文档库 最新最全的文档下载
当前位置:文档库 › 推杆式热处理炉设计说明书

推杆式热处理炉设计说明书

推杆式热处理炉设计说明书
推杆式热处理炉设计说明书

推杆式热处理炉设计说明书

学院:材料与冶金学院

班级:材料1003班

姓名:宁檬

学号:20101637

指导老师:申勇峰

设计日期:2013-07-10

前言

一、热处理电阻炉是以电能为热源,电流通过电热元件而发出热量,借助辐射和对流的传热方式将热量传给工件,使工件加热到所要求的温度。

二、热处理电阻炉优点:其工作范围宽,炉温一般可以从60℃到1600℃;能实现自动控制炉温,控温精度一般为±(3~8)℃;若采用计算机控制炉温,其精度可达±1℃。炉膛温度分布比较均匀,能够满足多种热处理工艺要求,电阻炉热效率高,一般为40~80%。此外,热处理电阻炉结构紧凑,占地面积小,便于车间布置安装,容易实现机械化和自动化操作,劳动条件好,对环境没有污染。也便于通入可控气氛,实现光亮保护加热和化学热处理。

三、热处理电阻炉缺点:炉子造价高,耗电量大,工件加热速度较慢,不通保护气氛加热时工件容易氧化脱碳。

四、热处理电阻炉种类:热处理电阻炉可分为:周期作业炉和连续作业炉两大类。

1、周期作业式电阻炉主要特点是工件整批入炉,在炉中完成加热、保温等工序,出炉后,另一批工件再重新入炉,如此周期式的生产。这类炉子大都间歇使用,因此要求炉子的升温要快,蓄热量要小。常用的有箱式炉、井式炉、台车式炉。

2、连续作业式电阻炉,加热的工件是连续地(或脉动地)进入炉膛,并不断向前移动,完成整个加热、保温等工序后工件即出炉。特点是生产连续进行,能力大,炉子机械化、自动化程度高,适用于大批量生产。主要有输送带式炉、网带式炉、推杆式炉等。

五、推杆式热处理炉简介

推杆式热处理电阻炉,属于连续作业式电阻炉,下面做简要介绍。

1、原理:推杆式热处理炉是借助于推料机构,将装有工件的料盘或料筐间接地从炉子一端推入炉内,根据不同工艺要求完成热处理后,依次从另一端将工件推出的一种连续作业炉。

2、适用范围:这类炉子由于对工件的适应性强,便于组成生产线,广泛应用于淬火、正火、回火、渗碳和渗氮等热处理。

3、缺点:料盘反复进炉加热和出炉冷却,造成较大能源浪费,热效率较低,且料盘易损坏;另一缺点是对不同品种的零件实施不同技术要求时,常需把原有的炉料全部推出,工艺变动适应性差。

目录

一、设计任务 (1)

二、炉型选择 (1)

三、确定炉体结构和尺寸 (1)

1.炉底长宽高的确定 (1)

2.炉衬材料及厚度的确定 (2)

四、砌体平均面积计算 (3)

1.炉顶平均面积 (3)

2.炉墙平均面积 (3)

3.炉底平均面积 (4)

五、计算炉子功率 (4)

六、炉子热效率的计算 (11)

1. 正常工作时的效率 (11)

2. 在保温阶段,关闭炉门的效率 (11)

七、炉子空载功率计算 (11)

八、功率的分配与接线 (11)

九、电热元件材料选择及计算 (12)

十、设计小结 (16)

十一、炉子技术指标 (17)

【参考文献】 (17)

【附表】 (18)

故炉膛宽度:

B=B效+200~300 mm=900~1000mm,取B=900mm

按资料统计,炉膛高度H与宽度B之比H/B通常

在0.5~0.9之间,根据炉子工作条件,取H/B=0.7左右,

根据标准砖尺寸,选定炉膛高度H=620mm

因此,确定炉膛尺寸如下:炉膛尺寸:

长L=6105mm L=6105 mm 宽B=900mm B=900 mm 高H=620mm H=620 mm 2.炉衬材料及厚度的确定

由于侧墙、前墙及后墙的工作条件相似,采用相同

的炉衬结构,即113mmQN-1.0轻质粘土砖+85mm密度

为250 kg/m3的普通硅酸铝纤维毡+113mm B级硅藻土

砖。

炉顶采用两层113mmQN-1.0轻质粘土砖(115×2)

mm+320mm密度为250 kg/m3 的普通硅酸铝纤维毡。

炉底采用三层QN-1.0轻质粘土砖(67×3)

mm+50mm密度为250 kg/m3 的普通硅酸铝纤维毡

+182mm B级硅藻土砖和膨胀珍珠岩符合炉衬。粘土砖

上方再铺一层67mm支撑导轨用的重质粘土砖和安置

电热元件的重质高铝砖。

炉门采用65mmQN-1.0轻质粘土砖+80mm密度为

250 kg/m3 的普通硅酸铝纤维毡+65mm A 级硅藻土砖。

四、 砌体平均面积的计算

砌体外廓尺寸计算如下: 砌体外廓尺寸: L 外=L+2×(85+115+115)=6735mm L 外=6735mm B 外=B+2×(85+115+115)=1530mm B 外=1530mm H 外=H+f+(2×115+320)+(67+67×3+50+182)=1700mm H 外=1700mm 式中:f —拱顶高度,此炉子采用30°拱顶,取拱弧半径R=B 。 1.炉顶平均面积 6.1056

0.900

3.142L 6R 2???=?=

π顶内F 错误!未找到引用源。

错误!未找到引用源。

35.76530.1?=?=外外顶外L B F 炉顶平均面积 错误!未找到引用源。 F 顶

=5.751m 2

错误!未找到引用源。 F 顶外=10.305m 2

错误!未找到引用源。 F 顶均

=7.698m 2 2.炉墙平均面积

炉墙面积包括侧墙及前后墙,为简化计算将炉门包括在前后墙内。

F 墙内=2LH+2BH=2H(L+B)=2×0.620×(6.105+0.900) 炉墙平均面积

=8.686m 2 F 墙内=8.686m 2 F 墙外=2H 外(L 外+B 外)=2×1.700×(6.735+1.530) F 墙外=28.101m 2

=28.101m 2 F 墙均=15.623m 2 01.12886.68?=?=墙外墙内墙均F F F

错误!未找到引用源。 3.炉底平均面积 炉底平均面积 F 底内=B×L=0.900×6.105=5.495m 2 F 底内=5.495m 2 F 底外=B 外×L 外=1.530×6.735=10.305m 2 F 底外=10.305m 2

305.10495.5?=?=

底外底内底均F F F 错误!未找到引用源。错误!未找

到引用源。525.7m 2 F 底均=7.525m 2

五、 计算炉子功率

根据热平衡法计算炉子功率

热平衡法计算是根据炉子的输入总功率(收入项)应等于各项能量消耗(支出项)总和的原则确定炉子功率的方法。在此设计中,主要支出项包括如下几个方面:加热工件所需热量Q 件,加热辅助构件所需热量Q 辅,通过炉衬的散热损失Q 散,通过开启炉门或炉壁缝隙的辐射热损失Q 辐,通过开启炉门的溢气热损失Q 溢以及其他热损失Q 他。具体计算过程如下: (1)加热工件所需的热量Q 件

由附表6【1】得,工件在950℃和20℃时比热容分别为c 件2=0.636kJ/(kg 2℃)及c 件1=0.486kJ/(kg 2℃),故有:

Q件= p(c件2t1 -c件1t0)

= 3503(0.6363950-0.486320) 加热工件所需的热量Q件= 208068kJ/h Q件= 208068kJ/h (2)加热辅助构件所需热量Q辅

推杆式热处理炉的加热辅件主要有导轨和料盘,其

材质均为耐热钢,由附表6【1】得,取其950℃时比热容

为c2=0.670kJ/(kg2℃),20℃比热为c1=0.473kJ/(kg2℃),

取每小时加热辅件的重量P辅=40Kg/h,则有:

Q辅= p辅(c2t1 -c1t0)

=40×(0.6703950-0.473320) 加热辅助构件所需热量Q辅=25081.6 kJ/h Q辅=25081.6kJ/h (3)通过炉衬的散热损失Q散

由于炉子侧壁和前后墙炉衬结构相似,故作统一数

据处理,为简化计算,将炉门包括在前墙内。

对于炉墙散热,首先假定界面上的温度及炉壳温

度,错误!未找到引用源。=820℃,错误!未找到引用

源。=420℃,错误!未找到引用源。=60℃则

耐火层S1的平均温度:

错误!未找到引用源。=

2820

950+= 885℃硅酸铝耐火纤维层S2的平均温度:

错误!未找到引用源。=

2420

820+=620℃硅藻土砖层S3的平均温度:

错误!未找到引用源。 =

2

60

420+ = 240℃ S 1、S 3层炉衬的热导率由下附表3【2】查得 错误!未找到引用源。 = 0 .29 + 0.256 3 10-3 t s1均 = 0.29 + 0.256 3 10-3 3 885 = 0.517W/(m 2℃)

错误!未找到引用源。 = 0 .131 + 0.23 3 10-3 均3s t = 0.131 + 0.23 3 10-3 3 240 = 0.186W/(m 2℃)

普通硅酸铝耐火纤维的热导率由附表4【3】查得,在与给定温度相差较小范围内近似认为其热导率与温度成线性关系,由错误!未找到引用源。=620℃,得: 错误!未找到引用源。=(0.140-0.093)3错误!未找到引用源。

400

700400

620--+0.093

=0.127W/(m 2℃)

当炉壳温度为60℃,室温为20℃时,由附表2【4】

得错误!未找到引用源。=12. 17W /(m 22℃)。 ①求热流

+++-=

a s s s t t q a

g 1332211λλλ墙

=

错误!未找到引用源。

17

.121

186.0115.0127.0085.0517.0115.020

950+

++-

= 584.106W/m 2

②验算交界面上的温度t 2墙、t 3墙

错误!未找到引用源。 = 错误!未找到引用源。 - 错误!未找到引用源。

1

1

λs

= 950 –584.106 3 错误!未找到引用源。 = 820.073℃ Δ =

%100'

2'

22?-墙

墙t

t t

=

820

820

073.820-3 100%

= 0.0089%

Δ<5%,满足设计要求,不需重算。

错误!未找到引用源。 = 错误!未找到引用源。 - 错误!未找到引用源。

2

2

λs

=820.073–584.106 3127

.0085

.0 =429.136℃ Δ = %100'

3'

33?-墙

墙t

t t

=

420

420

136.429-3 100%

= 2.175%

Δ<5%,也满足设计要求,不需重算。 ③验算炉壳温度

错误!未找到引用源。 = 错误!未找到引用源。 - 错

误!未找到引用源。

3

3

s

= 429.136 –584.106 3 186

.0115

.0 = 67.995℃<70℃

满足一般热处理电阻炉表面温升小于70℃的要求,不需重算。 ④计算炉墙散热损失

Q 墙散 = q 墙2F 墙均= 584.106315.623= 9125.5W

同理可以求得:

错误!未找到引用源。=825.3℃,错误!未找到引用源。=71.4℃

错误!未找到引用源。=326.4W/m 2;

错误!未找到引用源。=779.8℃,错误!未找到引用源。=570.6℃,错误!未找到引用源。=65.6℃, 错误!未找到引用源。=610.8W/m 2;

炉顶通过炉衬散热

Q 顶散= q 顶2F 顶均=326.437.698= 2512.6W

炉底通过炉衬散热

Q 底散= q 底2F 底均= 610.837.525=4596.3 W

整个炉体散热损失 Q 散 = Q 墙散 + Q 底散 + Q 顶散

=9125.5W+ 4596.3+2512.6

=16234.4W

通过炉衬的散热损失Q 散

= 58443.8kJ/h Q 散=58443.8kJ/h (4)开启炉门的辐射热损失Q 辐

设装出料所需时间为9min/h ,T g =950+273=1223K ,T α=20+273=293K 。由于正常工作时,炉门开启高度为炉膛高度的一半,故炉门开启面积为:

2H B F ?

==0.9003错误!未找到引用源。2

620.0=0.279m 2 炉门开启率: δt =错误!未找到引用源。

60

9

= 0.15 由于炉门开启后,辐射口为矩形,且H/2与B 之比为 0.310/0.900= 0.344属拉长的矩形,炉门开启高度与炉墙厚度之比为0.310/0.345=0.899,由图1-14【5】第1条线查得φ=0.68

又推杆式炉每次进出料时前后门一起打开,故有:

???

?

??????? ??-???? ????=44100100T .6F 375.652a

g t T Q φδ辐

=2×5.67533.630.27930.1530.68322298.4 开启炉门的辐射热损失Q 辐

=25928.4kJ/h Q 辐=25928.4kJ/h (5)开启炉门溢气热损失Q 溢

溢气热损失计算公式为:

(

)

t a g

a a a t t c qv Q δρ-='溢

其中溢气量22

1997H

H B qv a =

= 199730.90030.3103310.0

=310.2m 3/h

冷空气密度错误!未找到引用源。=1.29kg/m 3,由附表10【6】可查得:

错误!未找到引用源。=1.342kJ/(m 32℃)

溢气温度可近似为:

()()=-+=-+

=209503

22032

'a g a g t t t t 640 因此:

()

t a g a a a t t c qv Q δρ-='

=310.231.2931.3423(640-20)30.15 开启炉门溢气热损失Q 溢

=49942.1kJ/h Q 溢=49942.1kJ/h (6)其他热损失Q 他

其它热损失为上述热损失之和的10%~20%,故: Q 他=0.15(Q 件+Q 辅+Q 散+Q 辐+Q 溢)

=0.15×(208068+25081.6+58443.8+25928.4+49942.1) 其他热损失Q 他

=55119.6kJ/h Q 他=55119.6kJ/h (7)热量总支出Q 总

Q 总 = Q 件+Q 辅+ Q 散+Q 辐+Q 溢+Q 他

=

Q 5

.105

.11错误!未找到引用源

热量总支出Q 总

=422583.6kJ/h Q 总=422583.6kJ/h (8)炉子安装功率 P 安

3600

KQ 总安=

P ,其中

K 为功率储备系数,对于连续作

业炉,K=1.2~1.3,本炉设计中K 取1.3,则

6.1523600

2583.6

42.313600Q .31=?==总安P 取P 安=154kW

P 安=154kW

六、 炉子热效率计算

1.正常工作时的效率

正常工作时的效率

%1002583.642208068

%100Q ?=?=总件

Q η=49.2% η=49.2%

2.在保温阶段,关闭炉门时的效率 η= 错误!未找到引用源。

()

溢辐总件

Q Q Q +-Q 3100%

= 错误!未找到引用源。

()

.149942.4259286.422583208068

+-3100%

关闭炉门时的效率

=60.0% η=60.0%

七、 炉子空载功率计算

3600

55119.68443.85%1003600Q Q +=?+=

他散空P 炉子空载功率

=31.5kW P 空=31.5kW

八、 功率的分配与接线

连续加热炉的炉膛长度较大,分为预热、加热、保温、冷却等不同区段,各段功率大小不同,要分区独立控制。本炉设计中,各区段功率分配为:20%,40%,

20%,20%,则:

P 预热=20%P 安=154×20%=30.8kW P 加热=40%P 安=154×40%=61.6kW P 保温=20%P 安=154×20%=30.8kW P 冷却=20%P 安=154×20%=30.8kW

由于四个区段功率均在25~75kW 内,故四区段均采用三相380V 星形接法,即Y 接线方式。

对于加热区,计算其内壁表面负荷:

F 加热电=(2×0.62+0.9)×4100

.6错误!未找到引用源。=3.26m 2

W 加热=加热屯

加热

F P =26.36

.61错误!未找到引用源。=18.90kW/m 2

W 加热=18.90kW/m 2

加热区内壁表面负荷应在15~35 kW/m 2之间,故设计符合要求。

九、 电热元件材料选择及计算

由最高使用温度950℃,选用线状0Cr25Al5合金作电热元件,接线方式采用Y 。 (1)求950℃时电热元件的电阻率ρt

当炉温为950℃时,电热元件温度取1100℃,由附表12【7】得0Cr25A15在20℃时电阻率ρ20=1.40Ω

mm 2/m 。

电阻温度系数α=4310-5℃-1,则1100℃下的电热元件电阻率为

ρt =ρ20(1+αt)=1.40×(1+4×10-5×1100)=1.46Ω·mm 2/m (2)确定电热元件表面功率

由图5-3【8】知,根据本炉子电热元件工作条件取W

=1.7W/cm 2

(3)每组电热元件功率

由于四个区段均采用Y 接法,则各区段中每组元件功率分别为:

30.8

3P =

=n P 预热组预热

= 10.3kW

31.6

6P ==n P 加热组加热 = 20.5kW

3

0.8

3P ==n P 保温组保温 = 10.3kW

3

0.83P ==n P 冷却组冷却

= 10.3kW

(4)每组电热元件端电压

由于采用Y 接法,车间动力电网端电压为380V ,故每组电热元件端电压即为每相电压为

3

380

=组U = 220V

(5)电热元件直径

加热区线状电热元件直径为:

(

)()

.71220

/6.41.520.334W U /P 34.32

2

3

2

23???=?=允

组组加热加热t d ρ =6.7mm

取d 加热=7mm ,同理可得: d 预热=5mm d 保温=5mm d 冷却=5mm (6)每组电热元件长度和重量

加热区每组电热元件长度为

t

d U L ρ组加热2

加热2组3-组加热P 10785.0?

?=错误!未找到引用源。

=0.785310-3

3错误!未找到引用源。6

.415.2072202

2??

=62.20m

同理可得其它各区段电热元件长度为: L 组预热=63.16m L 组保温=63.16m L 组冷却=63.16m

加热区每组电热元件重量为

M L G ρπ

组加热2

加热组加热d 4

?=

=

4

4

.13 327362.2037.1 =16.99kg

同理可得其它各区段电热元件重量为: G 组预热=8.80kg G 组保温=8.80kg G 组冷却=8.80kg (7)电热元件的总长度和总重量

电热元件总长度为

L 总=3L 组预热+3L 组加热+3L 组保温+3L 组冷却 =33(63.16+62.20+63.16+63.16) =755.04m

电热元件总重量为

G 总=3G 组预热+3G 组加热+3G 组保温+3G 组冷却 =33(8.80+16.99+8.80+8.80) = 130.17kg

(8)校核电热元件表面负荷 组加热

加热组加热

实加热

L P W d π= = 6220

.704.1310.5203

???= 1.50W/cm 2 同理可得其它区段各电热元件表面负荷为: W 实预热=1.04 W/cm 2 W 实保温=1.04 W/cm 2 W 实冷却=1.04 W/cm 2

可以看出各区段W 实均小于W 允,结果满足设计要求。

(9)电热元件在炉膛内的布置

将每区段3组电热元件每组分为5折,布置在两侧炉墙及炉底上,则在加热区段中,如下所示:

折L =

5L 组= 错误!未找到引用源。5

20

.62 =12.44m 布置电热元件的炉壁长度 L ′= L – 50 = 6100/4 – 50 = 1475 mm

丝状电热元件绕成螺旋状,当元件温度高于1000℃,由表5-5【9】可知,螺旋节径D=(4~6)d ,取D=6d=637=42mm

螺旋体圈数N 和螺距h 分别为 N = 错误!未找到引用源。

D

L π折

= 错误!未找到引用源。42

.004.1344

.12? = 95圈

h=L ′/N=1475/95=15.53mm h/d=15.53/7=2.22

按规定,h/d 在2~4范围内满足设计要求。 同理也可计算得,在其它三个区段h/d 均满足设计要求。

根据计算,在加热区段选用Y 方式接线,采用d = 7mm 所用电热元件重量最小,成本最低。在其它三个区段中选用Y 方式接线,采用d=5mm 所用电热元件最小,成本最低。

电热元件引出棒材料选用1Cr18Ni9Ti ,φ=12mm ,L= 500mm 。

十、 设计小结

1、总结:通过上述的设计让我了解到推杆式热处理炉的设计的基本方法。上面分别对炉子的炉型及炉体结构进行了分析,同时对炉墙、炉底、炉顶炉衬等的结构及砌体结构进行了详细的设计计算,对该电阻炉的基本结构及构造进行了详细的叙述及计算。在随后的热处理炉的功率计算中对炉子采用了平衡法进行了核算,得到了炉子的正常工作功率,并计算了炉子的热效率。在

课程设计退火炉温度控制系统资料讲解

课程设计退火炉温度 控制系统

课程设计设计题目:退火炉温度控制系统 学院: 专业: 班级: 姓名: 学号: 指导老师: 日期:

摘要 退火炉是金属热处理中的重要设备,它把压力容器加热到一定温度并维持一段时间,然后让其自然冷却。其目的在于消除压力容器的整体压力。提高压力容器的使用寿命。温度是退火炉的主要被控变量,是保证其产品质量的一个重要因素。退火炉温度控制的稳定性和控制精度直接影响产品的质量。 本文以AT89C51单片机为控制核心,采用模块化的设计方案,包括硬件设计与软件设计两部分。硬件设计包括温度检测模块,按键模块,执行模块,LED显示模块,单片机最小系统。本设计要求采用电热丝加热,通过A/D转换将采集到的温度数据输入单片机中,与系统给定值比较,从而对退火炉的温度进行控制,通过按键输入控制信号,三位LED显示炉温。最后设计出最少拍无纹波控制器,通过MATLAB仿真检验是否有纹波。

目录 第1章绪论 (3) 1.1设计背景与算法 (3) 第2章课程设计的方案 (5) 2.1概述 (5) 2.2系统组成总体结构 (5) 第3章程序设计与程序清单 (7) 3.1单片机最小系统设计 (7) 3.1.1单片机选择 (7) 3.1.2时钟电路设计 (8) 3.1.3复位电路设计 (9) 3.2程序清单与电路图 (11) 3.3温度控制电路 (17) 第4章控制算法 (18) 4.1程序框图 (18) 4.2算法设计 (19) 第5章课程设计总结................................................ - 22 -

浅谈辊底式加热炉技术

浅谈辊底式加热炉技术 浅谈辊底式加热炉技术 【摘要】辊底式加热炉是薄板坯连铸连轧生产线上的一个重要设备。本文阐述了辊底式加热炉的基本概念及作用,并重点介绍了辊底式加热炉的主要技术特点。 【关键词】步进式加热炉机械设备 辊底式加热炉是薄板坯连铸连轧生产线上的一个重要设备,在功能上起着承上启下的作用,它一面将连铸出来的板坯加热至轧钢工艺所要求的出钢温度1150±10℃,这个温度精度要远高于一般步进炉所能够达到的±30℃的温差值,这样就为生产超薄热带产品奠定了基础,另一方面,辊底炉在整个工艺中还起着重要的缓冲作用。 一、辊底式加热炉概述 辊底式加热炉用炉内辊道运送热处理材,沿炉子整个长度每隔一定距离安装一根辊子,物料在辊子上运行,在辊子上面和下面的炉膛都可布置烧嘴供热。辊子有环辊(带有盘形辊环)和平辊二种,前者只能用于加热板材,后者可用于加热板材、型钢、管材和棒材。辊子外层辊套的材质通常为耐热钢,有的也用碳化硅。温度高的炉子(1000-1150℃)采用水冷轴并带绝热内衬的耐热钢炉辊,或全水冷的炉辊。为了防止炉辊弯曲,在高温下工作的辊子必须不停地旋转;当炉子空烧或不出料时,也要用低速以每分钟0.5-1.5周的转速摆动或旋转。辊底式炉因物料两面受热,加热较快、较均匀,广泛应用于常化、退火、淬火、回火等热处53工艺。 二、辊底式加热炉的作用 将连铸机送来的薄板坯按工艺要求均匀地加热到轧制温度。投产的生产线连铸坯入炉温度一般在850℃-1050℃之间,出炉温度(轧制温度)1100℃-1150℃,在炉内需提温50℃-300℃。要求出炉板坯长度与宽度方向温差≤±10℃,板坯边部(约40ram范围内)温度比中部温度高40℃左右。 在单尺坯轧制时,炉子能储存若干块单尺坯,当轧机换辊或事故

(完整版)热处理炉说明书

辽宁福鞍重工股份有限公司新跨车间燃气台车式6.5m x 2.8m x 1.7m 热处理窑 使用说明书 中国联合工程公司 2012年10 月

目录 1概述.................................................................. 1…2主要技术参数......................................................... 2.. 3热处理炉主要部件说明................................................. 3. 3.1 炉体.............................................................. 3.. 3.2 炉车.............................................................. 3.. 3.3 炉门.............................................................. 3.. 3.4 燃烧系统........................................................ 3.. 3.5管路系统 .......................................................... 4.. 3.5.1空气管路.................................................................. 4.. 3.5.2煤气管路.................................................................. 4.. 3.5.3压缩空气管路............................................................. 4. 3.6排烟系统 ........................................................ .5.. 3.7电气控制系统 ..................................................... 5.. 4操作规程............................................................... 6.. 4.1开炉准备 .......................................................... 6.. 4.2 点火.............................................................. 6.. 4.3热处理过程控制 .................................................... 7. 4.4停炉出炉 ......................................................... .7.. 5安全须知............................................................... 8.. 6特别说明 (10) 7主要电控单元说明 (11) 7.1炉门炉车控制柜操作说明 (11) 7.2计算机监控系统操作说明 (11) 7.2.1烧嘴控制................................................................. .2 7.2.2工艺曲线设置............................................................. .12 7.2.3压力控制与阀门操作 (14)

网带炉技术方案

托辊网带式控温冷却热处理生产线 技 术 方 案 湖北十堰华美炉业有限公司 二0一二年四月 托辊网带炉控温冷却生产线技术方案 一.基本要求: 1.工件名称:曲轴件锻造后余热利用热处理生产线 2.工件尺寸: 最大工件长:450mm; 直径:42mm; 重量:15kg 3.工作区尺寸:快冷部分: 网带宽720mm; 控温区长:5000mm; 缓冷部分: 网带宽720mm; 加热区长:10000mm; 低温快冷部分: 网带宽720mm; 加热区长:8000mm; 4.热处理要求:正火,热处理后表面光洁, 硬度均匀, 金相组织 符合国家行业标准。 二.设备组成: 本生产线主要由托辊网带式正火炉、网带式回火炉、前后工作台等部分组合。

1.正火炉快冷段网带运行采用托辊同步传动, 使网带运行承受 最小张力, 提高使用寿命; 网带运行连续均匀, 和间断进给 的传动相比, 消除了网带返退缺陷和工作经过落料口因时间 不同而引起硬度不均匀的现象。 2.炉顶部装有强力循环风机, 确保炉膛内温度和气氛均匀达到 快速均勻冷却效杲。 3.生产线具备完整可靠的电气自控、安全连锁和报警等功能。生 产线也可单机手动控制,便于调试和维护。 三.设备主要技术参: 1.托辊网带式正火加热炉: (1)电源内客:3N 380V 50Hz (2)额定加热功率:100kw (3)有效快冷区尺寸:720x5000x100mm(宽x长x高) 有效缓冷区尺寸:10000mm (4)最大生产率:3000kg/h (5)控温区数:4区+4区 (6)控温元件: 希曼顿产功率模块(固态继电器), 特 点:4-20mA输入, 具有过热, 缺相, 过流保护, 报警功 能。自动调功。温控仪表: 日本导电, 具有PID自整定, 具有超温断偶保护、报警等功能。 (7)控温精度:≤1℃ (8)炉温均匀度: ≤±3℃(同一区段)

热处理电炉安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.热处理电炉安全操作规程 正式版

热处理电炉安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 1. 热处理工人在进行各种工艺操作前必须穿戴好规定的安全防护用品。 2. 加热炉在使用前需要检查其电源接头和电源线路的绝缘是否良好。 3. 操作工在进行装炉前,首先要检查炉膛后面及小车下面的几组接线铝夹头是否有熔化现象,如有,应找电工马上更新。 4. 在合上闸后,应观察炉膛后面及小车下面几组铝夹头上的固定螺栓是否发红,若发红,应找电工拧紧。合上闸后,操作工用手晃几下热电偶传导线,看表盘

上的黑针和红划线针是否上下摆动幅度较大,若大,应找电工拧紧表盘后的螺栓或拧紧热电偶上的螺栓。 5. 每次装炉前应先设定一个低温数值,来验证表盘上黑针指出的数是否和设定的温度值相符。然后按照黑针指出的数值来修正设定温度的红指针。到达恒温阶段还要摇起炉门观察小车上各炉板温度是否接近均匀,如发现个别炉板温度过高,先立即找电工查明原因。 6. 工件的装炉与出炉均不能触及电垫元件,以免断电装置失效时发生触电事故。 7. 进行热处理操作时,操作工不得离开现场,切实注意观察温度和设备运转情

箱式电阻炉课程设计

一、设计任务书 题目:设计一台中温箱式热处理电阻炉; 生产能力:160 kg/h ; 生产要求:无定型产品,小批量多品种,周期式成批装料,长时间连续生产; 要求:完整的设计计算书一份和炉子总图一张。 二、炉型的选择 根据生产特点,拟选用中温箱式热处理电阻炉,最高使用温度650℃,不通保护气氛。 三、确定炉体结构及尺寸 1.炉底面积的确定 因无定型产品,故不能用实际排料法确定炉底面积,只能用加热能力指标法。已知生产率p 为160 kg/h ,按照教材表5-1选择箱式炉用于退火和回火时的单位面积生产率p 0为 100 kg/(m 2﹒h ),故可求得炉底有效面积: F 1=P P 0=160100 =1.6m 2 由于有效面积与炉底总面积存在关系式F 1F ?=0.60~0.85,取系数上限,得炉底实际面积: F = F 10.85=1.6 0.85 =1.88m 2 2.炉底长度和宽度的确定 由于热处理箱式电阻炉设计时应考虑出料方便,取L B ?=2,因此,可求得: L =√F 0.5?=√1.880.5?=1.94m B =L 2?=1.942?=0.97 m 根据标准砖尺寸,为便于砌砖,取L =1.970 m ,B =0.978 m ,如总图所示。 3.炉膛高度的确定 按照统计资料,炉膛高度H 与宽度B 之比H B ?通常在0.5~0.9之间,根据炉子工作条件,取H B ?=0.654m 。 因此,确定炉膛尺寸如下: 长 L =(230+2)×8+(230×1 2+2)=1970 m 宽 B =(120+2)×4+(65+2)×2+(40+2)×3+(113+2)×2=978mm 高 H =(65+2)×9+37=640 mm 为避免工件与炉内壁或电热元件搁砖相碰撞,应使工件与炉膛内壁之间有一定的空间,确定工作室有效尺寸为: L 效=1700 mm B 效=700 mm H 效=500 mm 4.炉衬材料及厚度的确定 由于侧墙、前墙及后墙的工作条件相似,采用相同炉衬结构,即113mm QN ?0.8轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+113mm B 级硅藻土砖。 炉顶采用113 mmQN ?1.0轻质粘土砖,+80 mm 密度为250 kg m 3?的普通硅酸铝纤维毡,+115 mm 膨胀珍珠岩 。 炉底采用三层QN ?1.0轻质粘土砖(67×3)mm ,+50 mm 密度为250 kg m 3?的普通硅酸铝

浅析辊底式连续热处理炉辐射管现状及发展前景

辊底式光亮连续热处理炉辐射管现状及发展趋势 天津钢管公司轧管二部冷轧机组黄大伟鲍云飞 [摘要]文章概述了辊底式连续热处理炉的工作原理及特点,对辊底式连续热处理炉自预热时辐射管内部结构及辐射管类型及材质进行详尽评述,并表明了目前存在问题及今后发展的主要方向。 关键词辊底式连续热处理炉辐射管烧嘴热效率 1 前言 天津钢管集团公司冷轧不锈机组的辊底式连续热处理炉是2003年从德国洛伊公司引进。炉体全长132M,设计热处理管坯直径为φ20至φ406,管坯长度为5-12M,炉体内采用氮气作为保护气,控制自预热式烧嘴燃烧通过热辐射管对钢管进行热处理,钢管在热处理过程中不接触明火,保证了生产过程中炉体内部无氧化成份气体,在热处理效果和抗氧化技术在国内处于领先水平。 2 辊底式连续热处理炉主要工作原理及特点 辊底式连续热处理炉整体由上料台架、上料横移小车、入口真空室、入口过渡段、加热段、喷冷锻、出口缓冷段、出口真空室、下料横移小车及下料台架10部分组成,其中入、出口真空室各有2道密封门,管料生产过程即按上述10部分依次行进。炉子传动采用辊道运输钢管,加热区主要通过两台电机减速机及变频器控制辊道转动速度,根据不同钢种、规格等要求设定不同温度及辊道运输速度。本设备采用氮气作为炉内保护气体,热处理炉在工作时始终向炉体内填充氮气,保持炉内气压为0.1-3mbar的微正压,防止外部空气进入炉内, 在整条生产线中,炉子加热段温度最高,进料端离加热段近,如此处气氛控制不好极易造成钢管的氧化,为避免外界空气进入炉膛,保证炉内气氛,真空室配备有耐热真空锁气门及隔热附件。坯料快速进入真空室后,其前后两道真空锁气门关闭,2台真空泵将真空室抽至设定的真空状态(绝对压力1-5mbar),在充入保护气体。上述过程完成后,靠近加热段侧真空锁气门打开,坯料快速进入炉前过渡段,这样可以防止外界空气进入炉内。

网带炉发展和特点

网带炉详细说明 网带炉介绍和特点:经过半个多世纪的发展,第一代网带炉从氧化气氛下加热逐步发展到第二代保护气氛、少无氧化加热,又进步到第三代可控气氛加热,第四代计算机管理,在廿一世纪的今天,网带炉是如何发展的网带炉的特点 今天热处理网带炉发展的动力和其它产品一样源自市场的需求,发展的成果来自技术的进步。我国改革开放政策正大大地推动并加速了热处理行业发展过程。 廿一世纪的网带炉技术将带有鲜明的时代特征,具有四大特点:智能化热处理、高质量热处理、低成本热处理、清洁的热处理 ■网带炉的发展方向: 网带炉生产线采用无污染DX气体回火发黑技术、无污染利用回火余热染黑技术取代了传统有污染的发黑工艺。网带炉热污染为零。 ■网带炉的详细介绍: 经过半个多世纪的发展,第一代网带炉从氧化气氛下加热逐步发展到第二代保护气氛、少无氧化加热,又进步到第三代可控气氛加热,第四代计算机管理,在廿一世纪的今天,网带炉是如何发展的网带炉的特点? 今天热处理网带炉发展的动力和其它产品一样源自市场的需求,发展的成果来自技术的进步。我国改革开放政策正大大地推动并加速了热处理行业发展过程。 廿一世纪的网带炉技术将带有鲜明的时代特征,具有四大特点:智能化热处理、高质量热处理、低成本热处理、清洁的热处理. 1智能化热处理 研究发展人员运用最新CAD程序和热处理数据库,计算机模拟仿真技术和控制技术,采用高度柔性化、智能化的综合控制和管理系统于网带炉及其生产线。 未来的网带炉操作者仅需将待处理的工件数量、图纸输入计算机,整套设备将自行处理出高质量的产品。 目前已实现了整个系统实时多项目操作控制。如控制装料厚度、网带速度、温度、碳势等。可全屏幕监视及控制分批进料之移动。能完全工艺程序控制,可储存9999个工艺。能完全记录设备运行状况中所检测到的工艺参数(零件号、材料、温度、碳势等)送计算机进行处理并存储记录。可随时调阅和打印。可贮存十年的记录。密码分层控制,完全分层。含有新炉升温程序,停炉升温程序可有效执行升温过程等. 2高质量的热处理 质量分散率为零,热处理畸变为零。质量控制措施: 上料控制系统:重量、数量、均匀性可控。实现翻斗式、吸盘式、磁带性、阶梯式、震动式料系统普遍推广采用。上料节奏自动控制、变频调速。零件方向自动排列。加料厚度实现实时监控。从源头上为热处理工艺的准确执行提供保证。 设备温度控制:炉温稳定性±1℃、炉温均匀性±10℃,冷处理温度均匀性±5℃,开关式温控将被淘汰。

热处理箱式电阻炉课程设计

热处理箱式电阻炉课程设计 一、设计任务 1、炉型:箱式炉 2、设计要求:(1)生产率或一次装炉量:100kg/h (2)零件尺寸:长、宽、高尺寸最大不超过150mm (3)零件材料:中、低碳钢、低合金钢及工具钢 (4)零件热处理工艺:淬火加热 3、任务分析: (1)生产率或一次装炉量为100kg/h ,属小型炉; (2)生产长、宽、高尺寸最大不超过150mm 的零件,选择箱式炉合理; (3)淬火加热工艺表明所设计的箱式炉属于中温范畴。 二、电阻炉的炉体结构设计 1、炉型选择:由于所生产的零件尺寸较小,都不大于150mm ,且品种较多,热处理 工艺为淬火加热,具体品种的淬透性不同,工艺有所差别,故采用周期作业中温箱式热处理炉进行设计。(额定温度为950℃) 2、炉膛设计 (1)典型零件的选定 参照设计任务的要求,选用40Cr 钢齿轮模拟设计 ①齿轮参数:分度圆mm d 128= 齿顶圆mm d a 136= 齿数32=z 模数 4=m 齿宽mm b 70= 全齿高mm h 9= 齿根圆mm d f 118= 齿轮孔径mm d 40=孔 ②设定工艺曲线: 加热时间 t=a ×k ×D (a :加热系数,k :工件装炉条件修正系数,D :工件 《热处理手册》第四版第二卷,机械工业出版p55 工艺周期为5h 《热处理设备》p117表5-4

有效厚度) 查表得:a 为1.2-1.5min/mm 取1.3 min/mm k 取1.8 故时间 t=1.3×1.8×70=163.8min 取加热时间3h ,保温时间2h 工艺周期为5h (2)确定炉膛尺寸 一次装炉量=生产率×周期=100kg/h ×5h=500kg 单位重量 kg kg d d 337.6108.7b ])2 ( )2[(m 322 =???-=孔π 零件个数 809.78337 .6500 ≈== n 个 查表可知,炉底单位面积生产率 h m kg P ?=20100 有效面积 22 01100 100m m P P F === 有效 由于工件之间距离为工件高度的0.3-0.5,故取工件之间距离为30mm 设计每次装炉80个零件,分两层分布,每层40个,纵向8个,横向5个 实际炉底面积 224.125.18 .01 m m K F F ≈== = 有效实 (K 为炉底利用系数,通常为0.8-0.85) 取 长 L=1.4m , 宽 B=1.0m 炉子高度一般为(0.52-0.90)B ,取0.6B ,故H=0.6m 3、炉体各部分结构 (1)炉衬:分为内层耐火层和外层保温层 内层:用QN —1.0的轻质耐火粘土砖 外层:B 级硅藻土砖,热导率为t 1023.0131.03 -?+,最高使用温度为900℃ (2)炉墙: 耐火层:QN —1.0轻质耐火粘土砖,规格为230×113×65mm ,热导率为 t 3110256.029.0-?+=λ,厚度 mm 1131=δ 保温层:B 级硅藻土砖,规格为230×113×65mm ,热导率为 t 1023.0131.03 -2?+=λ,厚度 mm 2302=δ 炉膛尺寸: L=1.4m B=1.0m H=0.6m 《热处理设备课程设计指导书》附表2

气氛保护辊底式热处理炉方案及报价

广西钦州力创特种合金新材料有限公司可控气氛保护连续辊底式不锈钢热处理炉 方案及报价书 广州市沛凯技术工程有限公司 2011年11月25日

一、概述 可控气氛保护连续辊底式不锈钢热处理炉是连续工作制设备,专门为不锈钢圆钢进行冷拉拔中间退火或不锈钢圆钢的固溶热处理而设计,工件由辊筒输送,经进料区、预热区、高温区、冷却区,最后到出料区,完成热处理工艺,为了减少氧化烧损,该设备炉体采取全密封结构,炉膛注入氮气保护,进出料口用火封封闭,保持炉内气氛的稳定,实现无氧化处理。 电气控制采用PLC、温度控制模块、人机界面对各区的温度、运行速度等参数进行自动控制,该设备具有高效节能,自动化程度高,生产的产品质量稳定的特点。 二、工艺描述及技术参数 2.1 工艺描述 可控气氛保护连续辊底式不锈钢固溶炉的热处理工艺是:在处理材料前先进行炉膛预热,设定预热区和高温区的工作温度值,通电升温,同时通过设在各区的保护气氛输入阀,按照工艺流量要求向炉膛注入氮气,各区的温度达到设定温度后,人工将待处理材料放置到进料段的辊筒上摆放整齐,然后推到送料辊筒上,由送料辊筒将材料送进炉膛,由于进料区、预热区、高温区、均布置了辊筒,并以同样的速度旋转,材料从进料区进入,便由辊筒带动经过预热区、高温区、到冷却区,由于需要采用水套冷却方式,材料到冷却区后,传动方式改为网带传动,以增加传热面积,达到快速冷却的工艺目的,最后到达出料区,完成整个工艺过程。 2.2 技术参数

2.2.1 额定工作产量:1吨/小时(按直径为12mm的不锈钢圆钢计算); 2.2.2 额定电源电压:380V 三相四线供电; 2.2.3 额定总功率:400KW,其中电加热功率380KW; 2.2.4 工作方式:连续工作制,辊筒及网带传动组合; 2.2.5 炉膛最高使用温度:1150°C; 2.2.6 工作室(炉膛)尺寸:长*宽*高=10000*800*150mm; 2.2.7 设备外形尺寸:长*宽*高=25000*2000*1500mm; 2.2.8辊筒运行速度:200~600mm/min; 2.2.8 保护气氛:纯度99%以上的氮气; 2.2.9 气氛消耗量:约50m3/hr 三、结构材料 可控气氛保护连续辊底式不锈钢热处理炉设备由进料区、炉体、冷却区、出料区、辊筒及网带传动运行系统、气氛输入机构、冷却水循环机构及电控系统构成。 3.1 进料区 进料区总长度为:8000mm,宽度:1000mm,兼做上料工作台。机架用8#槽钢焊接,布置直径为60mm的钢质辊筒,两端轴承,其中靠近炉膛一端2000mm长辊道的辊筒为有动力辊筒,其余为无动力辊筒,用于支承材料。 3.2 炉体由外壳、保温材料、炉膛耐火材料、电加热元件和炉内辊筒等部 分组成 3.2.1 炉体外壳框架用10#槽钢焊接,外壳用6mm厚钢板折弯密封焊接, 炉底铺6mm钢板,炉体进、出口端面用12mm厚钢板,使整个炉体框架有足

高温热处理炉操作说明书

高温热处理炉操作说明书 1.打开加热系统和插线板电源开关,插入混气系统和真空系统插座。 2.放样品。打开左侧炉盖的六角螺母,拿掉法兰,勾出2个炉衬,放入氧化铝 坩埚和样品,放回炉衬,重新封装管口,在管口密封圈处涂抹真空脂。一定避免转动炉管。 3.打开混气系统电源,提前预热10min。打开氩气瓶,指针为红线位置。 4.洗气步骤: 4.1.开分子泵电源,开工作键,开TV5挡板阀,抽到5×10-1 mbar后, 关闭键以关闭分子泵,按分子泵面板上的键调至309,观察分子泵转动频率(actual spd),等待其转动频率降至150 Hz。 4.2.对TV1混气系统,将流量计set键旋钮调至最小,看面板是否显示0, 否则使用Zero调0,拧开进气阀TV1,打开MFC1的purge,充“P”圆表至 0.04 MPa,打到MFC1的off键,关闭充气。打开TV3和TV4进气阀,冲 入炉管,洗气。关闭TV3和TV4。 5.洗气后,打开工作键,继续抽真空至8×10-5 mbar后,按工作键关闭分 子泵,待速度降至300 Hz。 6.打开MFC1的auto,打开TV3和TV4,调节右侧的set键至180 ml/min,向 炉腔充气,待充气系统面板中“P”圆表至0 MPa后,关闭TV5挡板阀。继续充气,至混气系统面板中“P”圆表至0.04 MPa的正压后。调节流量计set键旋钮为50-70 ml/min,此时打开TV7出气口 7.加热过程(从0度开始)。 7.1.使用前尽量烘干炉管。即设置120度保温1 h,300度2 h。设置步骤 为:按键一秒进入设定状态,0,30,120,60,120,40,300,120, 300,60,50,-121(这些数字代表温度,时间,每个输入的数字之间按 键确认,最后使用-121键结束。键将指针定位至需修改数字位置处,

热处理箱式炉安全操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 热处理箱式炉安全操作规 程简易版

热处理箱式炉安全操作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1遵守一般热处理工安全操作规程。仔细检测温度仪表、热电偶电气设备、接地线等是否完好。 2检查炉膛内是否有异工件,炉底板、电阻丝是否完好。 3工件进出炉应断电操作,并注意工件或工具不得与电阻丝相碰撞接触。装、出炉时不得砸撞炉底板,不得撞击阁砖。 4电炉通电前应首先合闸,再开控制柜电钮。停炉时应首先关控制柜电钮,再拉闸。 5每两周必须清理一次炉底上的杂物,发现问题应及时处理好。

6使用温度不得超过950℃。每次大修理后,在使用前需经过电热烘干,升温到300℃到400℃时取出炉底板,打开炉门八小时烘,然后关闭炉门再升温到500℃到600℃烘干8小时。 7发现仪表失灵,电阻丝相互接触烧坏,电阻丝加热时不平衡,应停炉并通知维修人员进行修理。 8发生事故要保持现场,并报告有关部门。 该位置可填写公司名或者个人品牌名 Company name or personal brand name can be filled in this position

热处理工艺设计课程设计

北华航天工业学院 《热处理工艺设计》 课程设计报告 报告题目:CA8480轧辊车床主轴 和淬火量块 热处理工艺的设计 作者所在系部:材料工程系 作者所在专业:金属材料工程 作者所在班级:B10821 作者学号:20104082104 作者姓名:倪新光 指导教师姓名:翟红雁 完成时间:2013.06.27

课程设计任务书 课题名称 CA8480轧辊车床主轴和淬火量块 热处理工艺的设计 完成时间06.27 指导教师翟红雁职称教授学生姓名倪新光班级B10821 总体设计要求 一、设计要求 1.要求学生在教师指导下独立完成零件的选材; 2.要求学生弄清零件的工作环境。 3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法; 4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式; 5.要求学生写出热处理目的、热处理后组织以及性能。 工作内容及时间进度安排 内容要求时间备注 讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求, 了解热处理工艺设计的方法、内容和步骤; 通过对零件的分析,选择合适的材料以及技术要 求 0.5天 热处理工艺方法选择和工艺路线的制定 确定出几种(两种以上)工艺 线及热处理 方案,然后进行讨论对比优缺点, 确定最佳工艺 路线及热处理工艺方案 1.5天 热处理工艺参数的确定及热处理后组织、性能 查阅资料,确定出每种热处理工艺的参数, 包括加热方式、温度和时间,冷却方式等,并绘 出相应的热处理工艺曲线 1.5天 编写设计说明书按所提供的模板 0.5天 答辩1天 课程设计说明书内容要求 一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。 二. 工艺路线和热处理方案的讨论。要求两种以上方案进行讨论,条理清晰,优缺点明确。 三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线; 四. 写出每个工序的目的以及该零件热处理后常见缺陷。

热处理炉参数

2#热处理炉 1.1数量:一座 1.2炉型:上下供热氮气保护无氧化辊底式热处理炉 1.3结构:平顶炉i 1.4炉体基本尺寸 1.4.1炉子内部长度:63220mm 1.4.2炉子有效长度:59740mm 1.4.3炉子内部宽度:3650mm 1.4.4炉子有效宽度: 1.4.5炉子内部高度:3025mm 1.5炉底辊 1.5.1辊子材质:25%的Cr、35%的Ni及1.5%的Nb 1.5.2端部材料是DIN1.4852浇注材料,轴是1.0570浇注材料(St50) 1.5.3辊子数量:109根 1.5.4辊子直径:380mm 1.5.5辊子壁厚:20mm 1.5.6辊子长度:5393mm 1.5.7辊子有效长度:3650mm 1.5.8辊子的斜度:580mm 1.5.9电机功率:1~73(非卸料部分) 2.2KW/根;74~109(卸料部分)40KW/根1.5.10辊道速度:非卸料部分0.3~20m/min 卸料部分0.3~60m/min 1.5.11传动方式:每个齿轮电机驱动一个辊子 1.6幅射管 1.6.1内管火管 1.6.1.1火管数量:1848(每个辐射管内12段) 1.6.1.2外部直径:270mm 1.6.1.3厚度:5mm 1.6.1.4最大承受温度:1380℃ 1.6.1.5成分组成:SiC88﹪游离硅12﹪

1.6.2外管 1.6. 2.1数量:154 1.6. 2.2外部直径:300mm 1.6. 2.3厚度:10mm 1.6. 2.3成分组成:28﹪的Cr 48﹪的Ni Nb 1.7烧嘴 1.7.1空气电磁阀 1.7.1.1电压220~240V 1.7.1.2频率:50~60Hz 1.7.1.3功率:67~75W 1.7.1.4工作温度:-20~+60℃ 1.7.1.5 IP:54 1.7.2空气手动球阀 1.7. 2.1型号:Q11F-16C 1.7. 2.2公称压力1.6Mpa 1.7. 2.3公称直径50mm 1.7. 2.4使用温度:≤150℃ 1.7.3煤气电磁阀 1.7.3.1电压:230V AC 1.7.3.2频率:50~60Hz 1.7.3.3功率53W 1.7.3.4工作温度:-20~+60℃ 1.7.3.5IP:65 1.7.4煤气手动阀 1.7.4.1型号:Q11F-16C 1.7.4.2公称压力1.6Mpa 1.7.4.3公称直径40mm 1.7.4.4使用温度:≤150℃ 1.8装料辊道

热处理炉操作指导书

热处理炉作业指导书 1.目的 本规程用于指导操作者正确操作和设备。 2.适用范围 本规程适用于指导本公司热处理炉生产线的操作与安全操作。必须严格按加工范围执行,其加工产品范围如下:不锈钢无缝管Φ18-Φ325。 3. 上岗人员要求 3.1操作本设备,人员必须熟悉设备,并经过培训,考核合格,持证上岗。 3.2上岗操作时间,操作人员必须按规定穿戴好劳动保护用品,不得擅自离开工作岗位。 4.操作要求 4.1控制内部是电气集中的地方,操作工不得私自乱动。不经允许不得在设备上进行焊、割等工作,不得任意改动设备,必须保持设备整齐、整洁。 4.2热处理周围,不得堆积产品或杂物,不得放置高温危险品。 4.3吊装产品时,注意不得撞上设备。 4.4设备开动 4.4.1开动前必须检查水泵、电气是否正常。接通总电源开关,电源指示灯亮,电压表应有指示,若电压表的读数不符合要求,则需找电工检修,排除故障后方可继续操作。

4.4.2检查各传动装置的运转情况,其运转速度一定要在转动的情况下缓慢调节,若传动装置运转不正常时,及时通知电工和机修人员维修,排除故障后方可继续操作。 4.4.3开机检查仪表,若仪表指示不符合要求,则需上报热处理工艺负责人更换新仪表;操作过程中若发现仪表不正常显示或损坏,应立即上报工艺负责人。炉内产品必须及时清理出来,及时喷水冷却,待新仪表安装上调试稳定后再执行操作。 3.6 设备运转正常、仪表显示正常后,待炉温达到1050℃以上时,方可装炉。 3.7装炉应保证同规格、同钢种、同一炉号的产品为一个组,装炉两边留10-15MM 空余,相邻两根管子之间距离在2-4CM。前后两组管子之间应保持20CM以上的距离。 3.8热处理批次按一次开炉升温稳定后,同一热处理工操作的所有产品为一个热处理批次;一次开炉升温稳定情况下,中途换班后应为另一热处理批次,热处理批次应编号写入原始记录和流转卡上。 3.9热处理批次好编写规则 3.10热处理出炉后迅速采用水急冷,经常检查冷却水温度,保证快速降温时间。

热处理炉安全操作规程

1热处理人员接到任务时首先检查热处理炉的状况是否满足热处理的条件,包括以下项目: 1.1温层是否完好。 1.2挡风墙是否完好。 1.3油泵、风机是否能正常工作。 1.4测温仪表是否正常。 1.5风冷要求是否能满足。 1.6炉车运行是否完好。 1.7油库油量是否满足生产需要。 1.8油嘴调节系统是否灵敏可靠。 1.9以上情况正常时,可进行下面操作;如不正常,应查出原因并使其恢复正常。 2热处理人员根据生产安排合理吊装工件,工件摆放应符合以下规定: 2.1弯管在炉车上的排列应考虑散热不受阻隔,风冷散热方便,火嘴墙应便于火焰通过,但不直接烧在弯管上。 2.2弯管应用垫砖垫放牢靠平稳,防止钢管变形,并应考虑垫砖承受能力。 2.3两层码放时,应注意上下层管子之间尽量避免相压而以垫砖承受为主,当不可避免时,相压部位必须有支点不得悬空。 2.4两层码放时,对大口径薄壁管,第二层必须以耐火砖为支点,不得压在底层弯管上,且管口必须支撑,支撑物必须靠牢吃力。

2.5工件摆放完毕后应画管子摆放图以便记录管子编号。 3装炉结束后,将炉车开进炉内,放下炉门,将炉门与炉车、炉车与后炉墙之间的缝隙用沙土、石棉布等加以密封 4启动油泵、风机、点燃火嘴。 5调整火嘴及风量,使炉内温度按照热处理工艺曲线的要求控制升温速度恒温时间及冷却速度。 6控制炉温和工件温度的热电偶必须经计量合格,且在计量的有效期内。热电偶的安装位置应能正确反映炉温和工件的真实温度。 7热处理炉的油系统管路,接头应坚持每天检查一次,如有渗油现象应立即排除。 8吊装管件时,应先检查钢丝绳及卸卡物是否合格,注意吊装角度, 并合理使用钢丝绳及卸卡。 9每次工作完毕要拉闸断电。 10炉车的耐火砖垫块应经常检查及时更换。 11热处理炉车轨道下不得放置障碍物,炉车进炉或出炉时,必须 一人在外瞭望,一人操作。 12点火前应进行炉周围检查,清理易燃易爆物后才允许点炉,引 火防止烧伤自己,不得在眼前点火,应侧脸点火。 13经常检查油路系统是否漏油,如有漏油应及时处理。 14出炉前,应注意检查周围有无易燃易爆物品 15做好班前安全交底,班后安全总结,做好自身安全保护工作。 16遵守安全规章制度,如进入车间戴安全帽,穿绝缘鞋等。

连续式热处理炉操作标准说明书

标 题: 连续式热处理炉操作标准说明书 第3次修订 、型号:5S 6S 二、厂牌:三永电热机械股份有限公司 三、机械规格与特性: SY-805-6 主炉规格 10m X 1.8m 、lOmX 1.6m , SY-809-6 10m x 1.7m (调质 炉)、10n X 1.4m (渗碳炉)。 五、使用前应注意事项: (一):检查各瓦斯压力是否足够。 (二):检查冷却水是否足够。 (三):各轴承部位应加注黄油。 (四):检查淬火油及回火油是否足够。 (五):检查各经路是否正常。 六、开炉步骤: (一)、主炉部分: 、将冷却水总开关打开调整设定水量,检视各冷却水是否畅通。 、启动输送传动马达,调整输送网位置。 、启动主炉电热开关升温至400C 保持续2小时,升至600r /2保持2小时, 升至800r 保持2小时。 (二):特性: 连续式。 四、诸元介绍: (详细参阅附件WEM701 股份有限公司 05.12.06 05.12.05 05.12.04 (一):规格: 、启动一、 三、四号搅拌器风扇。

第3次修订 (二)、碳势控制系统: 1、打开碳势控制系统电源,设定碳势。 2、主炉温度达800r后,方可打开甲醇开关,调整甲醇流量。 3、将排气口打开点燃30分至1小时。 4、等炉内火焰烧至入口时,方可打开瓦斯开关。 5、先手动调节瓦斯流量,再调整伺服马达,使其置于自动控制状态。 6等碳势显示达所需标准且稳定后方可入料操作生产。 (三)、淬火油槽: 1、打开淬火油槽循环油开关。 2、启动输送带开关。 (四)、洗净 槽: 1、打开洗净槽循环泵浦。 2、打开喷射管开关。 3、启动输送带开关。 (五)、回火炉部分: 1、启动回火炉电热开关,将温度升至所需温度(具体温度依所生产之产品而定) 2、启动输送网传动马达。 3、启动1、2、3、4号搅拌器。 4、打开冷却水开关。 (六)、回火油槽: 1、启动回火油槽循环泵。 2、启动输送马达。

热处理箱式炉安全操作规程实用版

YF-ED-J3574 可按资料类型定义编号 热处理箱式炉安全操作规 程实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

热处理箱式炉安全操作规程实用 版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1遵守一般热处理工安全操作规程。仔细检 测温度仪表、热电偶电气设备、接地线等是否 完好。 2检查炉膛内是否有异工件,炉底板、电阻 丝是否完好。 3工件进出炉应断电操作,并注意工件或工 具不得与电阻丝相碰撞接触。装、出炉时不得 砸撞炉底板,不得撞击阁砖。 4电炉通电前应首先合闸,再开控制柜电 钮。停炉时应首先关控制柜电钮,再拉闸。

5每两周必须清理一次炉底上的杂物,发现问题应及时处理好。 6使用温度不得超过950℃。每次大修理后,在使用前需经过电热烘干,升温到300℃到400℃时取出炉底板,打开炉门八小时烘,然后关闭炉门再升温到500℃到600℃烘干8小时。 7发现仪表失灵,电阻丝相互接触烧坏,电阻丝加热时不平衡,应停炉并通知维修人员进行修理。 8发生事故要保持现场,并报告有关部门。

真空热处理炉课程设计

真空热处理炉 设计说明书 (课程设计) 一、设计任务说明说: WZC-60型真空淬火炉技术参数:

二、确定炉体结构和尺寸: 1、炉膛尺寸的确定 由设计说明书中,真空加热炉的有效加热尺寸 为900mm×600mm×450mm ,隔热屏部结构尺寸 主要根据处理工件的形状、尺寸和炉子的生产率决定, 并应考虑到炉子的加热效果、炉温均匀性、检修和装 出料操作的方便。一般隔热屏的表面与加热器之 间的距离约为50—100mm;加热器与工件(或夹具、 料筐)之间的距离为50一150mm。隔热屏两端通常不 布置加热器,温度偏低。因此,隔热屏每端应大于 有效加热区约150—300mm,或更长一些。从传热学 的观点看,圆筒形的隔热屏热损失最小,宜尽量采用。 则: L=900+2×(150~300)=1100~1400mm B=600+2×(50~150)+2×(50~100) =800~1100mm H=450+2×(50~150)+2×(50~100) L=1300㎜=650~950mm B=900㎜不妨,我们取L=1300 mm;B=900mm;H=850mm。 H=850㎜

2、炉衬隔热材料的选择 由于炉子四周具有相似的工作环境,我们一般选用相同的材料。为简单起见,炉门及出炉口我们也采用相同的结构和材料。这里我们选用金属隔热屏,由于加热炉的最高使用温度为1300℃,这里我们采用六层全金属隔热屏,其中三层为 钼层,外三层为不锈钢层。 按设计计算,第一层钼辐射屏与炉温相等,以后各辐射屏逐层降低,钼层每层降低250℃左右,不锈钢层每层降低150℃左右。 则按上述设计,各层的设计温度为: 第一层:1300℃;第二层:1050℃; 第三层:800℃;第四层:550℃; 第五层:400℃;第六层:250℃; 水冷夹层壁:100℃ 最后水冷加层壁的温度为100℃<150℃, 符合要求。 3、各隔热层、炉壳壁的面积及厚度 (1)、隔热屏 由于隔热层屏与屏之间的间距约8~15mm,这里我们取10mm。钼层厚度0.3mm,不锈钢层厚度0.6mm。屏的各层间通过螺钉和隔套隔开。

相关文档
相关文档 最新文档