角平分线上一点向两边作垂线; ②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边)。 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。至于选取哪种方法,要结合题目图形和已知条件。 与角有关的辅助线 (一)、截取构全等 图1-1 B

如图1-1,∠AOC=∠BOC ,如取OE=OF ,并连接DE 、DF ,则有△OED ≌△OFD ,从而为我们证明线段、角相等创造了条件。 例1. 如图1-2,AB//CD ,BE 平分∠BC D ,C E 平分∠BCD ,点E 在AD 上,求证:BC =AB+CD 。 例2. 已知:如图1-3,AB=2AC ,∠BAD=∠CAD ,DA=DB ,求证DC ⊥AC 例3. 已知:如图1-4,在△ABC 中,∠C=2∠B,AD 平分∠BAC ,求证:AB -AC=CD 分析:此题的条件中还有角的平分线,在证明中还要用到构造全等三角形,此题还是证明线段的和差倍分问题。用到的是截取法来证明的,在长的线段上截取短的线段,来证明。试试看可否把短的延长来证明呢? 练习 1. 已知在△ABC 中,AD 平分∠BAC ,∠B=2∠C ,求证:AB+BD=AC 图1-2 D B C 图 1-4 A B C

全等三角形问题中常见的8种辅助线的作法

A E D F C B A 全等三角形问题中常见的辅助线的作法 全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的 “对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模 式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利 用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移” 或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延 长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6)已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连线,出一 对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小. 例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE. E D C B A 1、以ABC ?的两边AB、AC为腰分别向外作等腰Rt ABD ?和等腰Rt ACE ?,90, BAD CAE ∠=∠=?连接DE,M、N分别是BC、DE的中点.探究:AM与DE的位置关系及数量关系.(1)如图①当ABC ?为直角三角形时,AM与DE的位置关系是, 线段AM与DE的数量关系是; (2)将图①中的等腰Rt ABD ?绕点A沿逆时针方向旋转?θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由. 二、截长补短 D C B

教师用:全等三角形问题中常见的8种辅助线的作法

教师用:全等三角形问题中常见的8种辅助线的作法

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三 线合一”的性质解题 2)遇到三角形的中线,倍长中线,使延长线段与 原中线长相等,构造全等三角形 3)遇到角平分线在三种添辅助线的方法 (1)可以自角平分线上的某一点向角的两边作垂线 (2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。 (3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点

D C B A 再向角平分线上的某点作边线,构造一对全 等三角形。 4) 过图形上某一点作特定的平分线,构造全等三 角形 5) 截长法与补短法,具体做法是在某条线段上截 取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平 分线上的某点向该线段的两个端点作连线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问 题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 例1、(“希望杯”试题)已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

全等三角形_辅助线做法讲义

全等三角形问题中常见的辅助线的作法 巧添辅助线一——倍长中线 【夯实基础】 例:ABC ?中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 方法1:作D E ⊥AB 于E ,作D F ⊥AC 于F ,证明二次全等 方法2:辅助线同上,利用面积 方法3:倍长中线AD 【方法精讲】常用辅助线添加方法——倍长中线 △ABC 中 方式1: 延长AD 到E , AD 是BC 边中线 使DE=AD , 连接BE 方式2:间接倍长 作CF ⊥AD 于F , 延长MD 到N , 作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CD 【经典例题】 例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于 F ,求证:AF=EF 提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形 C D A B D A B C E D A B C F E D C B A N D C B A M F E D A B C F E C A B D

例4:已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 提示: 方法1:倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH 例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线, 求证:∠C=∠BAE 提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS ) 进而证明ΔADF ≌ΔADC (SAS ) 【融会贯通】 1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论 提示:延长AE 、DF 交于G 证明AB=GC 、AF=GF 所以AB=AF+FC 2、如图,AD 为ABC ?的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+ 3、已知:如图,?ABC 中,∠C=90?,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE. 提示:过T 作TN ⊥AB 于N 证明ΔBTN ≌ΔECD 第 1 题图 A B F D E C E D A B C F E A B C D 第 14 题图 D F C B E A D A B M T E

全等三角形辅助线画法

五种辅助线助你证全等 在证明三角形全等时,有时需添加辅助线,下面介绍证明全等时常见的五种辅助线,可以帮助你更好的学习。 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF.

∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 二、中线倍长 三角形问题中涉及中线(中点)时,将三角形中线延长一倍,构造全等三角形是常用的解题思路. 例2.已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是(). 分析:要求第三边上中线的取值范围,只有将将中线与两个已知边转移到同一个三角形中,然后利用三角形的三边关系才能进行分析和判断.

解:如图2所示,设AB=7,AC=5,BC上中线AD=x.延长AD至E,使DE = AD=x. ∵AD是BC边上的中线,∴BD=CD ∠ADC=∠EDB(对顶角)∴△ADC≌△EDB ∴BE=AC=5 ∵在△ABE中AB-BE<AE<AB+BE 即7-5<2x<7+5∴1<x<6

八年级上教案全等三角形辅助线作法》

全等三角形常用辅助线作法 一、倍长中线(或类中线)法: 若遇到三角形的中线或类中线(与中点有关的线段),通常考虑倍长中线或类中线,构造全等三角形。 1、基本模型: (1) D A B C △ABC中AD是BC边中线方式1:延长AD到E,使DE=AD,连接BE E D A B C 方式2:间接倍长,作CF⊥AD于F,作BE⊥AD的延长线于E,连接BE F E D C B A

E D F C B A D C B A 方式3: 延长MD 到N ,使DN=MD ,连接CD N D C B A M 经典例题 例1、(核心母题) 已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 例2、如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小. 例3、如图,△ABC 中,BD=DC=AC ,E 是DC 的中点,求证:AD 平分∠BAE. E D C B A

变式练习 1、如图,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB=∠ABC ,求证:CD=2CE 。 2、已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE 。 3、已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF 。 4、已知:如图,在ABC ?中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠。 F E C A B D F E D A B C 第 1 题图 A B F D E C

(完整版)几种证明全等三角形添加辅助线的方法

教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

又∵∠EFM=∠DFC,∠MEF=∠CDF, ∴△EFM≌△DFC(AAS)。EF=FD。 四、作垂线构造全等三角形 例4. 如图7,在△ABC中,∠BAC=90°,AB=AC。M是AC边的中点。AD ⊥BM交BC于D,交BM于E。求证:∠AMB=∠DMC。 证明:作CF⊥AC交AD的延长线于F。如图8。 ∵∠BAC=90°,AD⊥BM, ∴∠FAC=∠ABM=90°-∠BAE。 ∵AB=AC,∠BAM=∠ACF=90°, ∴△ABM≌△CAF(ASA)。 ∴∠F=∠AMB,AM=CF。 ∵AM=CM,∴CF=CM。 ∵∠MCD=∠FCD=45°,CD=CD, ∴△MCD≌△FCD(SAS)。所以∠F=∠DMC。 ∴∠AMB=∠F=∠DMC。 五、沿高线翻折构造全等三角形 例5. 如图9,在△ABC中,AD⊥BC于D,∠BAD>∠CAD。求证:AB>AC。

全等三角形问题中常见的8种辅助线的作法(有答案)

全等三角形问题中常见的辅助线的作法(有答案) 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂

全等三角形几何证明-常用辅助线

几何证明-常用辅助线 (一)中线倍长法: 例1、求证:三角形一边上的中线小于其他两边和的一半 1 已知:如图,△ ABC 中,AD 是 BC 边上的中线,求证:AD < - (AB+AC) 2 1 分析:要证明AD < - (AB+AC),就是证明AB+AO2AD 也就是证明两条线段之和大于第三 2 条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构 成一个三角形,不能用三角形三边关系定理,因此应该进行转化。待证结论AB+AC>2A 中, 出现了 2AD 即中线AD 应该加倍。 证明:延长 AD 至E,使DE=AD 连CE 则AE=2AD 在厶 ADBm EDC 中, AD= DE ZADB= ZEDC BD= DC ???△ ADB^A EDC(SAS) ??? AB=CE 又在厶ACE 中, AC+C 呂 AE 1 ??? AC+AB>2AD 即 AD < - (AB+AC) 2 小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即 中线倍长法。它可以 将分居中线两旁的两条边 AB AC 和两个角/ BAD 和/CAD 集中于同一个三角形中,以利于 问题的获解。 课题练习:ABC 中,AD 是 BAC 的平分线,且BD=CD 求证AB=AC N, 作BE! AD 的延长线于E 连接BE E 例3:A ABC 中, AB=5 AC=3求中线AD 的取值范围 例4:已知在△ ABC 中, AB=AC D 在AB 上, E 在AC 的延长线上,DE 交BC 于 F , 且 DF=EF 求证:BD=CE 课堂练习:已知在△ ABC 中,AD 是BC 边上的中线, AC 于 F ,求证:AF=EF 例5:已知:如图,在 ABC 中,AB AC , D E 上,且 DE=EC 过 D 作 DF //BA 交 AE 于点 F , DF=AC. 例2:中线一倍辅助线作法 作 CF 丄 AD 于 F , A ^式 1:延长 AD 到 E , / 使 DE=AD B ————(连接BE 方式2:间接倍长 延长MD 到 使 DN=M P 连接CD A C △ ABC 中 AD 是BC 边中线 D

几种证明全等三角形添加辅助线的方法

全等三角形复习课 适用学科数学适用年级初中二年级 适用区域通用课时时长(分 钟) 120 知识点全等三角形的性质和判定方法 教学目标熟练掌握全等三角形的性质和判定方法,并学会用应用 教学重点学会做辅助线证明三角形全等,常用的几种作辅助线的方法 教学难点通过学习全等三角形,提高学生观察能力和分析能力 教学过程 构造全等三角形几种方法 在几何解题中,常常需要添加辅助线构造全等三角形,以沟通题设与结论之间的联系。现分类加以说明。 一、延长中线构造全等三角形 例1. 如图1,AD是△ABC的中线,求证:AB+AC>2AD。 证明:延长AD至E,使AD=DE,连接CE。如图2。 ∵AD是△ABC的中线,∴BD=CD。 又∵∠1=∠2,AD=DE, ∴△ABD≌△ECD(SAS)。AB=CE。 ∵在△ACE中,CE+AC>AE, ∴AB+AC>2AD。

二、沿角平分线翻折构造全等三角形 例2. 如图3,在△ABC中,∠1=∠2,∠ABC=2∠C。求证:AB+BD=AC。 证明:将△ABD沿AD翻折,点B落在AC上的E点处,即:在AC上截取AE=AB,连接ED。如图4。 ∵∠1=∠2,AD=AD,AB=AE, ∴△ABD≌△AED(SAS)。 ∴BD=ED,∠ABC=∠AED=2∠C。 而∠AED=∠C+∠EDC, ∴∠C=∠EDC。所以EC=ED=BD。 ∵AC=AE+EC,∴AB+BD=AC。 三、作平行线构造全等三角形 例3. 如图5,△ABC中,AB=AC。E是AB上异于A、B的任意一点,延长AC到D,使CD=BE,连接DE交BC于F。求证:EF=FD。 证明:过E作EM∥AC交BC于M,如图6。 则∠EMB=∠ACB,∠MEF=∠CDF。 ∵AB=AC,∴∠B=∠ACB。 ∴∠B=∠EMB。故EM=BE。 ∵BE=CD,∴EM=CD。

全等三角形中常见的辅助线练习题

全等三角形中的常见辅助线的添加方法举例 一. 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形。 例:如图1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 。 二、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例::如图2:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 三、有三角形中线时,常延长加倍中线,构造全等三角形。 例:如图3:AD 为 △ABC 的中线,求证:AB +AC >2AD 。 图3 练习:已知△ABC,AD 就是BC 边上的中线,分别以AB 边、AC 边 为直角边各向形外作等腰直角三角形,如图4, 求证EF =2AD 。 四、截长补短法作辅助线。 例如:已知如图5:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点。 求证:AB -AC >PB -PC 。 五、延长已知边构造三角形: 例如:如图6:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BC A B C D E F N 1 图12342 图A B C D E F M 1234A B C D E A C D E F 4 图A B C D N M P 5图1 2A B C D E 6 图O

六、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 例如:如图7:AB ∥CD,AD ∥BC 求证:AB=CD 。 七有与角平分线垂直的线段时,通常把这条线段延长。 例如:如图8:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 图8 八、连接已知点,构造全等三角形。 例如:已知:如图9;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D 。 九、取线段中点构造全等三有形。 例如:如图10:AB =DC,∠A =∠D 求证:∠ABC =∠DCB 。 A B C D 7图1 234 D B A 110 图O 10 图D C B A M N

相关文档
相关文档 最新文档