文档库 最新最全的文档下载
当前位置:文档库 › 直流接地

直流接地

直流接地
直流接地

直流接地

发电厂、变电站直流系统是十分重要的电源系统,它是一个独立的电源,不受发电机、厂用电、站用变以及系统运行方式改变的影响,为电力系统的控制回路、信号回路、继电保护、自动装置及事照明等提供可靠稳定的不间断电源,它还为断路器的分、合闸提供操作电源。由于分支网络多、所接设备多等因素构成了庞大而复杂的直流电源网络,分为主母线、小母线、层层分布,回路复杂、单线交错、双线交错,客观上增加了查找直流接地故障的难度。由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。

直流系统接地应包括直流系统一点接地和直流系统两点接地两种情况。在直流系统中,直流正、负极对地是绝缘的,在发生一极接地时由于没有构成接地电流的通路而不引起任何危害,但一极接地长期工作是不允许的,因为在同一极的另一地点又发生接地时,就可能造成信号装置、继电保护或控制回路的不正确动作。发生一点接地后再发生另一极接地就将造成直流短路。如直流正极接地有造成继电保护误动作的可能。因为一般跳闸线圈(如出口中间继电器线圈和跳、合闸线圈等)均接负极电源,若这些回路再发生接地或绝缘不良就会引起继电保护误动作。直流负极接地与正极接地同一道理,如回路中再有一点接地就可能造成继电保护拒绝动作,使事故越级扩大。两极两点同时接地将跳闸或合闸回路短路,不仅可能使熔断器熔断,还可能烧坏继电器的接点。在变电站日常运行维护和异常处理工作中,最复杂的就是直流系统接地的查找与处理。直流系统发生一点接地时对设备系统不会造成影响,不及时处理查找,出现两点接地后,就可能发生短路、装置误动、拒动等严重后果。

一、关于直流系统接地

1、什么叫直流系统接地?

由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系统有正接地故障或负接地故障。

2、直流系统为什么会接地?

直流系统是个不间断工作长期带电的系统,发电厂、变电站直流系统所接设备多、回路复杂,负荷涉及面广,在长期运行过程中会由于环境的改变、气候的变化、污染、高温、电缆以及接头的老化,元件损坏、设备本身的问题等等引起绝缘水平下降,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施

工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。

3、造成变电站直流系统接地的几种原因

1)雷雨季节,室外端子箱或机构箱内潮湿积水导致直流二次回路中的正电源或负电源对地绝缘电阻下降,严重者可能到零,从而形成接地。

2)部分型号手车开关的可动部分与固定部分的连接插头或插座缺少可靠的绝缘隔离措施,手车来回移动导致其中导线破损,从而使直流回路与开关金属部分相接触,从而导致接地。

3)部分直流系统已运行多年,二次设备绝缘老化、破损,极易出现接地现象。

4)因施工工艺不严格,造成直流回路出现裸线、线头接触柜体等,引起接地。

4、直流系统接地的危害

(1)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下几种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。

(2)正接地可能导致断路器误跳闸

由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器2J1必然动作造成断路器的跳闸。同理,当图中的A点和C点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。

(3)负接地可能导致断路器的拒跳闸:如图所示,如图所示,当图中的B点,正点同时接地,B、E点通过地构成了回路,即B、E点相接将中间继电器2J1短接,此时,如果系统发生事故,保护动作由于中间继电器2J1被短接,2J1不工作,断路器不会动作,产生拒动现象,使事故越级扩大。同理,当图中的E

点和C点同时接地和图中的E点和D点同时接地均可能生成断路器拒动现象。从以上分析看出,直流系统如果仅仅是一点接地,对二次回路不会造成事故,如果有两点接地,就可能发生断路器误动或拒动。就动作的实际情况看,当直流系

统监测回路发出预告信号报警,显示该系统接地,可以断定,直流系统的接地故障已经造成了断路器可能发生误跳或拒跳的事故隐患,应立即排除。

5、怎样查找、排除直流系统接地故障

排除直流接地故障。首先要找到接地的位置,这就是我们常说的接地故障定位。直流接地大多数情况不是一个点,可能是多个点,或者是一个片,真正通过一个金属点去接地的情况是比较少见的。更多的会由于空气潮湿,尘土粘贴,电缆破损,或设备某部分的绝缘降低,或外界其它不明因素所造成。大量的接地故障并不稳定,随着环境变化而变化。因此在现场查找直流接地是一个较为复杂的问题。

二、发生直流接地的原因

1、外部因素

直流回路在运行中常常受到多种不利因素的影响,如雨天或雾天可能导致室外的直流系统接地或绝缘降低引发直流接地。直流电缆受到外力挤压、直流系统绝缘老化可引起接地,电缆穿管进水导致冬季电缆冻断造成接地等。

2、内部因素

因设计上或人员失误造成的接地。如在带电二次回路上工作将直流电源误碰设备外壳;在电缆沟施工将控制电缆损伤造成接地;室外外部控制设备未加防雨罩、二次回路漏接线头、误将控制电缆外皮绝缘损伤,施工时交直流混用同一电缆引发直流接地等都为直流接地留下隐患。此时接地信号不一定立即发出,但具备一定外部条件如潮湿或操作设备时就可能引起直流接地。

三、发电厂微机直流系统绝缘监测装置的功能作用

1.微机直流系统绝缘监测装置有如下优点:

1)被测直流系统母线电压低于电压下限或高于电压上限时能发出报警信号。2)被测系统正、负极母线对地绝缘电阻低于整定值时年发出报警信号。

3)能分别测出并数字显示直流系统正、负极母线对地电压值和绝缘电阻值。4)当母线对地绝缘电阻值降低时,发信号,并自动投入频率为15~25HZ,幅值为7~8V的正弦波信号源,自动巡查各支路阻抗和容抗的情况。

5)在系统中存在较大分布电容的情况下仍能保证电阻显示精度。

2.发电厂微机直流系统绝缘监测装置工作原理分为两部分:

1)常规监测部分

用两个变化的分压器取出正对地电压和负对地电压,送A/D转换器,经微机处理和数字计算后,数字显示电压值和母线对地绝缘电阻值,监测无死区,当电压过高、过低或电阻过低时发出相应的报警信号。只有连续两次发现被监测的直流系统的运行参数超出整定值时才发报警信号;当直流系统的运行参数恢复正常时.只需一次检测即可消除报警信号。

2)接地支路巡查部分

当发出直流母线绝缘下降报警信号时,装置将自动进人检测各分支路绝缘的运行状态。用一极低频率的信号源对地馈入直流系统,用一小电流互感器同时穿套在各支路的正、负出线上,由于通过互感器直流电流产生的磁场相互抵消,所以不反应直流部分的信号。而发送在正、负出线上的交流信号幅值相等,方向相

同,在互感器二次侧就可反应出正、负极对地电阻和分布电容的泄漏电流矢量和,然后将阻性和容性区分开来,经A/D转换器送微机进行数据处理后数字显示支路号和对应的电阻值,并且自动将绝缘降低的支路号和绝缘参数记录下来。当直流系统各支路巡检完毕后,将自动退出支路检测状态,返回到检测直流母线的绝缘状态。同时,每检测一次直流母线的绝缘状态,都将重复显示一次故障支路号和故障参数,直至将故障排除。其具有监测直流母线的瞬间接地功能,即当直流母线的正极或者负极对地出现瞬间接地时,能发出瞬间接地信号,经过一定时间后该信号能够自动复归。

根据以上优点,在变电站中将所有控制保护回路接在独立的直流馈线屏,并在馈线屏上装设微机直流系统绝缘监测仪来监测直流系统电压、绝缘和各分支路的绝缘及分布电容状况。发现问题后,根据提供的接地支路采用手动拉路和拆接线端子的方法可快速查除接地点。3.采用微机绝缘监测装置的几点不足之处出现下列情况(直流母线接地;接地支路未穿套互感器;系统绝缘等值下降)时,装置发出直流系统绝缘降低信号,但不能查出接地支路,此时只能采用拉路法进行查找。

当所接地的电缆过长时,有可能出现误报多条回路接地。

当两条220伏直流母线并联运行时,须退出一套装置,使部分支路失去巡查功能,但母线接地时任能够可靠发现。

四、接地查找

1、我们从以上的直流接地危害中,可以看出无论是正极接地还是负极接地,只要有一个接地,即对地构成了新的接地回路就要求迅速排除,否则一旦出现二点或多点接地就会发生故障,乃至发生事故。从目前现场实际中的情况和经验所得,大致有以下几种方法。

1)拉路法:这是电力系统查直流接地故障一直沿用的一个简单办法。所谓“拉回路”,就是停掉该回路的直流电源,停电时间应小于三秒,直流接地回路一旦从直流系统中脱离运行,直流母线的正负极对地电压就会出现平衡。所以人们通常从直流接地回路瞬间停电,确定直流接地点是否发生在该回路。一般先从信号回路,照明回路,再操作回路,保护回路等等。直流系统是个不间断电源,基于它的特殊性,人们不能随意停电。近年来随计算机的大量使用,微机保护同样也不允许人们随意断开直流电源。由于二次系统越来越复杂,大部分的厂站由于施工或扩建中遗留的种种问题,使信号回路与控制回路和保护回路已没有一个严格的区分,现场排除故障中,经常发生非正常的闭环回路,采用双电源供电回路,必然增大了拉回路查找接地故障的难度。正由于回路接线存在不确定性,往往令在拉回路的过程中,常常发生人为的跳闸事故,再加上微机保护的大量应用,微机保护由于计算机的运行特性也不允许随意断电。2001年10月,广西电力局中心调度所继保科发文,明令禁止“拉回路”查找直流接地。

“拉回路”可能导致控制回路和保护回路重大事故发生。

2)直流接地选线装置监测法

目前市场上出现了众多厂家的直流接地选线装置。一般以“信号注入法”、

“霍尔传感器监测法”、“磁饱和监测法”三种原理设计生产的,大致情况是在直流的各分支回路上安装一个穿心式的电流互感器,各互感器感应到的信号经过直流接地选线装置分析判断,确定直流接地的分支回路,其安装在支路回路上的传感器编号和接地检测仪显示部分回路对应编号。这是一种在线监测直流系统对地绝缘情况的装置。其优点是能在线监测实时监测各分支回路的接地状态,随时报告直流系统接地故障,并显示出接地回路编号。缺点是该装置只能监测直流回路接地的具体接地回路或支路,但对具体的接地点无法定位。技术上它受监测点安装数量的限制,很难将接地故障缩小到一个小的范围。而且该装置必须进行施工安装,对旧系统的改造很不便。此类装置还普遍存在检测精度不高,抗分布电容干扰差,误报较多的问题。如果能有一种在监测点上不受限制,检测精度较高,选线准确的直流接地选线装置,应是一种较好的选择。如“全自动的逐路测试法”,如果仪器测量是准确性很高的话,是一种不可能缺少的自动化设备。

3)便携式仪器查找定位方法

使用便携式的直流接地故障查找仪(在这推荐PDF1000A直流接地系统故障测试仪),查找直流接地不失为一种好方法,作为拉回路法的辅助测试仪,对接地故障的排除在时间上和安全上都是好帮手。其特点是无需断开直流回路电源,可带电查找直流接地故障。移动式的采集互感器在各分布回路上测量。完全可以避免再用“拉回路”的方法,极大地提高了查找直流接地故障的安全性。如果出现接地回路就报警。

这种设备在使用上是十分科学的。在原理上基本和在线装置的信号注入法原理相似。由于其采集传感器可以任意移动,利用其移动的优点还可以更具体地查找到各接地点。但由于目前产品和各直流系统的兼容性和抗干扰能力差的因素,误报率十分高,并没有大量采用和全面推广,仅为查找时作为参考使用。

2、接地查找的原则

1)发生接地后,微机直流系统绝缘监测系统会发出“直流接地”信号,当看到“直流接地”信号时,首先应了解现场有无造成接地的工作,然后检查微机直流系统绝缘监测仪的指示情况,根据系统提供的数据判断接地极和接地支路,然后分段查找。对于不能由微机绝缘监测装置的监测的接在直流母线上次要支路,如事故照明、试验电源可用拉路法进行查找。查找接地时要根据当时的系统运行方式、倒闸操作情况、气候影响判断接地点的位置,应尽量一步到位,缩短查找时间。当判断不出接地点时要进行拉路。

对变电站的设备讲,室外设备发生直流接地的几率非常大,几乎占总数的80%以上。开关端子箱、地刀闸机构、密度继电器、储压筒压力监视器若密封不严或关闭,容易发生直流接地;变压器、电抗器的温度计绝缘下降或密封不良容易接地;外部紧急跳闸按钮等设备由于下雨渗水很容易产生直流接地,所以外部紧急跳闸按钮需加防护罩,达到防雨又防止误碰的作用。在直流接地的查找过程中,万用表时必不可少的主要工具,用万用表测直流回流对地电压时要选好档位和量程,并保证接地点接地良好。对于220伏直流系统,正常时正、负极地电压

为110 V左右,若某一极100%接地时对地电压降为为零,而另一极对地电压则变为220 V。某一极不完全接地时则该极的对地电压在0-110V之间。非完全接地的情况,在可靠断开直流保险后可用摇表进行摇测。

2)用拆端子法查具体接地点

当确认某一支路接地时,不能仅用分别拉保险来判断,有时一极接地取下该极直流保险后立即变成另一极接地,这是由于正负电源之间通过继电器或电阻等元件相连所致。最直接有效的方法是带电拆端子法,即将连接在一起的带电各部分逐一甩开,看接地是否消失。拆端子法应选准地点,而且要有专业人员配合,一般情况下,常见的发生接地的部位是基本一致的,拆端子之前应对照图纸仔细分析,确定一下大致范围。要本着先主干后分支,先信号后控制的原则,一级一级地查找,现举例如下。

a.微机绝缘监测装置发出“瞬时接地”信号,装置显示正对地电压Up:8V,负对地电压Un:218V,母线正对地电阻Rp:0.5千欧,接地支路巡查为支路6,即丰合线1路控制直流,接地支路Rf6:0.5千欧。经分析判断初步定为SF6压力监视、储压筒压力监视、电机打压超时回路等共10条分支路中有接地,在采用拆端子法,准备先逐个断开丰合线操作继电器屏上的信号回路120、122、124、126、128号端子(带正电),若没有再断开闭锁回路的114、116、118号端子。在断开122号端子时,接地消失,用表记测量正负极对地电压均恢复正常,微机绝缘监测装置巡检后接地消失正常。后检查为储压筒漏氮监视器进水,造成接点正极接地。

b.停电检修,在开关传动试验手动合闸时发现有“直流瞬时接地”信号发出,微机绝缘监测装置确定正极80%接地,但不久后消失,再次传动又发生该现象,用拆端子法确认为开关端子箱内有接地,但现场检查未发现,拉开直流后用1000V摇表摇绝缘发现有放电声音,检查发现合闸回路有一隐蔽的废线头与端子箱外壳似碰非碰,将此线头拆除后接地消失。

c.某一日微机绝缘监测装置发出接地信号,确定正极100%接地,并检测为500千伏I母电压互感器支路,拆端子未发现问题,最后在I母接地器机构的电缆中发现问题,原来该电缆为交流直流混用,绝缘击穿后造成直流正极串入交流N,更换电缆后恢复正常。

拆端子法查接地具有一定的专业性,较难掌握,需要有较高的技术业务水平,因设备处于运行状态,弄不好会造成再次接地,触电、短路以致于保护误动。如96年8月19日,某站220伏直流发出“I母接地”信号当时无微机绝缘监测装置,只能靠拉路寻找接地,在拉开1号主变公共侧电源时,由于1号主变直流接线混乱,有穿插现象,运行人员未考虑周全未退出主变低阻抗保护,结果造成主变跳闸的事故。

某些条件下,发生直流接地时可能产生一些设备误发信号现象,这也可作为接地的判断依据。如某站在2001年2月份发现2号主变发出“温度”信号,同时微机绝缘监测装置发出“直流接地”信号,当时负荷不大,现场检查主变本体油温度不高,认定是电阻温度计发生正极接地,导致温度重动继电器动作发出信号,解开主变端子箱内198号端子后,接地消失。

3)多点接地

如果直流系统存在多点非金属性接地,微机绝缘监测装置可将所有接地支路找出。如果在这些接地点中存在一个或一个以上的金属性接地,微机绝缘监测装置只能寻找距离该装置最近的一条金属性接地支路。这是因为信号源发射的信号波已被这条支路短路,其它的非金属性接地点和离该仪器较远的金属接地不再有信号波通过,故其他接地点是查不出来的,只有先将最近的一条金属性接地支路故障排除后,才能依次寻找第二条最近的金属性接地点,依此类推,直至将所有接地支路找出。

对于两点及多点接地,需同时断开两路或几路直流回路,接地才能消失。要注意断开每一路接地点时,观察直流电压恢复升高的情况,从而将接地点一路一路的消除。

拉路时,本着先室外后室内的原则,在切断各专用直流回路时,切断时间不得超过3S,此时不论回路接地与否均应合上。当发现某一专用回路接地时,应分别取下各支路保险。

3.查接地注意事项

1)做好异常处理准备

拉路时应事异常处理的准备工作,如某站2号主变冷却器控制直流取自整流型保护直流,在整流型保护直流消失时将造成主变冷却器全停,故拉路前必须准备充分,一旦冷却器全停要手动投入。

2)防止保护误动

一般的保护装置出于反措的要求一般都有防止直流电源消失保护误动的措施,对重要设备事先要采取措施如申请调度断开保护跳闸压板,退出高频保护等。某站1号主变低阻抗保护误动造成事故就是一次接地查找时因为没断开保护跳闸压板就拉直流所致。

4.人工故障排除方法

变电站的直流接地虽然是复杂的,无论是常规保护还是微机保护,其故障的排除法是一致的。采用拉路寻找分段处理的方法,以先信号和照明部分,后操作部分;先室外部分后室内的原则。根据现场的故障排除经验,对其方法进行整理如下:

1)首先确定是正极接地还是负极接地,测量正负极对地电压,有效区分是正极接地还是负极接地。

2)两段母线之间的区分,使查找的接地不会大范围扩大,确定发生直流接地在哪一段。

3)如果有直流接地选线的装置,不能准确确定,有误报的现象,请退出运行中的直流接地检测仪。

4)如果站内二次回路有在施工的或有检修试验的应立即停止,拉开其工作电源,看信号是否消除。

5)采用分段分部位拉路法,操作电源一定要由蓄电池供电,先停下重要的回路,如信号回路和照明回路等。

应按照下列顺序进行

① 断合现场临时工作电源

② 断合故障照明回路

③ 断合信号回路

④ 断合闸回路

⑤ 断合附助设备

⑥ 断合蓄电池回路

5.查找直流接地故障的技巧

1)查找及时。因直流接地故障常常随环境、气候的变化而变化,十分不稳定,造成难以查找的事故隐患,只要出现故障应立即查找。

2)定期巡检直流系统的对地绝缘。不一定故障出现时再去查找排除。利用精度较高的查找装置定期对各个直流回路进行检查,记下绝缘较差的直流回路,待气候渐湿时,再重点监测。目前已有部分电厂和变电站采用此法,并已开始建立这种经常性的工作(主要在500KV变电站和部分接地较多的30万KW以上发电机组)。

3)按序查找,先信号回路,事故照明回路,再操作回路,控制回路,保护回路。先重点检测绝缘情况较差的回路。

4)对环路供电的直流系统应先断开环路开关,如果客观上已断不开的环路(此类情况现场情况很多),应对检测到的接地故障回路(环路接地,表现出来一般都是两个以上回路)其接地精度仔细分多样,找出接地更严重的回路,继续查找。

5)选用高精度的查找装置,对接地告警比较严重的,大部分情况都并非一点接地,应用精度较高的检测装置区分不同故障程度的回路,从接地故障严重的回路的入手。

五、查找直流系统接地故障的深层次分析

据现场使用情况反映,绝大部分查找直流系统接地故障的装置都不是很好用,其原因要从直流系统接地说起,由于发电厂、变电站的直流系统是一个庞大的、复杂的直流电源网络,所接设备多,母线、小母线层层分布,回路纵横交错,客观上增大了查找直流接地故障的难度。

1.关于分布电容的讨论

我们知道电容的特性是对直流呈现开路,对交流呈现一定阻抗特性,其阻抗的计算公式Zc=1/2πfC其中f为交流信号频率,C为电容量,C越大,该电容呈现的容抗就越小,频率越高,该电容呈现的容抗也越小。

变电站、发电厂直流系统的对地分布电容情况是直流系统越大,回路越复杂,所接设备越多,系统呈现的对地分布电容也越大,

按现场运行经验,变电站、发电厂直流系统的对地分布电容还与发电厂、变电站的投运时间有关,投运时间越长的变电站,分布电容也更大,一般来说,如果查找直流接地的检测装置以叠加低频交流检测信号方式在直流系统上,假设点的交流信号频率f=2Hz(目前绝大多数装置都采用5Hz),那么,直流系统的分布电容对检测装置所叠加的低频交流信号.

2.对直流系统接地故障的定义标准的讨论

上面说过直流接地是指直流系统正或负极对地绝缘阻抗值降低到某个规定值或某个设定值时,我们称直流系统发生了接地故障。

电力系统对直流系统的接地故障目前尚无统一的标准,各个厂站按各自的要求将接地故障报警值按对地电压不平衡情况定义。

直流系统绝缘监测普遍采用平衡电桥方式来判定对地绝缘,即为正或负对地绝缘降低时,平衡电桥失去平衡,绝缘监测指示上正对地或负对地电压会升高或降低。由于平衡电桥回路选用的电阻目前尚无统一标准。各直流屏生产厂家均有不同的平衡电桥电阻取值,就现场实际运行情况,平衡电桥的电阻取值从1K—36K 不等,这样仅仅用对地电压的变化来说明接地故障的程度,显然不是十分准确的。直流系统对地的绝缘情况,准确的说,应该用阻抗来衡量。发达国家的电力系统,对一座较大规模的发电厂、变电站,直流系统对地绝缘阻抗的报警值设定在50KΩ,目前我国一些全套引进进口设备,管理先进的个别发电厂(如大亚湾核电站),直流系统绝缘告警值仍沿用国外标准,设为50KΩ。

事实上绝大部分的电厂、变电站,由于种种原因,其接地故障报警值一般设在5K—25K之间,有些甚至更低。这就形成一个直流系统接地故障的怪圈,运行水平高、管理严格的发电厂、变电站,比运行水平低、管理松散发电厂、变电站的直流接地故障概率似乎还高。个别运行水平低下的变电站一两年也难有直流接地故障报警。其根本在于直流系统绝缘监测平衡电桥电阻取值的极大差异,造成对地绝缘整定值过低,无法真正体现实际的绝缘情况。哪怕断路器因直流系统接地故障有过误跳,也查不到事故真正原因。

3.关于多点接地及闭合环路接地,正负同时接地的讨论

多点接地、环路接地、正负同时接地是查找直流系统接地故障的难点,这类接地故障对系统危害更大。“拉回路”是难以拉出接地回路的。目前应用中的无论是直流接地选线装置还是便携式查找接地装置,绝大部分都无力处理以上的接地。因为此类接地故障较为复杂,要求检测设备具有相当高的精度,抗分布电容指标较高,否则就会出现误报,使检测无法进行。环路接地检测时,要能精确区分接地环路的不同位置接地程度的差异,经分析比较,逐步逼近真正的接地故障点。同样多点接地,无论是处于同一回路,还是分处于不同回路,在主回路上还能判别,往下查找已查不出接地支路或分支路,检测设备的精度显然不够。如果检测设备的抗分布电容干扰指标不够,还可能会出现更多误报。正负同时接地,目前大部分直流系统绝缘监测,已不能有效的报告接地故障,平衡电桥方式判定出的,仅仅是正接地故障和负接地故障,同时接地时对地绝缘的差值。因此,定期巡检直流系统的对地绝缘,对运行安全要求较高的发电厂、变电站已十分必要。综上所述,用仪器查找直流系统接地,最重要的是要解决直流系统分布电容的干扰,提高查找检测设备的检测精度,解决受对地分布电容干扰大和多点接地、环路接地的误报问题。

六、直流绝缘监测装置的认识

装置的构成

直流系统只能有一个接地点,即绝缘监察继电器的接地点。绝缘监察继电器是利用平衡电桥原理,当直流系统的正极或负极对地绝缘阻抗降低到某一规定值

或设定值,即使正对地电压或负对地电压差使电桥失去了平衡,发生了变化就可判定绝缘。它是由信号回路和监察回路(直流绝缘监察继电器KVI,转移开关SM 和电压表PV)组成。如图2所示。按其功能又可分为信号部分和测量部分。

A.信号部分

图所示的右部为绝缘监察装置的信号部分,由绝缘监察继电器KVI及信号(音响和光字牌HL)组成,R+、R-分别为假设的正、负母线对地绝缘电阻,用虚线相连接。R1、R2及R+、R-组成电桥接线。KVI中的R1、R2的数值要求相等(通常选R1=R2=1000Ω),KD为高灵敏度的干簧管继电器,KC为中间继电器。正常情况下,正、负母线对地绝缘电阻R+、R-相等,继电器KD线圈中只有微小的不平衡电流流过,继电器不动作。当有一母线对地绝缘下降时,由于R+≠R-,所以电桥失去平衡,继电器KD线圈中只有微小的不平衡电流流过,当次电流达到其动作值时,继电器KVI动作:KD启动,其动合触点闭合启动KC继电器,KC

的动合触点闭合,发出“母线对地绝缘电阻下降”的信号(但不能分清是正母线还是负母线电阻下降)。

B.测量部分

在图的左半部画出了由转换开关SM和电压表PV组成的测量部分。当有母线对地绝缘降低时,信号部分先发出“母线绝缘降低”的音响和光字牌信号,值班人员将SM开关依次打至“+母线对地电压”和“-母线对地电压”,则SM的2-1、4-5接通和5-8、1-4接通,分别测出+母线对地的电压值和-母线对地的电压值,电压值低者即绝缘有损坏。然后根据已知的电压表内阻RV及直流母线工作电压U,用计算的方法求成正、负极母线的对地绝缘电阻。

C.对继电器KD的要求

在下图中有一个人工接地点,是为测量母线对地电压用的,当直流回路中再有任一个短路接地点时,将会形成短路回路。为防止在直流回路中由此短路电流引起其他继电器发生误动作,则继电器KD的线圈必须具有足够大的电阻值,一般对220V直流系统选用RKD=30kΩ的线圈,其启动电流为1.4mA。于是,为防止继电器发生误动作,回路中的其他继电器线圈的启动电流都应大于1.4mA。所以,在220V直流系统中,当任一母线的绝缘电阻下降至15~20kΩ时,绝缘监察继电

器便会立即发出信号。

七、结论

为了防止直流系统网络其他任何一点发生接地时而引起继电器的误动,减少不必要的故障,要求绝缘监测继电器的线圈具有足够大的电阻值,最好是采用光电原理或高阻(500KΩ以上)使直流系统的正式负极对地之间没有一个真正的接地点,假如直流系统一旦发生一点接地,只有一个接地点,监测装置就能及时发现也不会发生误动和拒动事故,同时两段监测上的绝缘继电器并列运行也不会造成任何事故,以适应电力系统和安全稳定。开发一种高阻抗的直流接地监测装置是能大大提高直流系统安全运行,也是一件十分有益的事情。

直流系统接地详解

直流系统接地详解,绝对不容错过哟! 时常听着技术人员与客户沟通:当直流输电系统以单极大地方式运行时,在直流接地极附近有直流电流从地中经直接接地的中性点流入交流变压器中,会造成变压器出现直流偏磁问题,这其中的直流系统接地到底是怎么一回事儿,你弄明白了么? 1、直流系统的重要性 所谓直流系统,是可以为设备各种动作提供可靠稳定不间断的电源,直流系统自身的可靠性直接影响到整个系统的安全。 需要强调的一点是:直流电源是十分稳定可靠的,但是由于控制保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 2、什么是直流接地? 直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值这时我们称该直流系统有正接地故障或负接地故障。 3、直流接地故障的危害? 1、直流正极接地:有保护及自动装置误动的可能。因为一般跳合闸线圈、继电器线圈与负极电源接通,若这些回路在发生一点接地,就可能引起误动、误跳; 2、直流负极接地,可能使继电保护、自动装置拒绝动作。同时,直流回路短接,使电源保险熔断,失去保护及操作电源,并且可能烧坏继电器接点。

3、直流系统正负极各有一点接地,会造成短路使电源保险熔断,使保护极自动装置、控制回路失去电源。 4、小编还从技术人员那里也曾了解过,变电站变压器主变中性点直流接地状况,如果遇上直流电流的超标入侵,产生的直流系统接地故障会使得变电站带来极大的功能电能损耗,这是需要及时安装直流偏磁抑制装置预防的。 安徽正广电作为直流偏磁治理的电力窗口,不断分享行业技术发展以及最新的直流偏磁仿真、测试、治理知识,安徽正广电励志成为客户们的最佳服务者,我们必将以合作共赢的原则,与大家携手畅游电力的海洋!

变电站直流系统接地故障

电力系统中变电站直流系统接地故障的分析 摘要: 变电站直流系统发生接地故障可能会引起信号回路、控制回路、继电保护和自动装置回路误动作,导致电力系统不能安全正常运行。快速正确地对故障进行分析和处理,而且要及时对直流系统的故障产生原因进行排查并做好故障发生预防工作,是保证电力系统安全运行的关键。文章在直流系统接地分类的基础上,阐述了直流系统接地故障的类型和特点,研究了处理故障的方法,介绍了故障的危害。 关键词:变电站直流系统;接地故障;处理 1 引言 电力系统的一个重要组成部分就是变电站,变电站电力系统的安全稳定运行直接影响电网的供电质量,而且还关系到整个电网系统的安全稳定。然而,变电站的设备问题则是电网安全运行的关键,如果不能及时并有效地对设备问题进行分析和处理,会很可能造成大面积停电,对人们的生产、生活造成危害和损失。由于变电站直流系统几乎分布在变电站的任何角落,范围十分广泛,所以直流系统接地故障的发生几率很高,将直接威胁到电力系统的安全运行。综合而言,正确、快速地对接地故障进行分析和处理至关重要。 2 变电站的直流系统概述 变电站的直流系统,与人体的血管相似,遍布变电站的室内和场内,保证着电力系统的可靠安全运行。直流系统发生故障失灵时,断路器将因为失去跳闸的直流电源而不能跳闸切除故障,强大的短路电流将烧坏主变压器等等重要电器设备,造成灾难性的后果。直流系统为供给继电保护、控制、信号、事故照明、交流部间断电源、计算机监控等直流负荷,35kV及以上的变电站应装设由蓄电池供电的直流系统。直流系统的用电负荷极为重要,对供电的可靠性要求很高。直流系统的可靠性是保障变电站安全运行的决定性条件之一。 3 变电站直流系统接地分类 (1)按接地点分类。直流系统依接地点类别不同可分为多点接地和一点接地。多点接地是指发生两点以及两点以上接地,然而一点接地就是指单点接地发生在一组直流系统中。一般情况下,绝缘检测装置在多点接地与一点接地都可以发出正确的告警,但是多点接地可能会发生不正确选线情况,然而一点接地能避免这种情况从而正确选线。而且直流系统一点接地不会对保护装置的运行产生影响,但是现场工作人员需要对多点接地利用其它方法来分析查找故障回路。但一点接地时,若超过4 h内则构成障碍。为了防止两点接地的出现,要视接地点情况判断和分析,一般要求尽快查明故障点并加以排除直流系统多点接地对保护装置的影响。图1、图2 、图3为典型多点接地示意图。 图1 多点接触1 图2 多点接触2

低压配电系统的接地方式及特点

编号:SM-ZD-97536 低压配电系统的接地方式 及特点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

低压配电系统的接地方式及特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。此种方式也叫保护接零。

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其她电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行就是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防范策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其她电源与逻辑控制回路。直流系统就是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也就是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路与供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可就是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳

闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也就是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈就是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外部分闸条件被短接而误动作跳闸。A、D两点,A、F两点接地,同样都能造成开关误跳闸。

TN-S系统接地方式中重复接地的探讨

TN-S系统接地方式中重复接地的探讨 作者:曹勇肖运勤 阅读:3762次 上传时间:2004-12-06 推荐人:韩柯(已传论文4套) 简介:通过对TN-S系统接地方式中对重复接地的探讨,明确重复接地对N线和PE线的不同作用。 关键字:低压配电系统重复接地N线,PE线TN-S接地方式 相关站中站:防雷接地专题 在低压配电系统中重复接地的问题是对N线重复接地还是对PE线重复接地,在以往的设计中或施工实践中并不很明确。 上图为现行的从配电变压器,输电线路,建筑物电源进户到负荷端整个系统的配电系统图。 上图中就整个配电系统而言,应为TN-C-S的接地型式,而对建筑物电源进户处至用电负荷的配电而言,系统应为TN-S接地型式。依据强规中第6.4.1条之规定;从建筑物总配电箱开始引出的配电线路和分支线路必须采用TN-S系统。所以我们的分析探讨以TN-S系统接地型式而言。 1、上图中如果PEN线在进户处未作重复接地,并且发生断线,这时系统处于即不接零也不接地的无保护状态。如果PEN线如图在电源进户处设有重复接地装置,当PEN线发生断线故障时因进户处设有重复接地装置,它为其后的TN-S系统仍提供了可靠的接地保护,不过此时的系统由TN-S方式转变为TT接地型式。 2、如果在配电线路中某根相线发生对地短路的接地故障。则短路电流通过短路接地点、经大地、电源工作接地点最后流向电源构成通路。此时的电源工作接地点(即PEN线上的

一点)的电位将随短路时的接地电流及短路点的电阻大小而发生变化,接地电流越大,短路点的电阻越小,PEN线的电位就越高。这个电位往往会超过安全电压(规范规定为50V),并沿PEN线传至系统各处危及人身安全。如果PEN线在进户处设置了重复接地装置,由于PEN线重复接地处的接地电阻是与电源工作接地电阻并联的,故并联后的等效电阻要远小于电源工作接地电阻,因此在同样的短路接地电流的情况下,使得短路点处所分担的电位增加,从而有效的降低了PEN线的危险电压。 综如上述原因在民规第14.5.3.1条中明确指出TN系统中架空干线和分支线的终端,其PEN线应重复接地。电缆线路和架空线路在每个建筑物的进线处,均需重复接地。 对于TN-S系统来说因N线与PE线是分开敷设并且彼此是相互绝缘的配电系统,同时与用电设备外壳相连接的是PE线而不是N线。因此我们所关心的更主要的是PE线的电位,而不是N线的电位。所以在TN-S系统中重复接地不是对N线的重复接地。 如果将PE线和N线共同接地,由于PE线与N线在重复接地处相接,重复接地点与配电变压器工作接地点之间的接线已无PE线和N线的区别,原由N线承担的中性线电流变为由N线和PE线共同承担,并有部分电流通过重复接地点分流。由于这样可以认为重复接地点前侧已不存在PE线,只有由原PE线及N线并联共同组成的PEN线,原TN-S系统,实际上已变成了TN-C-S系统,原TN-S系统所具有的优点将丧失,所以不能将PE线和N 线共同接地。 由于上述原因在民规第4.5.3.1条的后半段中明确指出,中性线(即N线)除电源中性点外,不应重复接地。同时依据民规第8.6.4.4条为减少人体接触电压,在采取接地故障保护措施时应做总等电位联结,当仅做总等电位联结不能满足间接接触保护的条件时,还应采取辅助等电位联结。这里所讲的总等电位联结实际上等效电源进户处所做的重复接地功能,建筑物内的辅助联结等效在TN-S系统内的PE线重复接地。 iPod、万点巨额点卡、奖学金……海量奖品,想拿就拿!

直流系统接地

关于直流系统接地故障问题的探讨 发电厂、变电站直流系统是十分重要的电源系统,它是一个独立的电源,不受发电机、厂用电、站用变以及系统运行方式改变的影响,为电力系统的控制回路、信号回路、继电保护、自动装置及事照明等提供可靠稳定的不间断电源,它还为断路器的分、合闸提供操作电源。 由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 一、关于直流系统接地 1、什么叫直流系统接地?由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系

统有正接地故障或负接地故障。 2、直流系统为什么会接地?发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害 (1)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。(2)、正接地可能导致断路器误跳闸由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A 点和 B 点同时接地,相当时A 、B 两点通过大地连起来,中间继电器KM 必然动作造成断路器的跳闸。同理,当图中的A 点和C 点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。(3)、负接地可能导致断路器的拒跳闸:如图所示,当图中的B 点、E点同时接地,这B、E点通过地连通后,将中间继电器KM 短接,此时如果系统发生事故,保护动作,由于中间继电器KM

直流系统的作用及直流系统接地的危害

直流系统的作用及直流系统接地的危害 直流系统的作用 在发电厂和变电所中,直流系统在正常情况下为控制信号、继电保护、自动装置、断路器跳合闸操作回路等提供可靠的直流电源;当发生交流电源消失事故情况下为事故照明、交流不停电电源和事故润滑油泵等提供直流电源。直流系统可靠与否对发电厂和变电所的安全运行起着至关重要的作用,是安全运行的保证。 我厂220V控制直流和动力直流的主要作用是220V控制直流系统为操作、信号、继电保护及自动装置等设备提供可靠的电源。220V 动力直流系统为开关的传动机构、事故照明、汽轮机组的事故油泵及交流不停电电源等设备提供可靠的电源。 直流系统接地的危害 由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 1、什么叫直流系统接地? 由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个

地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系统有正接地故障或负接地故障。 2、直流系统为什么会接地? 发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害? 直流系统接地包括直流系统一点接地和直流系统两点接地两种情况。 在直流系统中,直流正、负极对地是绝缘的,在发生一点接地时由于没有构成接地电流的通路而不引起任何危害,但一极接地长期工作是不允许的,因为在同一极的另一地点又发生接地时,就可能造成信号装置、继电保护和控制回路的不正常动作;发生一点接地后再发生另一极接地就将造成直流短路。 如直流正极接地有造成继电保护误动作的可能,因为一般跳闸线

(完整版)单点接地和多点接地剖析

有三种基本的信号接地方式:浮地、单点接地、多点接地。 1 浮地目的:使电路或设备与公共地线可能引起环流的公共导线隔离起来,浮地还使不同电位的电路之间配合变得容易。缺点:容易出现静电积累引起强烈的静电放电。折衷方案:接入泄放电阻。 2 单点接地方式:线路中只有一个物理点被定义为接地参考点,凡需要接地均接于此。缺点:不适宜用于高频场合。 3 多点接地方式:凡需要接地的点都直接连到距它最近的接地平面上,以便使接地线长度为最短。缺点:维护较麻烦。 4 混合接地按需要选用单点及多点接地。 PCB中的大面积敷铜接地其实就是多点接地所以单面Pcb也可以实现多点接地 多层PCB大多为高速电路地层的增加可以有效提高PCB的电磁兼容性是提高信号抗干扰的基本手段,同样由于电源层和底层和不同信号层的相互隔离减轻了PCB的布通率也增加了信号间的干扰。 在大功率和小功率电路混合的系统中,切忌使用,因为大功率电路中的地线电流会影响小功率电路的正常工作。另外,最敏感的电路要放在A点,这点电位是最稳定的。解决这个问题的方法是并联单点接地。但是,并联单点接地需要较多的导线,实践中可以采用串联、并联混合接地。

将电路按照特性分组,相互之间不易发生干扰的电路放在同一组,相互之间容易发生干扰的电路放在不同的组。每个组内采用串联单点接地,获得最简单的地线结构,不同组的接地采用并联单点接地,避免相互之间干扰。 这个方法的关键:绝不要使功率相差很大的电路或噪声电平相差很大的电路共用一段地线。 这些不同的地仅能在通过一点连接起来。

为了减小地线电感,在高频电路和数字电路中经常使用多点接地。在多点接地系统中,每个电路就近接到低阻抗的地线面上,如机箱。电路的接地线要尽量短,以减小电感。在频率很高的系统中,通常接地线要控制在几毫米的范围内。 多点接地时容易产生公共阻抗耦合问题。在低频的场合,通过单点接地可以解决这个问题。但在高频时,只能通过减小地线阻抗(减小公共阻抗)来解决。由于趋肤效应,电流仅在导体表面流动,因此增加导体的厚度并不能减小导体的电阻。在导体表面镀银能够降低导体的电阻。 通常1MHz以下时,可以用单点接地;10MHz以上时,可以用多点接地,在1MHz和10MHz之间时,可如果最长的接地线不超过波长的1/20,可以用单点接地,否则用多点接地。

电力系统的接地形式(图示)

N = N eutral Conductor PE = P rotection- E arth Conductor PEN = P rotectitive- E arth- N eutral- Conductor T = T erre = Earthing I = I solation S = S eparated Neutral and Protective Conductor C = C ombined Neutral and Protective Conductor Abb. 6 TN-S-System Abb. 7 TN-C System Abb. 8 TN-C-S System Abb.9 TT System Abb. 10 IT System Network configuration Power systems Network configuration Network configurations are differed as per kind of – direct current, alternating current – “number of active conductors and the kind of earth connection” using the following characters: First letter: earthing of the current source (part 300, VDE 0100): T – direct earthing of a point I - insulation of all active parts of earth or connection of a point with the earth via an impedance. Second letter: earthing of elements of electrical machine: T – element is directly earthed, independent of the earthing of a point of a current source N – element is directly connected to the operating earth electrode (in networks of alternating voltage the earthed point is mostly the neutral point). Further letters: arrangement of neutral conductor and protective conductor in the TN-system: S – functions of neutral and protective conductor by separate conductors C – functions of neutral and protective conductor combined in one conductor (PEN). In TN-systems a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected to this point via PE- or PEN-conductor. Three types of TN-systems are to be differed (part 300, VDE 0100): TN-S-system - Separated neutral and protective conductor in the entire network (diagram 6)TN-C-system - Functions of neutral and protective conductor are combined in the entire network in one conductor, the PEN- conductor (diagram 7).TN-C-S-system - In one part of the network the neutral and the protective conductor are combined (PEN- conductor) (diagram 8). In the TT-system a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected with earth electrodes, that are separated from the operating earth electrode (diagram 9). The IT-system has no direct connection between active conductors and earthed parts. The elements of the electrical machine are earthed (diagram 10).

直流系统接地

直流系统接地 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

关于直流系统接地故障问题的探讨 发电厂、变电站直流系统是十分重要的电源系统,它是一个独立的电源,不受发电机、厂用电、站用变以及系统运行方式改变的影响,为电力系统的控制回路、信号回路、继电保护、自动装置及事照明等提供可靠稳定的不间断电源,它还为断路器的分、合闸提供操作电源。 由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 一、关于直流系统接地 1、什么叫直流系统接地 由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘

电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系统有正接地故障或负接地故障。 2、直流系统为什么会接地 发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害 (1)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 (2)、正接地可能导致断路器误跳闸 由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器KM 必然动作造成断路器的跳闸。同理,当图中的A点和C点

直流系统两点接地可能带来的危害!

直流系统两点接地可能带来的危害 发电厂、变电站的直流系统为控制、保护、信号和自动装置提供电源,直流系统的安全连续运行对保证发供电有着极大的重要性。由于直流系统为浮空制的不接地系统,如果发生两点接地,就可能引起上述装置误动、拒动,从而造成重大事故。因此当发生一点接地时,就应在保证直流系统正常供电的同时准确迅速地探测出接地点,排除接地故障,从而避免两点接地可能带来的危害。 (1)正接地可能导致断路器误跳闸由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A 点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器KM必然动作造成断路器的跳闸。同理,当图中的A点和C点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。 (2)负接地可能导致断路器的拒跳闸:如图所示,当图中的B点、E 点同时接地,这B、E点通过地连通后,将中间继电器KM短接,此时如果系统发生事故,保护动作,由于中间继电器KM被短接,KM 不动作,断路器不会跳开,产生拒动,使事故越级扩大。从以上分析看出,直流系统如果仅仅是一点接地,对二次回路不会造成事故,如果有两点接地,就可能发生断路器误动或拒动。就动作的实际情况看,当直流系统监测回路发出预告信号报警,显示该系统接地,可以断定,直流系统的接地故障已经造成了断路器可能发生误跳或拒跳的事故隐患,应立即排除。

(3)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 得福电气

浅谈直流系统接地

关于直流系统接地 发电厂、变电站直流系统是十分重要的电源系统,它是一个独立的电源,不受发电机、厂用电、站用变以及系统运行方式改变的影响,为电力系统的控制回路、信号回路、继电保护、自动装置及事照明等提供可靠稳定的不间断电源,它还为断路器的分、合闸提供操作电源。 由于直流电源在二次系统所处的重要地位,直流系统自身的可靠及安全直接影响到整个系统的安全,尽管直流电源十分稳定可靠,但实际应用中,由于电力系统应用直流电源的特殊性,特别是控制回路和保护回路的应用,使直流系统的故障成为电力系统更大故障的事故隐患,这就是我们常说的直流系统接地故障危害。 一、关于直流系统接地 1、什么叫直流系统接地? 由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系统有正接地故障或负接地故障。 2、直流系统为什么会接地? 发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会

由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害 (1)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 (2)、正接地可能导致断路器误跳闸 由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器KM必然动作造成断路器的跳闸。同理,当图中的A点和C点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。 (3)、负接地可能导致断路器的拒跳闸:如图所示,当图中的B点、E 点同时接地,这B、E点通过地连通后,将中间继电器KM短接,此时如果系统发生事故,保护动作,由于中间继电器KM被短接,KM不动作,断路器不会跳开,产生拒动,使事故越级扩大。 从以上分析看出,直流系统如果仅仅是一点接地,对二次回路不会造成事故,如果有两点接地,就可能发生断路器误动或拒动。就动作的实际情况看,当直流系统监测回路发出预告信号报警,显示该系统接地,可以断定,直流系统的接地故障已经造成了断路器可能发生误跳或拒跳的事故隐患,应

直流系统接地故障问题分析及排查方法

直流系统接地故障问题分析及排查方法 在变电站直流系统为控制、信号、继电保护、自动装置、事故照明及操作等提供可靠的直流电源,其正常与否对变电站的安全运行至关重要。但实际运行中,由于气候环境影响、设备的维护不够恰当、直流回路中混入了交流电、寄生回路存在等原因都可能会引起直流系统接地。直流系统容易发生单点接地。虽然单点接地不引起危害,但若演变成两点接地将造成保护误动或拒动、信息指示不正确、熔断器熔断等严重事件。无论何种原因,直流接地事故都会影响其他电力设备的正常运行,严重者,会导致整个电网系统的瘫痪,造成无法挽回的重大损失保护好直流系统的正常运行是变电站工作的重中之重,因此,对直流系统接地故障必须采取早发现、早消除、勤防策略 一、直流系统接地的危害 直流系统一般用于变电所控制母线、合闸母线、UPS不间断电源,也用作其他电源和逻辑控制回路。直流系统是一个绝缘系统,绝缘电阻达数十兆欧,在其正常工作时,直流系统正、负极对地绝缘电阻相等,对地电压也是相对平衡的。当发生一点接地时,其正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,控制回路和供电可靠性会大大降低,但一般不会引发电气控制系统的次生故障。可是,当直流系统有两点或多点接地时,极易引起逻辑控制回路误动作、直流保险熔断,使保护及自动装置、控制回路失去电源,在复杂

保护回路中同极两点接地,还可能将某些继电器短接,不能动作跳闸,致使越级跳闸,造成事故扩大。规程严格规定:直流系统多点同极接地,应停止直流系统一切工作,也是基于其故障性质的不确定因素。 1、直流系统正极接地的危害 当发生直流正极接地时,可能会引起保护及自动装置误动。因为一般断路器的跳合闸线圈以及继电器线圈是与负极电源接通的,如果在这些回路上再发生另一点直流接地,就可能引起误动作。 如上图所示,A、B两点发生直流接地时,相当于将外部合闸条件全部短接,从而使合闸线圈得电误动作合闸。A、C两点接地时,则外

直流电源接地危害讲解学习

直流电源接地危害

一、关于直流系统接地 1、什么叫直流系统接地? 由于直流电源为带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”,这个地也是电力系统安全的一个重要概念。为了系统安全,变电站、发电厂所有设备的外壳都会牢牢的接在这个“地”,而且希望其阻抗越低越好。直流电源的“地”对直流电路来讲仅仅是个中性点的概念,这个地与交流的“大地”是截然不同的。如果直流电源系统正极或负极对地间的绝缘电阻值降低至某一整定值,或者低于某一规定值,这时我们称该直流系统有正接地故障或负接地故障。 2、直流系统为什么会接地? 发电厂、变电站直流系统所接设备多、回路复杂,在长期运行过程中会由于环境的改变、气候的变化、电缆以及接头的老化,设备本身的问题等等,而不可避免的发生直流系统接地。特别在发电厂、变电站建设施工中或扩建过程中,由于施工及安装的种种问题,难以避免的会遗留电力系统故障的隐患,直流系统更是一个薄弱环节。投运时间越长的系统接地故障的概率越大。 3、直流系统接地的危害 (1)接地分类:由于直流系统网络连接比较复杂,其接地情况归纳起来有以下种种:按接地极性分为正接地和负接地;按接地种类可分为直接接地,亦称金

属接地或全接地和间接接地,亦称非金属接地或半接地;按接地的情况可分为单点接地、多点接地、环路接地和绝缘降低或称片接地。 (2)、正接地可能导致断路器误跳闸 由于断路器跳闸线圈均接负极电源,故当发生正接地时可能导致断路的跳闸,如图所示,当图中的A点和B点同时接地,相当时A、B两点通过大地连起来,中间继电器KM必然动作造成断路器的跳闸。同理,当图中的A点和C点同时接地,和图中的A点、D点同时接地均可能造成断路的跳闸。 (3)、负接地可能导致断路器的拒跳闸:如图所示,当图中的B点、E点同时接地,这B、E点通过地连通后,将中间继电器KM短接,此时如果系统发生事故,保护动作,由于中间继电器KM被短接,KM不动作,断路器不会跳开,产生拒动,使事故越级扩大。 从以上分析看出,直流系统如果仅仅是一点接地,对二次回路不会造成事故,如果有两点接地,就可能发生断路器误动或拒动。就动作的实际情况看,当直流系统监测回路发出预告信号报警,显示该系统接地,可以断定,直流系统的接地故障已经造成了断路器可能发生误跳或拒跳的事故隐患,应立即排除。 二、怎样查找、排除直流系统接地故障 排除直流接地故障。首先要找到接地的位置,这就是我们常说的接地故障定位。直流接地大多数情况不是一个点,可能是多个点,或者是一个片,真正通

几种接地保护方式

几种接地保护方式(TN-C,TN-S,TN-C-S) TT是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统。TT 方式供电系统的特点如下: 1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困 此TT 系统难以推广。 3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。TN 方式供电系统的特点如下: 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,是TT 系统的 5.3 倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的 脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。 TN-C是用工作零线兼作接零保护线,可以称作保护中性线。TN-C 方式供电系统的特点如下: 1 )由于三相负载不平衡,工作零线上有不平衡电流,对地有电压,所以与保护线所联接的电 气设备金属外壳有一定的电压。 2 )如果工作零线断线,则保护接零的漏电设备外壳带电。 3 )如果电源的相线碰地,则设备的外壳电位升高,使中性线上的危险电位蔓延。 4 )TN-C 系统干线上使用漏电保护器时,工作零线后面的所有重复接地必须拆除,否则漏电 开关合不上;而且,工作零线在任何情况下都不得断线。所以,实用中工作零线只能让漏电保 护器的上侧有重复接地。 5 )TN-C 方式供电系统只适用于三相负载基本平衡情况。 TN-S是把工作零线N 和专用保护线PE严格分开的供电系统。TN-S 方式供电系统的特点如下: 1 )系统正常运行时,专用保护线上不有电流,只是工作零线上有不平衡电流。PE 线对地没 有电压,所以电气设备金属外壳接零保护是接在专用的保护线PE 上,安全可靠。2 )工作零线只用作单相照明负载回路。 3 )专用保护线PE 不许断线,也不许进入漏电开关。 4 )干线上使用漏电保护器,工作零线不得有重复接地,而PE 线有重复接地,但是不经过漏 电保护器,所以TN-S 系统供电干线上也可以安装漏电保护器。 5 )TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在建筑工程工工 前的“三通一平”(电通、水通、路通和地平——必须采用TN-S 方式供电系统。TN-C-S是在建筑施工临时供电中,如果前部分是TN-C方式供电,而施工规范规定施工现场必须采用TN-S

浅谈直流系统接地故障问题

浅谈直流系统接地故障问题 发表时间:2012-01-19T13:25:12.653Z 来源:《时代报告(学术版)》2011年11月供稿作者:程瑞红刘同和 [导读] 对于发电厂、变电站,直流系统是很重要的电源系统,它是一个独立的电源 程瑞红刘同和(濮阳龙丰热电公司河南濮阳 457000) 中图分类号:TM6 文献标识码:A 文章编号:41-1413(2011)11-0000-01 摘要:针对直流系统发生接地的可能性比较大以及在整个系统中特别是二次系统中所处的重要地位,结合实际,提出直流接地的概念及查找的方法。 关键词:直流系统接地;接地原因;接地形式;查找方法;处理 对于发电厂、变电站,直流系统是很重要的电源系统,它是一个独立的电源。为电力系统的控制回路、信号回路、继电保护及自动化装置提供可靠稳定的电源。直流系统的可靠及安全直接影响到整个系统的安全,在线路的二次回路中特别是控制回路和保护回路的应用。但直流系统接地存在着很多的隐患,由于断路器跳闸线圈峻接负极电源,当正接地是可能导致断路器跳闸,负极接地可能是断路器拒跳使事故越级扩大。 一、直流系统接地 (一)什么是直流系统接地? 由于直流电源是带极性的电源,即电源正极和电源负极。交流电源是无极性电源,电力系统交流电源有一个真正的“地”。这个“地”直接关系到电力系统的安全。为了安全设备的外壳都必须牢牢地可靠的接“地”。如果直流电源系统正极或负极对地间的绝缘电阻值降至某一整定值或规定值,这时我们称该直流系统有正接地故障或负接地故障。 (二)直流系统接地原因 对于发电厂、变电站直流系统设备多回路复杂,在运行中由于环境的影响、气候的变化,电缆使用年限过长存在接头绝缘老化以及设备自身的问题,直流系统发生接地的概率比较大。 (三)直流接地的形式 按接地的极性分为正接地和负接地;按接地的种类分为直接接地(金属接地或全接地)间接接地(非金属接地或半接地);按接地情况分为单点接地、多点接地、环路接地和绝缘地接地;按接地地点所处位置的不同分为室内和室外;按接地原因又分为以下几种形式:(1)有恶劣天气引起的接地。特别是阴雨、雾、雪天。在大雨天气雨水会流入露天的密封不严的接线盒及按钮引起接地。对于不装防雨罩的继电器,雨水进去也会直接接地和误动作。在梅雨季节或者大雾天气空气比较潮湿,电缆的绝缘降低,引发直流系统接地。 (2)小动物的破坏引起的接地。老鼠进入电缆洞会咬坏电缆皮引起直流接地。小飞虫、飞蛾钻进密封不严的接线盒有可能引起接地。(3)接线松动脱落引起接地。若接线头松动脱落搭在其他金属器件上也可能引起接地。在拆除电缆头的过程中如果不做包扎一旦接触导电器件也会引发接地。 (4)内部元件损坏引起的接地。在电路的设计中为了抗干扰在正负极和地之间并联抗干扰电容,若电容击穿也可能引起直流接地。 二、直流系统接地的查找方法 (一)拉回路法 这是电力系统中查直流接地故障一直沿用的比较简单传统的方法。即分别对各路空气开关或熔断器拉闸停电进行查找。若停电后直流接地现象消失,说明接地点位于本开关控制的下级回路中;若现象继续存在,说明下级回路没有接地。通过拉路寻找,可将接地点限定在某个空气开关控制的直流回路中,再通过解开电缆芯,将接地点限定在室内或室外,再通过拔出插的元器件,将接地点限定在插件内或插件外,最终将接地点限定在某个回路中,再用摇表对回路中的每跟线摇测其绝缘从而确定接地点。 (二)直流接地选线装置监测法 这是一种在线监测直流系统对地绝缘情况的装置。该装置能在线监测,随时报告直流系统接地故障情况。但对具体的接地点无法定位,技术上受监测点安装数量的限制,很难将接地点缩小到一定范围,所以它的局限性较大。 (三)便携式直流接地故障定位 该装置在电力系统中广泛应用,无需断开直流回路,可带电查找。极大的提高了查找的安全性。 三、直流接地的处理 (一)试拉检修人员所接之临时电源; (二)联系机、炉、燃油、化学等直流用户,询问有无设备启、停及异常情况,以便进行查找; (三)进行动力直流负荷的选择,采用“瞬停法”,按照先室外后室内的顺序进行。对于直流油泵等动力负荷,必须通过值长通知机方采取必要的措施并得到明确许可、检查电动机确未运行后方可进行,拉开后迅速恢复,并汇报值长通知机方; (四)进行操作直流负荷的选择,采用“转移法”,即先调整直流系统两组母线电压一致,推上母联刀闸,再切换直流母线上的某一路负荷至非接地母线上(推上该供电环状的解列点刀闸,然后拉开该供电环状接于接地母线的电源刀闸);此后拉开母联刀闸,看接地是否转移到另一母线,若已转移,再用“瞬停法”对该供电环状负荷的各分支逐一瞬停,直至找到故障点。 (五)在进行操作直流负荷的选择时,主控楼操作直流电源一般应放在最后选择,且不得将环状供电的控制、信号电源长时间放在不同母线上运行。 (六)在瞬停设备的直流操作电源前,应先与有关值班人员进行联系,以免设备误动作。在择过程中,遇有故障发生时,应及时恢复供电。 (七)当全部直流负荷选择完毕仍未找到接地点时,则应检查蓄电池、浮充硅、闪光装置、电压绝缘综合监测装置以及直流母线本身。此时可以采取瞬间拉开设备出口刀闸及取下直流保险的方法进行选择。若接地仍然不能消除,则为直流母线本身接地,经确证无疑后,应采取必要的安全措施和技术措施,将故障母线停电,由检修班进行处理。 (八)发生直流接地后必须尽快查找接地点,并予消除,不允许发生一点接地后长期运行,以免再发生第二点接地后造成保护装置的

相关文档