文档库 最新最全的文档下载
当前位置:文档库 › 人教中考数学综合题专题复习【锐角三角函数】专题解析及答案

人教中考数学综合题专题复习【锐角三角函数】专题解析及答案

人教中考数学综合题专题复习【锐角三角函数】专题解析及答案
人教中考数学综合题专题复习【锐角三角函数】专题解析及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞

行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处.

(1)求之间的距离

(2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(223

. 【解析】 【分析】

(1)解直角三角形即可得到结论;

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==,

'30CE AA ==3Rt △ABC 中,求得3

3,然后根据三角函数的定义即可得到结论. 【详解】

解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m ,

∴AB=sin 30AC

?

=6012

=120(m )

(2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3

在Rt △ABC 中, AC=60m ,∠ADC=60°,

∴33∴3

∴tan ∠A 'A D= tan ∠'A DC=

'A E DE 5032

35

答:从无人机'A 上看目标D 2

35

【点睛】

本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键.

2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.

(1)求∠CAO'的度数.

(2)显示屏的顶部B'比原来升高了多少?

(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?

【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.

【解析】

试题分析:(1)通过解直角三角形即可得到结果;

(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得

BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.

试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,

∴sin∠CAO′=,

∴∠CAO′=30°;

(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin ∠BOD=24×=12,∵O′C ⊥OA ,

∠CAO′=30°,

∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°, ∴O′B′+O′C ﹣BD=24+12﹣12

=36﹣12

, ∴显示屏的顶部B′比原来升高了(36﹣12

)cm ;

(3)显示屏O′B′应绕点O′按顺时针方向旋转30°, 理由:∵显示屏O′B 与水平线的夹角仍保持120°, ∴∠EO′F=120°, ∴∠FO′A=∠CA O′=30°, ∵∠AO′B′=120°, ∴∠EO′B′=∠FO′A=30°,

∴显示屏O′B′应绕点O′按顺时针方向旋转30°.

考点:解直角三角形的应用;旋转的性质.

3.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C

连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα?<

(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).

【答案】(Ⅰ)点D 的坐标为5472

(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258

);(Ⅲ)60α=?或300?. 【解析】 【分析】

(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明

△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】

(Ⅰ)∵点()30A ,

,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,

∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.

在Rt OAB ?中,225OB OA AB +=, 过A D 、分别作B,DN OA AM O ⊥⊥ 在Rt ΔOAM 中,OM OA 3

cos BOA OA OB 5

∠===, ∴9OM 5

=

∵AD=OA ,AM ⊥OB ,

∴18OD 2OM 5

==

. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =3

5

, ∴72DN 25=

,54ON 25

=

. ∴点D 的坐标为5472,2525??

??

?.

(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===?==. ∴OD AD =.

DOA ODA ∠∠=.

又∵DOA OBA 90∠∠+=?,BDH ADO 90∠∠+=? ∴ABD BDE ∠∠=.

又∵BD BD =, ∴ΔBDE ΔDBA ?.

②由ΔBDE ΔDBA ?,得BEH DAH ∠∠=,BE AD 3==, 又∵

BHE DHA ∠∠=,

∴ΔBHE ΔDHA ?. ∴DH=BH ,

设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()2

22x 34x =+-,得25x 8

=, ∴25AH 8

=

. ∴点H 的坐标为253,

8?? ???

. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,

∵点B 与点F 是对应点,A 为旋转中心,

∴∠BAF为旋转角,即∠BAF=α,AB=AF=4,∵FA=FB,FO⊥AB,

∴OA=1

2

AB=2,

∴cos∠BAF=OA

AF =

1

2

∴∠BAF=60°,即α=60°,

当180°<α<360°时,

同理解得:∠BAF′=60°,

∴旋转角α=360°-60°=300°.

综上所述:α60

=?或300?.

【点睛】

本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.

4.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.

(1)连接GD,求证:△ADG≌△ABE;

(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)

(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.

【答案】(1)见解析;(2)∠FCN=45°,理由见解析;(3)当点E由B向C运动时,

∠FCN 的大小总保持不变,tan ∠FCN

=4

3

.理由见解析. 【解析】 【分析】

(1)根据三角形判定方法进行证明即可.

(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.

(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】

(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,

ADG ABE DAG BAE AD AB ∠=∠??

∠=∠??=?

, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:

则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,

∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,

EHF ABE FEH BAE AE EF ∠=∠??

∠=∠??=?

, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°,

∴∠FCN=45°.

(3)当点E由B向C运动时,∠FCN的大小总保持不变,理由如下:作FH⊥MN于H,如图2所示:

由已知可得∠EAG=∠BAD=∠AEF=90°,

结合(1)(2)得:△EFH≌△GAD,△EFH∽△ABE,

∴EH=AD=BC=8,

∴CH=BE,

∴EH FH FH

AB BE CH

==;

在Rt△FEH中,tan∠FCN=

84

63 FH EH

CH AB

===,

∴当点E由B向C运动时,∠FCN的大小总保持不变,tan∠FCN=4

3

【点睛】

本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.

5.如图,正方形OABC的顶点O与原点重合,点A,C分别在x轴与y轴的正半轴上,点

A的坐标为(4,0),点D在边AB上,且tan∠AOD=1

2

,点E是射线OB上一动点,

EF⊥x轴于点F,交射线OD于点G,过点G作GH∥x轴交AE于点H.

(1)求B,D两点的坐标;

(2)当点E在线段OB上运动时,求∠HDA的大小;

(3)以点G为圆心,GH的长为半径画⊙G.是否存在点E使⊙G与正方形OABC的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E的坐标.

【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣

,8﹣)或(,)或1616,77??

? ???或

1616,77?-- ??

,理由见解析 【解析】 【分析】

(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 1

2

得AD=

1

2

OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=1

2

OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=

1

2

EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD ∥BE ,据此可得答案;

(3)分⊙G 与对角线OB 和对角线AC 相切两种情况,设PG=x ,结合题意建立关于x 的方程求解可得. 【详解】

解:(1)∵A (4,0), ∴OA =4,

∵四边形OABC 为正方形, ∴AB =OA =4,∠OAB =90°, ∴B (4,4),

在Rt △OAD 中,∠OAD =90°, ∵tan ∠AOD =12

, ∴AD =

12OA =1

2

×4=2, ∴D (4,2);

(2)如图1,在Rt △OFG 中,∠OFG =90°

∴tan∠GOF=GF

OF =

1

2

,即GF=

1

2

OF,

∵四边形OABC为正方形,

∴∠AOB=∠ABO=45°,

∴OF=EF,

∴GF=1

2

EF,

∴G为EF的中点,

∵GH∥x轴交AE于H,

∴H为AE的中点,

∵B(4,4),D(4,2),

∴D为AB的中点,

∴DH是△ABE的中位线,

∴HD∥BE,

∴∠HDA=∠ABO=45°.

(3)①若⊙G与对角线OB相切,

如图2,当点E在线段OB上时,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG2x,OF=EF=2x,

∵OA=4,

∴AF=4﹣2,

∵G为EF的中点,H为AE的中点,

∴GH为△AFE的中位线,

∴GH=1

2AF=

1

2

×(4﹣22x)=2﹣2x,

则x=2﹣2x,

解得:x=22﹣2,

∴E(8﹣42,8﹣42),

如图3,当点E在线段OB的延长线上时,

x=2x﹣2,

解得:x=2+2,

∴E(8+42,8+42);

②若⊙G与对角线AC相切,

如图4,当点E在线段BM上时,对角线AC,OB相交于点M,

过点G作GP⊥OB于点P,设PG=x,可得PE=x,

EG=FG2,

OF=EF=2x,

∵OA=4,

∴AF=4﹣2,

∵G为EF的中点,H为AE的中点,

∴GH为△AFE的中位线,

∴GH =

12AF =1

2

×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22, ∴3x ﹣22=2﹣2x , ∴422

7

x +=

, ∴42164216,77E ??++ ? ???

; 如图5,当点E 在线段OM 上时,

GQ =PM =22﹣3x ,则22﹣3x =2﹣2x , 解得422

7

x -=

, ∴16421642,77E ??

-- ? ???

; 如图6,当点E 在线段OB 的延长线上时,

3x ﹣22x ﹣2, 解得:422

7

x =

(舍去); 综上所述,符合条件的点为(8﹣2,8﹣2)或(2,2)或

42164216,77??++ ? ???或16421642,77??

-- ? ???

. 【点睛】

本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.

6.如图,在?ABCD 中,AC 与BD 交于点O ,AC ⊥BC 于点C ,将△ABC 沿AC 翻折得到△AEC ,连接DE .

(1)求证:四边形ACED 是矩形; (2)若AC =4,BC =3,求sin ∠ABD 的值.

【答案】(1)证明见解析(2)613

65

【解析】 【分析】

(1)根据?ABCD 中,AC ⊥BC ,而△ABC ≌△AEC ,不难证明;

(2)依据已知条件,在△ABD 或△AOC 作垂线AF 或OF ,求出相应边的长度,即可求出∠ABD 的正弦值. 【详解】

(1)证明:∵将△ABC 沿AC 翻折得到△AEC , ∴BC =CE ,AC ⊥CE , ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC , ∴AD =CE ,AD ∥CE ,

∴四边形ACED 是平行四边形, ∵AC ⊥CE ,

∴四边形ACED 是矩形.

(2)解:方法一、如图1所示,过点A 作AF ⊥BD 于点F , ∵BE =2BC =2×3=6,DE =AC =4, ∴在Rt △BDE 中,

2

2

2

2

BD BE DE 64213=+=+=∵S △BDE =

12×DE?AD =1

2

AF?BD ,

∴AF =

613

213

=, ∵Rt △ABC 中,AB

=2234+=5, ∴Rt △ABF 中,

sin ∠ABF =sin ∠ABD =613613

135

AF AB ==

方法二、如图2所示,过点O 作OF ⊥AB 于点F , 同理可得,OB =1

132

BD =, ∵S △AOB =11

OF AB OA BC 22

?=?, ∴OF =

23655

?=, ∵在Rt △BOF 中,

sin ∠FBO =

0613

65

513F OB ==

, ∴sin ∠ABD =

613

65

【点睛】

本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin ∠ABD .

7.如图,半圆O 的直径AB =20,弦CD ∥AB ,动点M 在半径OD 上,射线BM 与弦CD 相

交于点E (点E 与点C 、D 不重合),设OM =m . (1)求DE 的长(用含m 的代数式表示); (2)令弦CD 所对的圆心角为α,且sin

4=

2

5

α

. ①若△DEM 的面积为S ,求S 关于m 的函数关系式,并求出m 的取值范围;

②若动点N 在CD 上,且CN =OM ,射线BM 与射线ON 相交于点F ,当∠OMF =90° 时,求DE 的长.

【答案】(1)DE =10010m m -;(2)①S =2360300

m m m

-+,(5013<m <10),

②DE =

5

2

. 【解析】 【分析】

(1)由CD ∥AB 知△DEM ∽△OBM ,可得

DE DM

OB OM

=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =1

2

∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =3

5

,继而由OM =m 、OD =10得QM =DM sin ∠ODP =

3

5

(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得

CD DM BO OM =,求得OM =50

13

,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×3

5

=6,可得OM =8,根据(1)所求结果可得答案. 【详解】 (1)∵CD ∥AB , ∴△DEM ∽△OBM , ∴

DE DM OB OM =,即1010DE m

m

-=, ∴DE =

10010m

m

-; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,

∵OC =OD 、OP ⊥CD , ∴∠DOP =1

2

∠COD , ∵sin

2

α

45

, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35

, ∵OM =m 、OD =10, ∴DM =10﹣m , ∴QM =DM sin ∠ODP =

3

5

(10﹣m ), 则S △DEM =12DE ?MQ =12×10010m m -×35(10﹣m )=2360300

m m m

-+,

如图2,

∵PD =OD sin ∠DOP =10×4

5

=8, ∴CD =16, ∵CD ∥AB , ∴△CDM ∽△BOM , ∴

CD DM BO OM =,即1610=10OM

OM

-, 解得:OM =50

13

, ∴

50

13

<m <10, ∴S =2360300

m m m

-+,(5013<m <10).

②当∠OMF=90°时,如图3,

则∠BMO=90°,

在Rt△BOM中,BM=OB sin∠BOM=10×3

5

=6,

则OM=8,

由(1)得DE=1001085

82

-?

=.

【点睛】

本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.

8.小明坐于堤边垂钓,如图①,河堤AC的坡角为30°,AC长米,钓竿AO的倾斜角是60°,其长为3米,若AO与钓鱼线OB的夹角为60°,求浮漂B与河堤下端C之间的距离(如图②).

【答案】1.5米.

【解析】

试题分析:延长OA交BC于点D.先由倾斜角定义及三角形内角和定理求出

在Rt△ACD中,米,CD=2AD=3

米,再证明△BOD是等边三角形,得到米,然后根据BC=BD?CD即可求出浮漂B与河堤下端C之间的距离.

试题解析:延长OA交BC于点D.

∵AO 的倾斜角是,

∴ ∵

在Rt △ACD 中, (米),

∴CD =2AD =3米, 又

∴△BOD 是等边三角形, ∴

(米),

∴BC =BD ?CD =4.5?3=1.5(米).

答:浮漂B 与河堤下端C 之间的距离为1.5米.

9.如图所示,一堤坝的坡角62ABC ∠=?,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=?,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88?≈,cos620.47?≈,

tan50 1.20?≈)

【答案】6.58米 【解析】

试题分析:过A 点作AE ⊥CD 于E .在Rt △ABE 中,根据三角函数可得AE ,BE ,在Rt △ADE 中,根据三角函数可得DE ,再根据DB=DE ﹣BE 即可求解. 试题解析:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,∠ABE=62°. ∴AE=AB?sin62°=25×0.88=22米,

BE=AB?cos62°=25×0.47=11.75米, 在Rt △ADE 中,∠ADB=50°, ∴DE==18

米,

∴DB=DE ﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.

考点:解直角三角形的应用-坡度坡角问题.

10.已知Rt △ABC,∠A=90°,BC=10,以BC 为边向下作矩形BCDE,连AE 交BC 于F. (1)如图1,当AB=AC,且sin ∠BEF=35

时,求BF CF 的值;

(2)如图2,当tan ∠ABC=

1

2

时,过D 作DH ⊥AE 于H,求EH EA ?的值; (3)如图3,连AD 交BC 于G,当2FG BF CG =?时,求矩形BCDE 的面积

【答案】(1)1

7

;(2)80;(3)100. 【解析】 【分析】

(1)过A 作AK ⊥BC 于K ,根据sin ∠BEF=

35得出

3

5

FK AK =,设FK =3a ,AK =5a ,可求得BF =a ,故1

7

BF CF =;(2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED ,得△EGA ∽△EHD ,利用相似三角形的性质即可求出;(3)延长AB 、ED 交于K ,延长AC 、ED 交于T ,根据相似三角形的性质可求出BE =ED ,故可求出矩形的面积. 【详解】

解:(1)过A 作AK ⊥BC 于K , ∵sin ∠BEF =35,sin ∠FAK =35

, ∴

35

FK AK =, 设FK =3a ,AK =5a ,

∴AK =4a ,

∵AB =AC ,∠BAC =90°, ∴BK =CK =4a , ∴BF =a , 又∵CF =7a , ∴

1

7

BF CF = (2)过A 作AK ⊥BC 于K ,延长AK 交ED 于G ,则AG ⊥ED , ∵∠AGE =∠DHE =90°, ∴△EGA ∽△EHD , ∴

EH ED

EG EA

=, ∴·EH EA EG ED ?=,其中EG =BK , ∵BC =10,tan ∠ABC =12

, cos ∠ABC

∴BA =BC · cos ∠ABC

BK= BA·cos ∠ABC 8

= ∴EG =8,

另一方面:ED =BC =10, ∴EH ·EA =80

(3)延长AB 、ED 交于K ,延长AC 、ED 交于T , ∵BC ∥KT , BF AF FG KE AE ED

==, ∴

BF KE FG DE =,同理:FG ED

CG DT

= ∵FG 2= BF ·CG ∴BF FG

FG CG

=, ∴ED 2= KE ·DT ∴

KE ED

DE DT

= , 又∵△KEB ∽△CDT ,∴

KE CD

BE DT

=, ∴KE ·DT =BE 2, ∴BE 2=ED 2 ∴ BE =ED

∴1010100BCDE S =?=矩形

中考数学专题训练---圆的综合的综合题分类含答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E. (1)求证:AC∥OD; (2)如果DE⊥BC,求AC的长度. 【答案】(1)证明见解析;(2)2π. 【解析】 试题分析:(1)由OC=OD,CD平分∠ACO,易证得∠ACD=∠ODC,即可证得AC∥OD;(2)BC切⊙O于点C,DE⊥BC,易证得平行四边形ADOC是菱形,继而可证得△AOC是等边三角形,则可得:∠AOC=60°,继而求得弧AC的长度. 试题解析:(1)证明:∵OC=OD,∴∠OCD=∠ODC.∵CD平分∠ACO, ∴∠OCD=∠ACD,∴∠ACD=∠ODC,∴AC∥OD; (2)∵BC切⊙O于点C,∴BC⊥OC.∵DE⊥BC,∴OC∥DE.∵AC∥OD,∴四边形ADOC 是平行四边形.∵OC=OD,∴平行四边形ADOC是菱形,∴OC=AC=OA,∴△AOC是等边三 角形,∴∠AOC=60°,∴弧AC的长度=606 180 π? =2π. 点睛:本题考查了切线的性质、等腰三角形的判定与性质、菱形的判定与性质以及弧长公式.此题难度适中,注意掌握数形结合思想的应用. 2.不用圆规、三角板,只用没有刻度的直尺,用连线的方法在图1、2中分别过圆外一点A作出直径BC所在射线的垂线.

【答案】画图见解析. 【解析】 【分析】根据直角所对的圆周角是直角,构造直角三角形,利用直角三角形性质可画出垂线;或结合圆的轴对称性质也可以求出垂线. 【详解】解:画图如下: 【点睛】本题考核知识点:作垂线.解题关键点:结合圆的性质和直角三角形性质求出垂线. 3.已知:如图,在矩形ABCD中,点O在对角线BD上,以OD的长为半径的⊙O与AD,BD分别交于点E、点F,且∠ABE=∠DBC. (1)判断直线BE与⊙O的位置关系,并证明你的结论; (2)若sin∠ABE= 3 3 ,CD=2,求⊙O的半径. 【答案】(1)直线BE与⊙O相切,证明见解析;(2)⊙O的半径为3 . 【解析】 分析:(1)连接OE,根据矩形的性质,可证∠BEO=90°,即可得出直线BE与⊙O相切;(2)连接EF,先根据已知条件得出BD的值,再在△BEO中,利用勾股定理推知BE的长,设出⊙O的半径为r,利用切线的性质,用勾股定理列出等式解之即可得出r的值.详解:(1)直线BE与⊙O相切.理由如下: 连接OE,在矩形ABCD中,AD∥BC,∴∠ADB=∠DBC. ∵OD=OE,∴∠OED=∠ODE. 又∵∠ABE=∠DBC,∴∠ABE=∠OED, ∵矩形ABDC,∠A=90°,∴∠ABE+∠AEB=90°, ∴∠OED+∠AEB=90°,∴∠BEO=90°,∴直线BE与⊙O相切;

中考数学专题题库∶锐角三角函数的综合题及答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

中考数学综合专题训练【几何综合题】(几何)精品解析

中考数学综合专题训练【几何综合题】(几何)精品解析 在中考中,几何综合题主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。学生通常需要在熟悉基本几何图形及其辅助线添加的基础上,将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。 在解决几何综合题时,重点在思路,在老师讲解及学生解题时,对于较复杂的图形,根据题目叙述重复绘图过程可以帮助学生分解出基本条件和图形,将新题目与已有经验建立联系从而找到思路,之后绘制思路流程图往往能够帮助学生把握题目的脉络;在做完题之后,注重解题反思,总结题目中的基本图形及辅助线添加方法,将题目归类整理;对于典型的题目,可以解析题目条件,通过拓展题目条件或改变条件,给出题目的变式,从而对于题目及相应方法有更深入的理解。同时,在授课过程中,将同一类型的几何综合题成组出现,分析讲解,对学生积累对图形的“感觉”有一定帮助。 一.考试说明要求 图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析

中考数学综合专题训练【以圆为基础的几何综合题】精品专题解析 几何综合题一般以圆为基础,涉及相似三角形等有关知识;这类题虽较难,但有梯度,一般题目中由浅入深有1~3个问题,解答这种题一般用分析综合法. 【典型例题精析】 例1.如图,已知⊙O的两条弦AC、BD相交于点Q,OA⊥BD. (1)求证:AB2=AQ·AC: (2)若过点C作⊙O的切线交DB的延长线于点P,求证:PC=PQ. P 分析:要证A B2=AQ·AC,一般都证明△ABQ∽△ACB.∵有一个公共角∠QAB=∠BAC,?∴只需再证明一个角相等即可. 可选定两个圆周角∠ABQ=∠ACB加以证明,以便转化,题目中有垂直于弦的直径,可知AB=AD,AD和AB所对的圆周角相等. (2)欲证PC=PQ, ∵是具有公共端点的两条线段, ∴可证∠PQC=∠PCQ(等角对等边) 将两角转化,一般原地踏步是不可能证明出来的,没有那么轻松愉快的题目给你做,因为数学是思维的体操. ∠BQC=∠AQD=90°-∠1(充分利用直角三角形中互余关系) ∵∠PCA是弦切角,易发现应延长AO与⊙交于E,再连结EC,?利用弦切角定理得∠PCA=∠E,同时也得到直径上的圆周角∠ACE=90°, ∴∠PCA=∠E=90°-∠1. 做几何证明题大家要有信心,拓展思维,不断转化,寻根问底,不断探索,?充分发挥题目中条件的总体作用,总能得到你想要的结论,同时也要做好一部分典型题,?这样有利于做题时发生迁移,联想. 例2.如图,⊙O1与⊙O2外切于点C,连心线O1O2所在的直线分别交⊙O1,⊙O2于A、E,?过点A作⊙O2的切线AD交⊙O1于B,切点为D,过点E作⊙O2的切线与AD交于F,连结BC、CD、?DE. (1)如果AD:AC=2:1,求AC:CE的值; (2)在(1)的条件下,求sinA和tan∠DCE的值; (3)当AC:CE为何值时,△DEF为正三角形?

锐角三角函数专题

如有帮助欢迎下载支持 锐角三角函数专题 共100分 命题人:王震宇 张洪林 一、选择题(30分) 1、如果∠A 是锐角,且A cos A sin =,那么∠A=_______。 A. 30° B. 45° C. 60° D. 90° 2. CD 是Rt △ABC 斜边上的高,AC=4,BC=3,则cos ∠BCD=________。 A. 5 3 B. 4 3 C. 3 4 D. 5 4 3、如果130sin sin 22=?+α,那么锐角α的度数是________。 A. 15° B. 30° C. 45° D. 60° 4、已知Rt △ABC 中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是________。 A. 32B sin = B. 32B cos = C. 3 2 B tan = 5、在Rt △AB C 中,如果各边长度都扩大2倍,那么锐角A 的正切值( ) A. 没有变化 B. 扩大2倍 C.缩小2倍 D. 不能确定 6、 在△ABC 中,∠C =90°,AC =BC ,则sin A 的值等于( ) A. 2 1 B. 22 C. 2 3 D. 1 7、已知α为锐角,下列结论 ①1cos sin =+αα ②如果?>45α,那么ααcos sin > ③如果2 1 cos > α,那么?<60α ④ααsin 1)1(sin 2-=- 正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8、 △ABC 中,∠C =90°,53 sin = A ,则BC ∶AC 等于( ) A. 3∶4 B. 4∶3 C. 3∶5 D. 4∶5: 9、 如果α是锐角,且5 4 sin = α,那么)90cos(α-?=( ) A. 54 B. 43 C. 53 D. 5 1. 10、如右图,CD 是平面镜,光线从A 点出发经过CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC =3,BD =6,CD =11,则tan α的值为( )

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

锐角三角函数专题训练

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边的邻边斜边的对边A A A A ∠=?∠=cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A =sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

)90sin(cos ),90cos(sin A A A A -?=-?=. 七、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。 即 ()A A -=ο90cot tan , ()A A -=ο90tan cot . 八、同角三角函数之间的关系: ⑴、平方关系:1cos sin 22=+A A ⑵商的关系A A A cos sin tan = A A A sin cos cot = ⑶倒数关系tana ·cota=1 【典型例题】 【1】 已知a 为锐角①若sina=3/5,求cosa 、tana 的值。②若tana=3/4,求 sina 、cosa 的值。③若tana=2,求(3sina+cosa )/(4cosa-5sina ) 【2】 在△ABC 中,角A, 角B,角C 的对边分别为a 、b 、c ,且a :b :c=9:40:41, 求tanA,1/tanA 的值. 【3】 求下列各式的锐角。 ①2sina=1,②,2tana ·cosa=根号3,③ tan 2 a+(1+根号3)tana+根号3=0 【4】 在△ABC 中AB=15,BC=14,S △ABC=84.求tanc ,sina 的值。 【5】 等腰三角形的面积为2,腰长为根号5,底角为a ,求tana 。 【6】 锐角a 满足cosa=3/4,则∠a 较确切的取值范围() A.0°<a <45° B. 45°<a <90° C. 45°<a <60° D. C. 30°<a <45° 【7】计算:020*********sin 88sin 3sin 2sin 1sin +++++Λ 【基础练习】 一、填空题:

中考数学专题训练--函数综合题

中考数学专题训练函数综合题专题 1. 如图,一次函数y kx b y 4 与反比例函数x 的图像交于 A 、B 两点,其中y 点A的横坐标为1,又一次函数y (1)求一次函数的解析式; (2)求点 B 的坐标. kx b 的图像与x 轴交于点C3,0 . A C O x B 2. 已知一次函数y=(1-2x)m+x+3 图像不经过第四象限,且函数值y 随自变量x 的减小而减小。(1)求m 的取值范围; (2)又如果该一次函数的图像与坐标轴围成的三角形面积是 4.5 ,求这个一次函数的解析式。 y 2 1 -1 O -1 1 2 x 图 2 3. 如图,在平面直角坐标系中,点O 为原点,已知点 A 的坐标为(2,2),点B、C 在x 轴上,BC=8,AB=AC ,直线 y 1 / 22 D A

° AC 与 y 轴相交于点 D . ( 1)求点 C 、D 的坐标; ( 2)求图象经过 B 、D 、 A 三点的二次函数解析式及它的顶点坐标. 4. 如图四, 已知二次函数 y ax 2 2ax 3 的图像与 x 轴交于点 A ,点 B ,与 y 轴交于点 C ,其顶点为 D ,直线 DC 的函数关系式为 y kx b ,又 tan OBC 1. y ( 1)求二次函数的解析式和直线 DC 的函数关系式; D ( 2)求 △ ABC 的面积. C ( 图 四 ) A O B x 5. 已知在直角坐标系中,点 A 的坐标是( -3, 1),将线段 OA 绕着点 O 顺时针旋转 90 得到 OB. y 2 / 22 A

x

(1)求点B 的坐标;(2) 求过A、B、O 三点的抛物线的解析式;(3)设点B 关于抛物线的对称轴的对称点为C,求△ABC 的面积。 y 6.如图,双曲线0)、与y 轴交于点5 x 在第一象限的一支上有一点 B. C(1,5),过点C 的直线y kx b( k 0) 与x 轴交于点A(a, (1) 求点A 的横坐标 a 与k 之间的函数关系式; (2) 当该直线与双曲线在第一象限的另一交点 D 的横坐标是9 时,求△COD 的面积. y B C D O A x 第 6 题 3 / 22

锐角三角函数应用题专题

1、(09年湖北仙桃)如图所示,小华同学在距离某建筑物6米的点A 处测得广告牌B 点、C 点的仰角分别为52°和35°,则广告牌的高度BC 为_____________米(精确到0.1米).(sin35°≈0.57,cos35°≈0.82,tan35°≈0.70;sin52°≈0.79,cos52°≈0.62,tan52°≈1.28) 2、(09年湖南怀化)如图,小明从 A 地沿北偏东 30方向走1003m 到 B 地,再从B 地向正南方向走 200m 到C 地,此时小明离A 地 m . 3、(09年山东潍坊)如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25 B .253 C .10033 D .25253+ 4、(09年山东济南)九年级三班小亮同学学习了“测量物体高度”一节课后,他为了测得右图所放风筝的高度,进行了如下操作: (1)在放风筝的点 A 处安置测倾器,测得风筝C 的仰角60CBD =?∠; (2)根据手中剩余线的长度出风筝线BC 的长度为70米; (3)量出测倾器的高度 1.5AB =米. 根据测量数据,计算出风筝的高度CE 约为 米.(精确到0.1米,3 1.73≈) 5、(09年广东深圳、山东东营)如图,斜坡AC 的坡度(坡比)为1:3,AC =10米.坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带AB 相连,AB =14米.试求旗杆BC 的高度. 6、(09年广东湛江)如图,某军港有一雷达站P ,军舰M 停泊在雷达站P 的南偏东60°方向36海里处,另一艘军舰N 位于军舰M 的正西方向,与雷达站P 相距182海里.求: (1)军舰N 在雷达站P 的什么方向?(2)两军舰M N 、的距离.(结果保留根号) 第6题图 N M P 北 A B C D 6米 52° 35° (第1题图) A D B E C 60° (第4题图) 第2题图 B C A D l 第3题图 A B C D 第5题图

中考数学综合题专题复习【相似】专题解析

一、相似真题与模拟题分类汇编(难题易错题) 1.如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A点的直线y=﹣ x﹣1交于点C. (1)求抛物线解析式及对称轴; (2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由; (3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由. 【答案】(1)解:把A(-2,0),B(4,0)代入抛物线y=ax2+bx-1,得 解得 ∴抛物线解析式为:y= x2?x?1 ∴抛物线对称轴为直线x=- =1 (2)解:存在 使四边形ACPO的周长最小,只需PC+PO最小 ∴取点C(0,-1)关于直线x=1的对称点C′(2,-1),连C′O与直线x=1的交点即为P 点. 设过点C′、O直线解析式为:y=kx

∴k=- ∴y=- x 则P点坐标为(1,- ) (3)解:当△AOC∽△MNC时, 如图,延长MN交y轴于点D,过点N作NE⊥y轴于点E ∵∠ACO=∠NCD,∠AOC=∠CND=90° ∴∠CDN=∠CAO 由相似,∠CAO=∠CMN ∴∠CDN=∠CMN ∵MN⊥AC ∴M、D关于AN对称,则N为DM中点 设点N坐标为(a,- a-1) 由△EDN∽△OAC ∴ED=2a ∴点D坐标为(0,- a?1) ∵N为DM中点 ∴点M坐标为(2a,a?1) 把M代入y= x2?x?1,解得 a=4 则N点坐标为(4,-3) 当△AOC∽△CNM时,∠CAO=∠NCM ∴CM∥AB则点C关于直线x=1的对称点C′即为点N

锐角三角函数综合测试题

第28章锐角三角函数综合测试题 姓名 学号 成绩 一、选择题 1. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( ) A.34? B .43? C .35 D.4 5 2.一人乘雪橇沿如图2所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A .24米 B.12米? C.123米 D.6米 3.下列计算错误的是( ) A.sin60sin30sin30?-?=? B.22sin 45cos 451?+?= C.sin 60cos60cos60??= ? D.cos30cos30sin 30?? =? 4.如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点处.已知 8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34? B.43??C .35 ?D.4 5 5.如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =, D 为AC 上一点,若1 tan 5DBA ∠= ,则AD 的长为( ) A.2 B.2 C .1 D.22 二、填空题 6.如图7,在坡度为1﹕2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是________米. α 图1 A D E C B F 图4

7.如图9,在ABC ?中,90C ∠=,2BC =,1 sin 3 A = , 则AB =______.. 8.如图11所示,在高2米、坡角为30?的楼梯表面铺地毯,地毯的长度至少需 ______米.(3 1.732≈,精确到0.1米) 9.某人沿着山脚到山顶共走了1000m ,他上升的高度为500m ,这个山坡的坡度i为____. 10.等腰三角形的顶角是120?,底边上的高为30,则三角形的周长是______. 三、解答题 11.计算: (1)22sin30cos60tan 60tan30cos 45+-?+?.(2)22sin 45cos30tan 45+- 12.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31?的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45?的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度. (参考数值:t an31°≈53,sin31°≈2 1) .

中考数学易错题综合专题一 附答案详解

易错题数学组卷 一.选择题(共3小题) 1.下列各式计算正确的是() A.2x3﹣x3=﹣2x6B.(2x2)4=8x8C.x2?x3=x6D.(﹣x)6÷(﹣x)2=x4 2.(2008?临沂)若不等式组的解集为x<0,则a的取值范围为()A.a>0 B.a=0 C.a>4 D.a=4 3.(2008?临沂)如图,已知正三角形ABC的边长为1,E,F,G分别是AB,BC,CA上的点,且A E=BF=CG,设△E FG的面积为y,AE的长为x,则y关于x的函数的图象大致是() A.B.C.D. 二.解答题(共4小题) 4.(2012?鸡西)顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积. 5.如图,在△ABC中∠BAC=90°,AB=AC=2,圆A的半径1,点O在BC边上运动(与点B,C不重合),设BO=x,△AOC的面积是y.

(1)求y关于x的函数关系式及自变量的取值范围; (2)以点O为圆心,BO为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积. 6.(2009?黄石)正方形ABCD在如图所示的平面直角坐标系中,A在x轴正半轴上,D在y轴的负半轴上,AB交y轴正半轴于E,BC交x轴负半轴于F,OE=1,OD=4,抛物线y=ax2+bx ﹣4过A、D、F三点. (1)求抛物线的解析式; (2)Q是抛物线上D、F间的一点,过Q点作平行于x轴的直线交边AD于M,交BC所在直线于N,若S四边形AFQM=S△FQN,则判断四边形AFQM的形状; (3)在射线DB上是否存在动点P,在射线CB上是否存在动点H,使得AP⊥PH且AP=PH?若存在,请给予严格证明;若不存在,请说明理由. 7.(2007?重庆)下图是我市去年夏季连续60天日最高气温统计图的一部分. 根据上图提供的信息,回答下列问题: (1)若日最高气温为40℃及其以上的天数是最高气温为30℃~35℃的天数日的两倍,那么日最高气温为30℃~35℃的天数有_________天,日最高气温为40℃及其以上的天数有_________天;

专题14 锐角三角函数(原卷版)

专题14 锐角三角函数 一.选择题(共4小题) 1.(2020?无锡)如图,在四边形ABCD 中()AB CD >,90ABC BCD ∠=∠=?,3AB =, BC Rt ABC ?沿着AC 翻折得到Rt AEC ?,若tan AED ∠=,则线段DE 的长度( ) A B C D 2.(2020?苏州)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作:(1)在点C 处放置测角仪,测得旗杆顶的仰角ACE α∠=; (2)量得测角仪的高度CD a =; (3)量得测角仪到旗杆的水平距离DB b =. 利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( ) A .tan a b α+ B .sin a b α+ C .tan b a α+ D .sin b a α + 3.(2020?扬州)如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )

A B C .23 D .32 4.(2020?镇江)如图①,5AB =,射线//AM BN ,点C 在射线BN 上,将ABC ?沿AC 所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM 、BN 上,//PQ AB .设AP x =,QD y =.若y 关于x 的函数图象(如图②)经过点(9,2)E ,则cos B 的值等于( ) A .25 B .12 C .35 D .710 二.填空题(共4小题) 5.(2020?苏州)如图,已知MON ∠是一个锐角,以点O 为圆心,任意长为半径画弧,分别交OM 、ON 于点A 、B ,再分别以点A 、B 为圆心,大于12 AB 长为半径画弧,两弧交于点C ,画射线OC .过点A 作//AD ON ,交射线OC 于点D ,过点D 作DE OC ⊥,交ON 于点E .设10OA =,12DE =,则sin MON ∠= . 6.(2020?泰州)如图,点P 在反比例函数3y x =的图象上,且横坐标为1,过点P 作两条坐

人教版中考数学总复习专项练习

(一) 数与式的化简与求值 (参考用时:40分钟) 一、实数的混合运算 1.(2019长沙)计算:|-√2|+1 2 -1-√6÷√3-2cos 60°. 2.(2019滨州)计算:-1 2-2-|√3-2|+√3 2 ÷√1 18 . 3.(2019巴中)计算-1 2 2+(3-π)0+|√3-2|+2sin 60°-√8. 4.计算:√(1-√2)2-1-√2 20+sin 45°+1 2 -1.

5.计算:|3.14-π|+3.14÷ √3 2 +10-2cos 45°+(√2-1)-1+(-1)2 019. 二、整式的化简与求值 1.如果x-2y=2 019,求[(3x+2y )(3x-2y )-(x+2y )(5x-2y )]÷2x 的值. 2.先化简,再求值: (m-n )(m+n )+(m+n )2-2m 2,其中m ,n 满足方程组{m +2n =1, 3m -2n =11. 3.已知实数a 是1 2x 2-5 2x-7=0的根,不解方程,求多项式(a-1)(2a-1)-(a+1)2+1的值.

三、分式的化简与求值 1.(2019长沙)先化简,再求值: a+3a -1-1 a -1 ÷ a 2+4a+4 a 2-a ,其中a=3. 2.(2019黄石)先化简,再求值: 3 x+2 +x-2÷ x 2-2x+1 x+2 ,其中|x|=2. 3.先化简,再求值: x -1x -x -2x+1 ÷2x 2-x x 2+2x+1 ,其中x 满足x 2-2x-2=0. 4.(2019常德)先化简,再选一个合适的数代入求值: x -1x 2+x -x -3 x 2-1 ÷ 2x 2+x+1 x 2-x -1.

中考数学综合题专题复习【圆】专题解析

中考数学综合题专题复习【圆】专题解析 一.教学内容: 1.圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。 2. 主要定理: (1)垂径定理及其推论。 (2)圆心角、弧、弦、弦心距之间的关系定理。 (3)圆周角定理、弦切角定理及其推论。 (4)圆内接四边形的性质定理及其推论。 (5)切线的性质及判定。 (6)切线长定理。 (7)相交弦、切割线、割线定理。 (8)两圆连心线的性质,两圆的公切线性质。 (9)圆周长、弧长;圆、扇形,弓形面积。 (10)圆柱、圆锥侧面展开图及面积计算。 (11)正n边形的有关计算。 二. 中考聚焦: 圆这一章知识在中考试题中所占的分数比例大约如下表: 圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。 三. 知识框图: 圆 圆的有关性质 直线和圆的位置关系圆和圆的位置关系正多边形和圆 ? ? ? ? ? ? ?

圆的有关性质 圆的定义 点和圆的位置关系(这是重点) 不在同一直线上的三点确定一个圆 圆的有关性质 轴对称性—垂径定理(这是重点) 旋转不变性 圆心角、弧、弦、弦心距间的关系 圆心角定理 圆周角定理(这是重点) 圆内接四边形(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 直线和圆的位置关系 相离 相交 相切 切线的性质(这是重点) 切线的判定(这是重点) 弦切角(这是重点) 和圆有关的比例线段(这是重点难点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 圆和圆的位置关系 外离 内含 相交 相切 内切(这是重点) 外切(这是重点)两圆的公切线 ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 正多边形和圆 正多边形和圆 正多边形定义 正多边形和圆 正多边形的判定及性质 正多边形的有关计算(这是重点)圆的有关计算 圆周长、弧长(这是重点) 圆、扇形、弓形面积(这是重点) 圆柱、圆锥侧面展开图(这是重点) ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 【典型例题】 【例1】. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的安全区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否安全? 分析:爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示:

初中锐角三角函数专题

第1页 锐角三角函数 目录 课题:锐角三角函数课件 ........................................................................................................................................ 1 解直角三角形应用题 ................................................................................................................................................ 5 解直角三角形的方法技巧 ...................................................................................................................................... 10 锐角三角函数考点 .................................................................................................................................................. 15 锐角三角函数 课后检测 . (18) 课题:锐角三角函数课件 【引题】 例题1:操作与探究 (1)度量下列一组直角三角形30度角所对的边与斜边,计算它们的比值,发现什么规律? (2)度量下列一组直角三角形45度角所对的边与斜边,计算它们的比值,发现什么规律? (3)猜想:当∠A 取其它一定度数的锐角时,它的对边与斜边的比值是否定值?为什么? (4)用同样的方法探讨∠A 的邻边与斜边、∠A 的对边与邻边的比有什么规律?为什么? 45? 45? 45? C 2 B 2 A 2 A 1 B 1 C 1C A B ★【归纳与总结】 三角函数的定义:如图,在RtΔABC 中,∠C=90°, 例题2:如图:利用特殊直角三角形求特殊角的三角函数。 (1)已知,在Rt △ABC 中,∠C=90°,∠A=30°,求30°角、60°角的三角函数,并填出表格。 (2)已知,在Rt △ABC 中,∠C=90°,∠A=45°,求45°角的三角函数,并填出表格。 (3)分析上面特殊角的三角函数,你能从表格中发现什么规律?

最新人教版中考数学试题及答案

8题图 C A B D E ]命题人:仁怀市 夏容 遵义市初中毕业生学业(升学)统一考试 数学试题卷 (全卷总分150分,考试时间120分钟) 注意事项: 1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上. 2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再 选涂其它答案标号. 3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,将试题卷和答题卡一并交回. 一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项 是符号题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.2-3等于 A .5 B.-5 C.-1 D.1 2.一种花瓣的花粉颗粒直径约为0.0000065米,0.用科学记数法表示为 A.7 1065.0-? B. 6 6.510-? C.76.510-? D.6 6510-? 3.图3-1是由5个大小相同的正方体摆成的立方体图形,它的主视图是图3-2中的 4.下列数字分别为A 、B 、C 、D4位学生手中各拿的三根木条的长度,能组成三角形的是 A .1、2、3 B .4、5、3 C .6、4、1 D .3、7、3 5下列式子计算结果等于6 x 的是 A. 3 3 x x + B. 32x x ? C. 6632x x - D. 23)(x - 6.一枚质地均匀的正方体骰子,其六面上分别刻有1、2、3、4、5、6 六个数字,投掷这个骰子一次,则向上一面的数字小于4的概率是 21.A 61.B 31.C 3 2.D 7.如下图,小明拿一张矩形纸,沿虚线向下对折一次如图甲,再将对角两顶点重合折叠得图乙,按图丙沿折痕中点与重合顶点的连线剪开,得到三个图形,这三个图形是( ) A .都是等腰三角形 B .都是等边三角形 C .两个直角三角形,一个等腰三角形 D .两个直角三角形,一个等腰梯形 8.如图,在△ABC 中,D 、 E 分别为AC 、AB 上的点,且∠DEA=∠C , 甲 乙 丙 7题图

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,

相关文档
相关文档 最新文档