文档库 最新最全的文档下载
当前位置:文档库 › 2.25Cr一1Mo/奥氏体不锈钢堆焊接头熔合区 碳的迁移及

2.25Cr一1Mo/奥氏体不锈钢堆焊接头熔合区 碳的迁移及

2.25Cr一1Mo/奥氏体不锈钢堆焊接头熔合区 碳的迁移及
2.25Cr一1Mo/奥氏体不锈钢堆焊接头熔合区 碳的迁移及

奥氏体不锈钢的晶间腐蚀及热处理

奥氏体不锈钢的晶间腐蚀及热处理 1. 奥氏体不锈钢晶间腐蚀原因及防止措施 奥氏体不锈钢在450~850℃保温或缓慢冷却时,会出现晶问腐蚀。合碳量越高,晶间蚀倾向性越大。此外,在焊接件的热影响区也会出现晶间腐蚀。这是由于在晶界上析出富Cr 的Cr23C6。使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。这种晶间腐蚀现象在铁素体不锈钢中也是存在的。 工程上常采用以下几种方法防止晶间腐蚀: (1)降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本上解决了铬的碳化物(Cr23C6)在晶界上析出的问题。通常钢中含碳量降至0.03%以下即可满足抗晶间腐蚀性能的要求。 (2)加入Ti、Nb等能形成稳定碳化物(TiC或NbC)的元素,避免在晶界上析出Cr23C6,即可防上奥氏体不锈钢的晶间腐蚀。 (3)通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁素体双相组织,其中铁素体占5%一12%。这种双相组织不易产生晶间腐蚀。 (4)采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。 2.奥氏体不锈钢的应力腐蚀 应力(主要是拉应力)与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCC(Stress Crack Corrosion)。奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。当含Ni量达到8%一10%时,奥氏体不锈钢应力腐蚀倾向性最大,继续增加含Ni量至45%~50%应力腐蚀倾向逐渐减小,直至消失。防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si 2%~4%并从冶炼上将N含量控制在0.04%以下。此外还应尽量减少P、Sb、Bi、As等杂质的含量。另外可选用A-F双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。当初始的微细裂纹遇到铁素体相后不再继续扩展,体素体含量应在6%左右。 3.奥氏作不锈钢的形变强化 单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或钢管。经过大量变形后,钢的强度大力提高,尤其是在零下温区轧制时效果更为显著。抗拉强度可达2 000 MPa以上。这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。 奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。形变后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加。并因部分γ->M转变而产生铁磁性,在使用时(如仪表零件中)应予以考虑。再结晶温度随形变量而改变,当形变量为60%时,其再结晶温度降为650℃冷变形奥氏体不锈钢再结晶退火温度为850~1050℃,850℃则需保温3h,1050℃时透烧即可,然后水冷。 4.奥氏作不锈钢的热处理 奥氏体不锈钢常用的热处理工艺有:固溶处理、稳定化处理和去应力处理等。 (1)固溶处理。 将钢加热到1050~1150℃后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到室温,这样钢的耐蚀性会有很大改善。如上所述,为了防止晶问腐蚀,通常采用固溶化处理,使Cr23C6溶于奥氏体中,然后快速冷却。对于薄壁件可采用空冷,一般情况采用水冷。 (2)稳定化处理。 一般是在固溶处理后进行,常用于含Ti、Nb的18-8钢,固处理后,将钢加热到850~880℃保温后空冷,此时Cr的碳化物完全溶解,然而钛的碳化物不完全溶解,且在冷却过程中充分析出,使碳不可能再形成格的碳化物,因而有效地消除了晶间腐蚀。 (3)去应力处理。

不锈钢化学成分和性能对照

常用不锈钢种化学成分及性能对照 SUS304(不銹鋼):用途最多之不銹鋼種,因含有 Ni 故比 Cr 鋼較富耐蝕性耐熱性,且具低溫強度,故機械特性非常好,加工硬化性非常大,加熱處理不硬化,非磁性,強度佳,較沒彈性,常使用厚度 0.4T ~ 1.0T 之間。故目前在Notebook 常被廣泛運用在需 結構強度之Bracket ,運用上必須 指定級數,以期達到設計之需求.一般最好取3/4H 為宜.若是須引伸抽型,若運用於LCD bracket ,一般最好取1/2H 為宜. 參考價格: 98NT$/Kg --0.5T , 130NT$/Kg--0.3T , 195NT$/Kg--0.2T . SUS301(不銹鋼):Cr (鉻) 成分比 SUS304 低,耐蝕性較差,但冷間加工能得到非常高度的拉加及硬度,其特性用途廣大,因彈性佳,故目前在Notebook 常被廣泛運用在防EMI 上,做彈性接觸部份,但常用厚度在 0.4T ~ 0.07T 之間。運用上必須指定級數,以期達到設計之需求(例如彈力,強度).並須注意301材料有金屬結晶性方向性,越高級數者越是硬且脆,若成型上不注意,易造成隅角及側壁裂紋. 參考價格: 142NT$/Kg --0.5T , 183NT$/Kg--0.3T , 180NT$/Kg--0.2T . 285NT$/Kg --0.1T . SUS 301 與 SUS 304 材質硬度比較 SUS 301 H 材質 硬度 硬度 硬 度 硬度 SUS 301 H HV 480°±20° SUS 304 H HV 380°±20° SUS 430 HV 200° SUS 301 3/4H HV 380°±20° SUS 304 3/4H HV 300°±20° SUS 301 1/2H HV 300°±20° SUS 304 1/2H HV 260°±20° SUS 304 HV200°±20° 436L 436L ≤0.025 16.0~19.0 - 0.75~1.25 Ti 、Nb 、 Zr8×(C%+N%)~0.8 A ≥245 ≥410 ≥20 444 444 ≤0.025 17.0~20.0 1.75~2.50 Ti,Nb,Zr8×C%+N%)~0.8 A ≥245 ≥410 ≥20 马氏体 MARTENSITE 410 410 ≤0.15 11.5~13.5 - - - A ≥205 ≥440 ≥20 420J1 420J1 0.16~ 0.25 12.0~14.0 - - - A ≥225 ≥520 ≥18 420J2 420J2 0.26~0.4 12.0~14.0 - - - A ≥225 ≥540 ≥18

常用不锈钢化学成分.

常用不锈钢化学成分 钢号国内号 各化学成分含量(%) C Cr Ni Ti Mn Si S Mo P Al Cu Fe 3040Cr19Ni9≤0.0818.0~20.08.0~10.5——≤2.00≤1.00≤0.030≤0.045————余量304L00Cr19Ni11≤0.0318.0~20.09.0~13.0——≤2.00≤1.00≤0.030≤0.045余量309S0Cr23Ni13≤0.0822.0~24.012.0~15.0——≤2.00≤1.00≤0.030≤0.035————余量3160Cr17Ni12Mo2≤0.0816.0~18.010.0~14.0——≤2.00≤1.00≤0.030 2.0~3.0≤0.045————余量316L00Cr17Ni14Mo2≤0.0316.0~18.012.0~15.0——≤2.00≤1.00≤0.030 2.0~3.0≤0.045————余量3211Cr18Ni9Ti≤0.1217.0~19.08.00~11.0≥5×C≤2.00≤1.00≤0.030≤0.035————余量322≤0.1216.0~18.0 6.00~8.00 1.00≤2.00≤1.00≤0.030≤0.045 1.00——余量332≤0.0819.0~23.030.0~40.0≤0.60≤2.00≤0.75≤0.030≤0.040≤0.60——余量4301Cr17≤0.1216.0~18.0≤0.60——≤1.00≤0.75≤0.030≤0.035——余量430LX1Cr17(铁素体)≤0.0316.0~19.0≤0.600.1~1.0≤1.00≤0.75≤0.030≤0.040——余量英格莱600≤0.1514.0~17.0≥72.0——≤1.00≤0.50≤0.015————≤0.506~10英格莱801≤0.0520.5032.0 1.10——————————0.15余量英格莱8250Cr21Ni42Mo3Cu2Ti≤0.0219.5~23.538.0~46.00.6~1.2≤1.00≤0.50≤0.030 2.5~3.5——≤0.20 1.5~3.022.0min 英格莱840≤0.0818.0~22.018.0~22.0—— 1.00 1.00————≤0.60——余量334≤0.0818.0~22.018.0~22.0≤0.60≤2.00≤0.75≤0.030≤0.040≤0.60——余量NAS840≤0.0818.0~22.018.0~22.0≤0.60余量310S0Cr25Ni20≤0.0824.0~26.019.0~22.0——≤2.00≤1.50≤0.030≤0.045————余量840REP≤0.0824.0~26.019.0~22.0——余量英格莱8001Cr21Ni33AlTi≤0.1019.0~23.030.0~35.00.40≤1.50≤1.00≤0.015——0.15~0.6≤0.7539.5min NAS800≤0.1019.0~23.030.0~35.00.15~0.6余量钢号国内号C Cr Ni Ti Mn Si S Mo P Al Cu Fe 注:钢号是美国命名法 各成分作用:C含量增加,合金硬度和耐磨性都增大,而塑性跟韧性减小; Si抗氧化;Mn在奥氏体中可耐磨,韧性好;P、S为有害杂质,P冷脆,S热脆; Cr、Ni、Mo具有抗蚀性,Ni只有与Cr一起才起作用;Al抗氧化;Cu耐蚀。

氯离子对不锈钢腐蚀的机理

氯离子对不锈钢腐蚀的机理 在化工生产中,腐蚀在压力容器使用过程中普遍发生,是导致压力容器产生各种缺陷的主要因素之一。普通钢材的耐腐蚀性能较差,不锈钢则具有优良的机械性能和良好的耐腐蚀性能。Cr 和Ni 是不锈钢获得耐腐蚀性能最主要的合金元素。Cr 和Ni 使不锈钢在氧化性介质中生成一层十分致密的氧化膜,使不锈钢钝化,降低了不锈钢在氧化性介质中的腐蚀速度,使不锈钢的耐腐蚀性能提高。氯离子的活化作用对不锈钢氧化膜的建立和破坏均起着重要作用。虽然至今人们对氯离子如何使钝化金属转变为活化状态的机理还没有定论,但 大致可分为2 种观点。 成相膜理论的观点认为,由于氯离子半径小,穿透能力强,故它最容易穿透氧化膜内极小的孔隙,到达金属表面,并与金属相互作用形成了可溶性化合物,使氧化膜的结构发生变化,金属产生腐蚀。 吸附理论则认为,氯离子破坏氧化膜的根本原因是由于氯离子有很强的可被金属吸附的能力,它们优先被金属吸附,并从金属表面把氧排掉。因为氧决定着金属的钝化状态,氯离子和氧争夺金属表面上的吸附点,甚至可以取代吸附中的钝化离子与金属形成氯化物,氯化物与金属表面的吸附并不稳定,形成了可溶性物质,这样 导致了腐蚀的加速。 电化学方法研究不锈钢钝化状态的结果表明,氯离子对金属表面的活化作用只出现在一定的范围内,存在着1 个特定的电位值,在此电位下,不锈钢开始活化。这个电位便是膜的击穿电位,击穿电位越大,金属的钝态越 稳定。因此,可以通过击穿电位值来衡量不锈钢钝化状态的稳定性以及在各种介质中的耐腐蚀能力。 2 应力腐蚀失效及防护措施 2. 1 应力腐蚀失效机理 其中在压力容器的腐蚀失效中,应力腐蚀失效所占的比例高达45 %左右。因此,研究不锈钢制压力容器的应力腐蚀失效显得尤为重要。所谓应力腐蚀,就是在拉伸应力和腐蚀介质的联合作用下而引起的低应力脆性断 裂。应力腐蚀一般都是在特定条件下产生: ①只有在拉应力的作用下。 ②产生应力腐蚀的环境总存在特定的腐蚀介质,不锈钢在含有氧的氯离子的腐蚀介质及H2SO4 、H2S 溶 液中才容易发生应力腐蚀。 ③一般在合金、碳钢中易发生应力腐蚀。研究表明,应力腐蚀裂纹的产生主要与氯离子的浓度和温度有关。 压力容器的应力来源: ①外载荷引起的容器外表面的拉应力。 ②压力容器在制造过程中产生的各种残余应力,如装配过程中产生的装配残余应力,制造过程中产生的焊接残余应力。在化工生产中,压力容器所接触的介质是多种多样的,很多介质中含有氯离子,在这些条件下,压力容器就发生应力腐蚀失效。铬镍不锈钢在含有氧的氯离子的水溶液中,首先在金属表面形成了一层氧化膜,它阻止了腐蚀的进行,使不锈钢钝化。由于压力容器本身的拉应力和保护膜增厚带来的附加应力,使局部地区的保护膜破裂,破裂处的基体金属直接暴露在腐蚀介质中,该处的电极电位比保护膜完整的部分低,形成了微电池的阳极,产生阳极溶解。因为阳极小、阴极大,所以阳极溶解速度很大,腐蚀到一定程度后,又形成新的保护膜,但在拉应力的作用下又可重新破坏,发生新的阳极溶解。在这种保护膜反复形成和反复破裂过程中,就会使某些局部地区的腐蚀加深,最后形成孔洞,而孔洞的存在又造成应力集中,更加速了孔洞表面的塑性变形和保护膜的破裂。这种拉应力与腐蚀介质的共同作用便形成了应力腐蚀裂纹。 2. 2 应力腐蚀失效的防护措施 控制应力腐蚀失效的方法,从内因入手,合理选材,从外因入手,控制应力、控制介质或控制电位等。实际情况 千变万化,可按实际情况具体使用。 (1)选用耐应力腐蚀材料 近年来发展了多种耐应力腐蚀的不锈钢,主要有高纯奥氏体铬镍钢,高硅奥氏体铬镍钢,高铬铁素体钢和铁素

马氏体不锈钢性能介绍

马氏体不锈钢 马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 铬是马氏体铬不锈钢最重要的合金元素。铬是铁素体形成元素,足够的铬可使钢变成单一的铁素体不锈钢,铬和碳的相互作用使钢在高温时具有稳定的γ 或γ+α相区,铬可以降低奥氏体向铁素体和碳化物的转变速度,从而提高淬透性;在大气H2S及氧化性酸介质中。它能提高钢的耐蚀性能,这与铬能促使生成一层铬的氧化物保护膜有关,但在还原介质中,随着铬含量的提高,钢的耐蚀性下降;铬含量的提高,钢的抗氧化性能也明显提高。 碳是马氏体铬不锈钢另一重要的合金元素。为了产生马氏体相变,碳含量要视钢中的铬含量而定,一般充分考虑碳、铬两者相互关系及碳的溶解极限(见图1-5)。在给定的铬量下,碳含理提高,强度、硬度提高,塑性降低,耐蚀性下降。

不锈钢的热处理

不锈钢的热处理 304是奥氏体型不锈钢,想通过热处理来改变切削加工性能是不现实的。其他钢种可以通过退火或正火来改变组织,从而改变切削加工性能,是因为其他钢在加热和冷却过程中发生组织转变,因为组织决定了性能,因此改变了切削加工性能,而奥氏体不锈钢,室温是奥氏体,加热到高温也是奥氏体,不发生组织转变,所以热处理不能够改变其切削加工性能的,奥氏体不锈钢的热处理通常只有固溶处理、再结晶退火和去应力退火之类的,固溶处理是改变耐蚀性的,再结晶退火是消除加工硬化恢复塑性的,去应力退火是消除加工过程中产生的应力的,所以,期望通过热处理改变奥氏体不锈钢的切削加工性是不现实的。每种材料有各自的特点,热处理工艺也不一定通用,玉米面包饺子肯定不行,虽然也是面粉。奥氏体不锈钢的切削加工,只能够通过改变刀具、切削加工工艺参数来解决。 铸钢件铸造成型后,通常都是要进行热处理的。因为热处理前铸件晶粒较粗大、组织方向性明显、力学性能较低,根据铸件的不同要求制定热处理工艺。 普通要求铸钢件,采用退火处理,软化易于加工;要求强度的要正火处理,要求硬度的要淬火处理;固溶处理,提高耐腐蚀性能。 铸造不锈钢一般为奥氏体.在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理: 固溶处理:其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100℃之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右 回火又称配火。金属热处理工艺的一种。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。②存在较大内应力。③力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。 回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。 调质即淬火和高温回火的综合热处理工艺。不锈钢做不了调质热处理,因为达不到硬度。 高碳铬不锈钢中的铬含量很高,导热性差,锻后应及时退火,以免发生裂纹。 比如95cr18钢球化退火工艺

奥氏体不锈钢化学成份和该成份对其组织性能影响

1.碳的影响: 碳在奥氏体不锈钢中是强烈形成并稳定奥氏体且扩大奥氏体区的元素,碳形成奥氏体的能力为镍的30倍。钢中随着含碳量增加,奥氏体不锈钢强度也随之提高。此外,还能提高奥氏体不锈钢在高浓氯化物(如42%MgCl2沸腾溶液)中的耐应力腐蚀性能。但是在奥氏体不锈钢中,碳通常被视为有害元素,因为在焊接或加热到450度到850度,碳可以和钢中的铬形成Cr23C6型碳化物。导致局部铬贫化,使钢的耐晶间腐蚀性能下降。20世纪60年代以来新发展的铬镍奥氏体不锈钢,为含碳量小于0.03%或0.02%的超低碳型不锈钢。因此,在冷、热加工及焊接与碳弧气刨时应防止不锈钢表面增碳,以免铬的碳化物析出。 2.铬的影响: 在奥氏体不锈钢中,铬是强烈形成并稳定铁素体的元素,可以缩小奥氏体区。在铬镍奥氏体不锈钢中,当碳含量为0.1%,铬含量为18%时,为获得稳定单一奥氏体组织,所需镍的含最最低为8%,铬能增大碳的溶解度而降低铬的贫化度,因而提高铬含量对奥氏体不锈钢的耐晶间腐蚀是有益的。铬还能极有效地改善奥氏体不锈钢的耐点蚀及缝隙腐蚀性能。因此铬对奥氏体不锈钢性能影响最大的是耐蚀性。铬可提高钢的耐氧化性介质和酸性氯化物介质的性能,在镍、钼、铜的复合作用下,铬可提高钢耐一些还原性介质、如有机酸、碱介质的性能。 3.镍的影响: 奥氏体不锈钢中主要合金元素镍,其主梌用是形成并稳定奥氏体,获得完全奥氏体组织,使强有良好的强度、塑性和韧性并具有优良的冷、热加工性、可焊性及低温与无磁性,镍还可以显著降低奥氏体不锈钢的冷加工硬化倾向。由于镍能改善铬的氧化膜成份、结构和性能,从而提高奥氏体不锈钢耐氧化性介质的性能。但是降低了钢的抗高温硫化性能,这是由于钢中晶界处形成低熔点硫化镍所致。 4.钼的影响: 钼的作用主要是提高钢在还原性介质(比如H2So4、H2PO4以及一些有机酸和尿素环境)的耐蚀性,并提高钢的耐点蚀及缝隙腐蚀等性能。含钼不儿钢的热加工性比不含钼的差,钼含量越高,热加工越坏。另外含钼奥氏体不锈钢中容易形成X(σ)沉淀,这会恶化钢的塑性和韧性。钼的耐点蚀和耐缝隙腐蚀能力相当于铬的3倍左右。 5.氮的影响: 氮日益成为铬镍氮奥氏体不锈钢的重要合金元素,氮能提高钢的耐局部腐蚀(耐晶间腐蚀、点蚀和缝隙腐蚀)性,氮形成奥氏体的能力与碳相当,约为镍的30倍。作为间隙元素的氮,其固溶强化作用很强,因为它的加入可以显著提搞奥氏体不锈钢的强度。每加入0.1%氮可使铬镍奥氏体不锈钢的室温强度提高60~100MPa。在酸介质中,氮可提高奥氏体不锈钢的耐一般腐蚀能力,适量的氮还可提高敏经态奥氏体不锈钢的耐晶间腐蚀能力。在氯化物环境中,氮提高奥氏体不锈钢耐点蚀和缝隙腐蚀性能十分显著。 6.铜的影响: 铜能显著降低铬镍奥氏体不锈钢的冷作硬化倾向,提高冷国工成型性能。奥氏体不锈钢中的铜含量为1%~4%时,铜对钢的组织没有影响,对钢的冷成型性有良好的作用,因此含铜的奥氏体锈钢多用于要求冷作的一些用途中,铜可以显著降低热加工性,特别是当奥氏休不锈钢中含镍量较低时更为明显,因此当钢中铜含量较高时,镍含量应相应提高。

奥氏体不锈钢在Cl~-介质中应力腐蚀研究

奥氏体不锈钢在Cl-介质中应力腐蚀研究 郦建立Ξ(抚顺石油学院) 王宽福 (浙江大学) 摘 要 评述了奥氏体不锈钢在氯化物介质中应力腐蚀开裂。从环境、冶金和力学等方面论述了SCC的主要因素,综合论述了控制奥氏体不锈钢SCC的工程参量和安全评定的方法。提出了预防奥氏体不锈钢应力腐蚀的一些措施。 关键词 奥氏体不锈钢 应力腐蚀 工程参量 奥氏体不锈钢(304,316)以其优异的耐蚀性和较好的加工性,在化工、石油、动力工业和核工业等部门得到广泛的应用,然而其SCC(Stress Corrosion Cracking)破坏的几率也随之增大。化工设备失效中SCC的失效占1/4,其中奥氏体不锈钢设备SCC失效要占其1/2[1],而且大部分由含Cl-介质环境引起。因此对奥氏体不锈钢氯化物开裂进行了大量的研究[2~9]。 本文综述了奥氏体不锈钢SCC的主要影响因素、工程参量及安全评定的方法,并提出了一些预防措施。 1 奥氏体不锈钢Cl2环境开裂影响因素 1.1 环境因素 1.1.1 介质和浓度 引起奥氏体不锈钢SCC破裂的介质,认为一般限于Cl-、F-、Br-、H2S x O6、H2S和NaOH等几种。介质浓度越高,奥氏体不锈钢发生SCC的敏感性增加。工程实际表明开裂常发生在温度高的部位,特别是热传递速度大、易发生干湿交替的部位[10,11]。曾发现隔热层中浸出微量的Cl-引起SCC。Staehle[12]发现汽相部位产生破裂的Cl-浓度较低,而液相则需要较高的Cl-浓度。在实际工况中,设备的许多局部部位Cl-的浓度因设备结构和其所处环境条件的变化而提高,使较低Cl-浓度的介质也发生奥氏体钢的SCC,这给确定Cl-SCC的敏感性的浓度上限带来困难。 若在Cl-溶液中加入一些氧化剂(Fe3+, Cu2+,O2),将缩短破裂时间[13]。有研究表明,Cl-溶液若能完全除去氧,SCC将不会发生。卤化物中除Cl-外,F-和Br-同样具有SCC敏感性,但认为I-对Cl-溶液的SCC有缓蚀作用[14]。阳离子的种类对SCC也有影响,Thomas[15]认为MgCl2溶液促进SCC的作用比NaCl强。 1.1.2 温度 奥氏体不锈钢含Cl-溶液发生SCC破裂敏感性随温度升高而增大。SCC开裂温度也是一个重要参数。Truman[16]认为,奥氏体不锈钢在室温下一般不发生氯化物开裂。Money[17]也证实只有严重敏化的奥氏体不锈钢才发生IGSCC(Intergranular Stress Corrosion Cracking)。传统的工程观点认为,温度高于50℃时,在腐蚀环境中经长期暴露的材料有可能发生氯化物开裂。氯化物开裂与温度的下限有一定的依赖关系,但 601 化 工 机 械 1998年Ξ郦建立,男,1967年11月生,博士生。辽宁省抚顺市,113001。

不锈钢材料牌号对照表汇编

0Cr18Ni9作为不锈钢耐热钢使用最广泛,用于食品用设备,一般化工设备,原子能用工业设备。通俗的讲0Cr18Ni9就是304不锈钢板,0Cr18Ni9Ti就是321,一个是国标,一个是美标。321是因为原来冶炼技术不好,无法降低碳含量才研制的,现在因冶炼技术的提高,超低碳钢冶炼已经很平常,所以321有被淘汰的趋势。目前321的产量已经很少了。只有一些军工还在使用。0Cr18N i9钢(AISI304)是奥氏体不锈钢,是在最初发明的18-8型奥氏体不锈钢的基础上发展演变的钢种,该钢是不锈钢的主体钢种,其产量约占不锈钢总产量曲30%以上。由于此钢具有奥氏体结构,它不可能通过热处理手段予以强化,只能采用冷变形方式达到提高强度的目的。钢的奥氏体结构赋予了它的良好冷、热加工性能、无磁性和好的低温性能。0Cr18Ni9钢薄截面尺寸的焊接件具有足够的耐晶间腐蚀能力,在氧化性酸(HNO3)中具有优良的耐蚀性,在碱溶液和大部分有机酸和无机酸中以及大气、水、蒸汽中耐蚀性亦佳。 0Cr18Ni9钢的良好性能,使其成为应用量最大、使用范围最广的不锈钢牌号,此钢适于制造深冲成型的部件以及输送腐蚀介质管道、容器,结构件等,0Cr18Ni9亦可用子制造无磁、低温设备和部件。0Cr19Ni10(AISI304L)是在0Cr18Ni9基础上,通过降低碳和稍许提高含镍量的超低碳型奥氏体不锈钢。此钢是为了解决因Cr23C6析出致使0Cr18Ni9钢在一些条件下存在严重的晶间腐蚀倾向而发展的。在开发初期,因冶金生产降碳较难,一度曾妨碍了它的广泛应用,在20世纪70年代新的二次精炼方法AOD和VOD工艺成功用于生产后,此钢才真正得到广泛应用。与0Cr18Ni9比较,此钢强度稍低,但其敏化态耐晶间腐蚀能力显著优于0Cr18Ni 9。除强度外,此钢的其他性能同于0Cr18Ni9。它主要用于需焊接且焊后又不能进行面溶处理的耐蚀设备和部件。上述两个钢种,在易产生应力腐蚀环境和产生点蚀和缝隙腐蚀的条件下,在选用时应慎重。[1] 特性 具有良好的耐蚀性、耐热性、低温强度和机械性能,冲压弯曲等热加工性好,无热处理硬化现象,无磁性。 用途 家庭用品、橱柜、室内管线、热水器、锅炉、浴缸、汽车配件、医疗器具、建材、化学、食品工业、农业、船舶部件。 碳 C :≤0.07 硅 Si:≤1.00 锰Mn:≤2.00

(新)马氏体不锈钢

4.4 马氏体不锈钢 4.4.1、常用马氏体不锈钢的钢号、化学成分和性能特点。 1、Cr13型 (1)此类钢的化学成分见表2-8 表2-8 1Cr13,2Cr13,3Cr13,4Cr13钢的化学成分,%① ①GB1220-92 (2)力学性能 1Cr13,2Cr13,3Cr13,4Cr13 钢的力学性能分别见表2-9至表2-16。 表2-9 1Cr13钢的室温力学性能 ①摘自GB1220,硬度为退火或高温回火后的数值②实际生产检验值,钢材截面尺寸≤60mm 表2-10 1Cr13钢的高温力学性能

表2-11 2Cr13钢的室温力学性能 ①摘自GB1220,硬度为退火或高温回火后的数值; ②实际生产检验值,钢材截面尺寸≤60mm,硬度为退火后硬度值。 表2-12 2Cr13钢的高温力学性能

表2-13 3Cr13钢的室温力学性能 ①摘自GB1220,括号内硬度系退火或高温回火后的布氏硬度;②实际生产检验值。 表2-14 3Cr13钢的高温力学性能 表2-15 4Cr13钢的室温力学性能

①摘自GB1220;②实际生产检验值。 表2-16 4Cr13钢的高温力学性能 (3)耐蚀性能 1Cr13,2Cr13,3Cr13,4Cr13 钢均具有不锈性。在室温的稀硝酸以及弱有机酸中也有一定耐蚀性。1Cr13和2Cr13钢在某些介质中的耐蚀性能见表2-17和表2-18 表2-17 1Cr13钢的耐蚀性能

表2-18 2Cr13钢的耐蚀性能

(4)工艺性能 包括冷、热加工性能、热处理性能及焊接性能。1Cr13钢的冷塑性及深冲性、抛光性和切削加工性能均良好,其板材厚度与深冲度的关系见图2-49。它的热加工温度以850-1200℃为宜,随后需灰冷或砂冷。它的焊接性能与0Cr13相近,焊后若焊缝需进行机加工时,应进行退火处理。1Cr13钢的热处理工艺见表2-19。 图2-49 表2-19 1Cr13钢的热处理工艺 2Cr13钢冷塑性变形性能、深拉和深冲性以及切削加工性均尚好,它的热加工温度以850-1200℃为宜,随后需砂冷或及时进行退火处理。它的热处理工艺见表2-20。此钢焊后硬化倾向大,易出现裂纹。若用Cr202,Cr207等焊条焊接时,焊前需经250-350℃预热,焊后需在700-730℃回火,若用奥107,奥207等焊条焊接,则可不进行焊后热处理。 表2-20 2Cr13钢的热处理工艺 3Cr13钢由于碳含量高,故冷变形性能较1Cr13,2Cr13钢为差,但其热加工并无困难,热变形适宜温度为850-1200℃,随后需缓冷并及时退火。3Cr13钢的软化退火与淬火工艺与1Cr13,2Cr13相同,但回火温度较低,一般为200-300℃。由于3Cr13钢可焊性差,一般情况下它不用于焊接。 4Cr13钢的热加工温度与1Cr13,2Cr13,3Cr13相同。但其冷加工性能较3Cr13更差。热处理时退火温度为750-800℃,随后炉冷;淬火温度为1050-1100℃,然后油冷;回火工艺与3Cr13钢相同。此钢的可焊性很差,一般不用于焊接。 (5)物理性能 Cr13型不锈钢的物理性能见表2-21,它们的临界温度(℃)为: 钢号 Ac 1 Ac 3 Ar 3 Ar 1 Ms 1Cr13 730 850 820 700 340 2Cr13 820 950 - 780 - 3Cr13 820 - - 780 240 4Cr13 820 - - - 270 表2-21 Cr13型不锈钢的物理性能

301系列不锈钢化学成分

301系列不锈钢化学成 分 https://www.wendangku.net/doc/ea8396183.html,work Information Technology Company.2020YEAR

SUS301不锈钢-1Cr17Ni7 不锈钢材质性能及用途介绍 SUS301(L)-1Cr17Ni7对比304含有低Ni,Cr及高N成分,301 不锈钢在形变时呈现出明显的加工硬化现象。被用于要求较高强度的各种场合。根据粗压延可以达到的高强度化,对比Steel Al有优秀的高温强度,抗疲劳强度及耐腐蚀性,使用在电车上达到重量轻,优秀的稳定性及经济性(301L) 化学成分:(单位:wt%) 301特性及用途: 机械性能: 301(L)— 1Cr17Ni7 —相对304含有低Ni,Cr及高N成分,经过粗压延可以达到高强度化 —相对碳钢,铝有优秀的高温强度,抗疲劳强度及耐腐蚀性,使用在电车上可以减轻重量 ● 简介 301是一种亚稳奥氏体不锈钢,在充分固溶的条件下,具有完全奥氏体组织。在奥氏体不锈钢中,301是最易冷变形强化的钢种,通过冷变形加工可使钢的强度、硬度提高,并且保留足够的塑、韧性,加之此钢在大气条件下具有良好的耐锈性,但在还原性介质耐蚀性欠佳,在酸碱盐等化工介质耐蚀性较差,因此不推荐用于腐蚀苛刻的环境。301主要以冷加工状态应用于承受较高负荷,又希望减轻装备重量和不生锈的设备部件。此外,此钢在受外力撞击时易产生加工硬化可吸收更多的撞击能量,对设备和人员将提供更可靠的安全保障。 ● ●工艺性能

热加工工艺性能良好,可生产棒、板、管、带等冶金产品,热加工温度范围:1150~850℃,软化退火温度1050~1100℃。301焊接性良好,冷轧薄板焊接后在焊缝区产生低强度区。 ● 301L 在301基础上降低C的含量,改善耐晶间腐蚀,添加N,弥补C量下降引起的强度下降。

不锈钢材料牌号对照表

0Cr18Ni9作为不锈钢耐热钢使用最广泛,用于食品用设备,一般化工设备,原子能用工业设备。通俗的讲0Cr18Ni9就是304不锈钢板,0Cr18Ni9Ti就是321,一个是国标,一个是美标。321是因为原来冶炼技术不好,无法降低碳含量才研制的,现在因冶炼技术的提高,超低碳钢冶炼已经很平常,所以321有被淘汰的趋势。目前321的产量已经很少了。只有一些军工还在使用。0Cr18Ni9钢(AISI304)是奥氏体不锈钢,是在最初发明的18-8型奥氏体不锈钢的基础上发展演变的钢种,该钢是不锈钢的主体钢种,其产量约占不锈钢总产量曲30%以上。由于此钢具有奥氏体结构,它不可能通过热处理手段予以强化,只能采用冷变形方式达到提高强度的目的。钢的奥氏体结构赋予了它的良好冷、热加工性能、无磁性和好的低温性能。0Cr18Ni9钢薄截面尺寸的焊接件具有足够的耐晶间腐蚀能力,在氧化性酸(HNO3)中具有优良的耐蚀性,在碱溶液和大部分有机酸和无机酸中以及大气、水、蒸汽中耐蚀性亦佳。 0Cr18Ni9钢的良好性能,使其成为应用量最大、使用范围最广的不锈钢牌号,此钢适于制造深冲成型的部件以及输送腐蚀介质管道、容器,结构件等,0Cr18Ni9亦可用子制造无磁、低温设备和部件。 0Cr19Ni10(AISI304L)是在0Cr18Ni9基础上,通过降低碳和稍许提高含镍量的超低碳型奥氏体不锈钢。此钢是为了解决因Cr23C6析出致使0Cr18Ni9钢在一些条件下存在严重的晶间腐蚀倾向而发展的。在开发初期,因冶金生产降碳较难,一度曾妨碍了它的广泛应用,在20世纪70年代新的二次精炼方法AOD和VOD工艺成功用于生产后,此钢才真正得到广泛应用。与0Cr18Ni9比较,此钢强度稍低,但其敏化态耐晶间腐蚀能力显著优于0Cr18Ni9。除强度外,此钢的其他性能同于0Cr18Ni9。它主要用于需焊接且焊后又不能进行面溶处理的耐蚀设备和部件。上述两个钢种,在易产生应力腐蚀环境和产生点蚀和缝隙腐蚀的条件下,在选用时应慎重。[1] 特性 具有良好的耐蚀性、耐热性、低温强度和机械性能,冲压弯曲等热加工性好,无热处理硬化现象,无磁性。 用途 家庭用品、橱柜、室内管线、热水器、锅炉、浴缸、汽车配件、医疗器具、建材、化学、食品工业、农业、船舶部件。 化学成份

马氏体不锈钢简介

马氏体不锈钢 1、什么是不锈钢 不锈钢(Stainless Steel)是不锈耐酸钢的简称,耐空气、蒸汽、水等弱腐蚀介质或具有不锈性的钢种称为不锈钢;而将耐化学介质腐蚀(酸、碱、盐等化学浸蚀)的钢种称为耐酸钢。由于两者在化学成分上的差异而使他们的耐蚀性不同,普通不锈钢一般不耐化学介质腐蚀,而耐酸钢则一般均具有不锈性。 2、分类 不锈钢常按组织状态分为:马氏体钢、铁素体钢、奥氏体钢、奥氏体-铁素体(双相)不锈钢及沉淀硬化不锈钢等。另外,可按成分分为:铬不锈钢、铬镍不锈钢和铬锰氮不锈钢等。 1、铁素体不锈钢:含铬12%~30%。其耐蚀性、韧性和可焊性随含铬量的增加而提高,耐氯化物应力腐蚀性能优于其他种类不锈钢。属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。这类钢能抵抗大气、硝酸及盐水溶液的腐蚀,并具有高温抗氧化性能好、热膨胀系数小等特点,用于硝酸及食品工厂设备,也可制作在高温下工作的零件,如燃气轮机零件等。 2、奥氏体不锈钢:含铬大于18%,还含有8%左右的镍及少量钼、钛、氮等元素。综合性能好,可耐多种介质腐蚀。奥氏体不锈钢的常用牌号有1Cr18Ni9、0Cr19Ni9等。0Cr19Ni9钢的Wc<0.08%,

钢号中标记为“0”。这类钢中含有大量的Ni和Cr,使钢在室温下呈奥氏体状态。这类钢具有良好的塑性、韧性、焊接性和耐蚀性能,在氧化性和还原性介质中耐蚀性均较好,用来制作耐酸设备,如耐蚀容器及设备衬里、输送管道、耐硝酸的设备零件等。奥氏体不锈钢一般采用固溶处理,即将钢加热至1050~1150℃,然后水冷,以获得单相奥氏体组织。 3、奥氏体- 铁素体双相不锈钢:兼有奥氏体和铁素体不锈钢的优点,并具有超塑性。奥氏体和铁素体组织各约占一半的不锈钢。在含C较低的情况下,Cr含量在18%~28%,Ni含量在3%~10%。有些钢还含有Mo、Cu、Si、Nb、Ti,N等合金元素。该类钢兼有奥氏体和铁素体不锈钢的特点,与铁素体相比,塑性、韧性更高,无室温脆性,耐晶间腐蚀性能和焊接性能均显著提高,同时还保持有铁素体不锈钢的475℃脆性以及导热系数高,具有超塑性等特点。与奥氏体不锈钢相比,强度高且耐晶间腐蚀和耐氯化物应力腐蚀有明显提高。双相不锈钢具有优良的耐孔蚀性能,也是一种节镍不锈钢。 4、马氏体不锈钢:强度高,但塑性和可焊性较差。马氏体不锈钢的常用牌号有1Cr13、3Cr13等,因含碳较高,故具有较高的强度、硬度和耐磨性,但耐蚀性稍差,用于力学性能要求较高、耐蚀性能要求一般的一些零件上,如弹簧、汽轮机叶片、水压机阀等。这类钢是在淬火、回火处理后使用的。 5、沉淀硬化不锈钢:基体为奥氏体或马氏体组织,沉淀硬化不锈钢的常用牌号有04Cr13Ni8Mo2Al等。其能通过沉淀硬化(又称

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450C?850 C (此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400C?850C的温度范围内(敏化温度区域)时,会有高铭碳化物 (Cr23C6)析出,当铭含量降至耐腐蚀性界限之下,此时存在晶界贫铭,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。 不同的不锈钢固溶化的温度烧有不同,304,316等奥氏体不锈钢一般是1050 C,奥氏体-铁素体双相不锈钢要高一点,可到1150 C . 固溶热处理:将奥氏体不锈钢加热到1100 C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的淬火'与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100 C。 我是搞火电的,回答可能不太全面,谁知道的可以继续补充

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875C以上温度时,能形成稳定的碳化物。这是因为Ti (或Nb)能优先与碳结合,形成TiC (或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti (或Nb)保护Cr的目的。含Ti (或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti , 1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875 C以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机 械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳 定化处理

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响

焊接工艺对奥氏体不锈钢应力腐蚀行为的影响 赵尔冰1 ,张亦良2 ,陈鴒志1 ( 1. 北京市朝阳区特种设备检测所,北京 100122; 2. 北京工业大学 机械工程与应用电子技术学院,北京 100124) 摘 要: 针对氯离子环境中奥氏体不锈钢焊缝较高的焊接残余应力极易引发应力腐蚀开裂的普遍性工程难题, 对国产 304、316 L 、德国 304 钢 3 种材料的不同焊接工艺进行了系列应力腐蚀实验研究. 焊接工艺包括手工焊条 电弧焊及 CO 2 保护药芯电弧焊、焊后空冷及浇水速冷,取样位置包括母材、焊缝起弧及收弧. 通过 100 多个试样 的应力腐蚀对比实验,研究了各种工艺之间的优劣,拟合了 2 种材料在沸腾氯化镁环境中应力 - 寿命的数学关 系. 结果表明,对应力腐蚀寿命而言,316 L 是 304 钢的 15 倍以上、焊接起弧点高于收弧点、对接焊缝高于角焊 缝; 焊后速冷工艺可提高焊接接头抗应力腐蚀能力. 关键词: 奥氏体不锈钢; 起弧; 收弧; 水冷处理; 氯离子应力腐蚀 中图分类号: O 346. 2 + 2; T G174. 3 + 6; R187 + 5 文献标志码: A 文章编号: 0254 - 0037( 2011) 11 - 1601 - 06 为了满足卫生要求,医疗、卫生和食品行业使用的灭菌器一般采用奥氏体不锈钢制造. 进口灭菌器寿 命一般为 10 a 以上[1-2] ,而国产灭菌器短时间内开裂报废的现象十分普遍,已经成为行业一大难题,在造 成医疗成本居高不下的同时,对医疗卫生安全产生极大隐患. 作者曾对开裂的灭菌器进行失效分析,结果 表明开裂原因为典型的氯离子应力腐蚀 [3-4] ,开裂灭菌器及金相、断口形貌见图 1、 2. 图 1 灭菌器内腔开裂 F i g . 1 I nn e r surface of the s t e r i l i z e r 图 2 典型的应力腐蚀特征 F i g . 2 T y p i c a l feature of s t r e ss c o rr os i o n 虽然采用铁素体、马氏体或双相不锈钢可以解决应力腐蚀问题,但考虑到制造工艺和制造成本,国内 外设备制造单位仍然选用奥氏体不锈钢. 该材料的最大问题是氯离子应力腐蚀,主要影响因素为拉应力 水平和氯离子浓度[5-6] ,其中残余应力是最主要的影响因素,目前对有效降低焊接残余应力虽然已经做了 一些工作 [7-11 ] ,但研究成果的实用性仍较为欠缺. 针对灭菌器裂纹主要出现在焊缝及热影响区的特征[3] ,鉴于目前氯离子应力腐蚀数据较少、尤其缺 乏不同焊接工艺的影响、不同材料与实际工况对比实验的现状,本文立足于通过对 3 种不同材料、不同焊 接工艺、不同焊后处理工艺等系列应力腐蚀实验,得到相应的应力腐蚀断裂寿命,比较不同材料及不同工 艺的应力腐蚀特征,找出焊后的薄弱环节,提出防止应力腐蚀的有效措施,为工艺改造提供基础实验依据. 收稿日期: 2009-07-13. 基金项目: 北京市朝阳区社会发展项目( SF0702) . 作者简介: 赵尔冰( 1963—) ,男,河北平山人,高级工程师.

相关文档
相关文档 最新文档