文档库 最新最全的文档下载
当前位置:文档库 › 第6章核酸检验基本技术

第6章核酸检验基本技术

第6章核酸检验基本技术
第6章核酸检验基本技术

第六章核酸检验基本技术

第一节分子生物学基本知识

一、DNA和RNA

DNA是脱氧核糖核酸的英文缩写。DNA以核苷酸排列顺序形式储存遗传信息。

DNA分子由4种核苷酸组成,由碱基互补维持DNA双螺旋结构。

在动植物、细菌和真菌中都含有DNA,但在病毒中不一定含DNA。

DNA为长丝状分子相互纠缠,其溶液十分黏稠。

它对紫外线有最强的吸收,通常用260nm波长测DNA溶液浓度,它在近中性环境中带负电荷,DNA变性后OD值会升高。

因DNA不溶于乙醇,常用二倍量乙醇沉淀DNA。

在变性温度时,它的黏性突然降低。淬火是为了保持DNA单恋状态。

DNA变性后溶液慢慢冷却,DNA会自动回复双螺旋结构。

RNA是核糖核酸的英文缩写,在大多数生物类型中,RNA起遗传信息传递作用并指导合成蛋白质,但在一部分病毒中,RNA也是遗传信息的保存者。

RNA分子中除了含有核糖而不是脱氧核糖外,凡DNA中出现胸腺嘧啶的地方都代之以尿嘧啶。

二、DNA的复制和修复

细胞分裂一次,染色体DNA就合成一次。

DNA分子拆开成两条链,每一条单链按照碱基配对的原则合成另一条新的单链,成为半保留复制。

在合成DNA时限制性核酸内切酶不是合成DNA的必要条件。

DNA多聚酶只能结合在一长段DNA单链的一小段局部双链结构上,才能顺利开始DNA合成。

在DNA合成中单核苷酸分子必须顺序以共价链连接在已形成核酸链3?末端的羟基上。

在合成大声错误时,DNA多聚酶会切除错误核苷酸,在那个位置上重新加一个正确核苷酸。

在人工合成DNA时,至加一种或两种三磷酸单核苷酸,那么和成就会停止在缺失的核苷酸位置上。

在大肠菌DNA损伤修复时填补缺口最重要的酶是DNA聚合酶Ⅰ,而复制最主要的DNA聚合酶是DNA聚合酶Ⅱ。

该酶的核心聚合酶中,具有3?-5?外切酶活性。DNA修复过程中尿嘧啶糖基酶系统不包括SⅠ核酸酶。

逆转录酶的RNAaseH活性是一般DNA聚合酶所不具备的。

三、转录

在生物体内,DNA知道的RNA合成过程称为转录。

它是按照储存在DNA尚的遗传信息合成。

合成RNA时DNA双链也要解旋,解旋部位称启动子。

大肠菌的RNA聚合酶有5个亚基,其σ亚基有启动子作用。

四、翻译

再合成各种不同RNA中,tRNA具有搬运氨基酸功能。

构成核糖体骨架的是rRNA,而mRNA直接决定蛋白质的结构。

4种核苷酸排列组成遗传信息,很撑蛋白质时转换成20种氨基酸的排列顺序,遗传信息的这种转换称为翻译。

3个核苷酸排列顺序代表一种氨基酸密码,表示蛋白质合成开始的密码有一种,DNA3个终止密码子分别是UAA、UAG、UGA。

在细菌里,依靠rRNA和mRNA之间一段互补序列能发现蛋白质合成开始的位置。

元和生物核糖体是由16SrRNA、23SrRNA和5SrRNA组成,在振和生物核糖体的五种主要的组蛋白中,H1在进化中最不保守。

在核糖体上,有2个位置上暴露出mRNA分子相邻的2个密码子,当蛋白质合成进行到没有携带任何

一种氨基酸的tRNA与其对应,这说明合成蛋白质结束,并已开始同一种蛋白质分子的合成。

合成蛋白质后,决定其空间结构的是蛋白质的氨基酸排列顺序确定后,就能自动折叠卷曲呈一定的空间形状。

第二节分子生物学基本技术

一、质粒DNA的分离、纯化和鉴定

质粒是一种染色体外的稳定遗传因子,大小从1~200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。

质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表示所携带的遗传信息。

质粒的存在使宿主具有一些额外的特性,如致病的能力和对抗生素的抗性等。

把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中进行繁殖和表达的工具叫载体。

细菌质粒是重组DNA技术中常用的载体。

质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的。

与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必须序列,使分子量尽可能减少,以便于基因工程操作。

一个理想的克隆抗体大致应有下列一些特性:

①分子量小、多拷贝、松弛控制型;

②具有多种常用的限制性内切酶的单切点;

③能插入较大的外源DNA片段;

④具有容易操作的检测表型。

常用的质粒载体大小一般在1~10kb,如PBR322、PUC序列、PGEM序列和pBluescript(pBS)等。

从细菌中分离质粒DNA的方法都包括3个基本步骤:

①培养细菌使质粒扩增;②收集和裂解细胞;③分离和纯化质粒DNA。

含有治理细菌应在能够保存质粒的条件下培养,生长到足够数量时,加入抑制蛋白质合成的抗生素,在细菌停止繁殖后质粒仍然还在复制,这样就可以提高质粒的收获量。

采用溶菌酶可以破坏菌体细胞壁,十二烷基磺酸钠(SDS)和Triton X-100可使细胞膜裂解。

经溶菌酶和SDS或Triton X-100处理后,细菌染色体DNA会缠绕附着在细胞碎片上,同时由于细菌染色体DNA比质粒大得多,易受机械力和核酸酶等的作用而被切断呈不同大小的线性片段。

当用强热或酸、碱处理时,细菌的线性染色体DNA变性,而质粒的共价闭合环状DNA的两条链不会相互分开,当外界条件恢复正常时,线状染色体DNA片段难以复性,而是与变性的蛋白质和细胞碎片产然在一起,而质粒DNA双链又恢复原状,重新形成天然的超螺旋分子,并以溶解状态存在也液相中。

离心除去断裂的染色体DNA和细胞的碎片,使用酚处理等方法除去包括核酸酶等的蛋白质,在使用乙醇沉积等方法将质粒DNA从上清液中沉积下来,就可以获得高浓度的质粒溶液。

细胞在提取质粒过程中,除了超螺旋DNA外,还会产生其他形式的质粒DNA。如果质粒DNA两条链中有一条链发生一处或多处断裂,分子就能旋转而消除链的张力,形成松弛型的环状分子,称开环DNA;

如果质粒DNA的两条链在同一处断裂,则形成线状DNA。

二、记忆组DNA的提取

基因组DNA的提取是研究各种生物,包括病原微生物遗传特征的基本条件。

利用基因组DNA较长的特性,可以将其与细胞器或质粒等小分子DNA分离。

加入一定量的异丙醇或乙醇,基因组的大分子DNA即沉淀形成纤维状絮团漂浮其中,可用玻棒将其取出,而小分子DNA则只形成颗粒状沉淀附于壁上及地步,从而达到提取的目的。

在提取过程中,染色体会发生机械断裂,产生大小不同的片段,因此分离基因组的DNA时应量在温和条件下操作,如尽量减少酚/氯仿抽提、混匀过程要轻缓,以保证得到较长的DNA。

一般来说,构建基因组文库,初始DNA长度必须在100kb以上,否则酶切后两边都带合适末端的有效

片段很少。

而进行RFLP和PCR分析,DNA长度可短至50kb,在该长度以上,可保证酶切后产生RFLP片段(20kb 以下),并可以保证含PCR所扩增的片段(一般2kb以下)。

不同生物(植物、动物、微生物)的基因组DNA的提取方法有所不同;不同种类或同一种类的不同组织因其细胞结构及所含的成分不同,分离方法也有差异。

组织中的多糖和酶类物质对随后的酶切、PCR反应等又较强的抑制作用,因此用富含这类物质的材料提取基因组DNA时,应考虑出去多糖和酚类物质。

三、RNA的提取和cDNA合成

在病原微生物中,许多种类病毒的基因组由RNA组成,真核生物的组织或细胞中也存在着大量的RNA,提取这些RNA,是了解生物和微生物中的生命过程,认识疾病的基本条件。

细胞内总RNA制备方法很多,如异硫氰酸胍热本分发等。许多公司有现成的总RNA提取试剂盒,可快速有效地提取到高质量的总RNA。

分离的总RNA可利用mRNA3?末端含有多聚(A)+的特点,当RNA流经oligo(dT)纤维素柱时,在高盐缓冲液作用下,mRNA被特异的吸附在oligo(dT)纤维素上,然后逐渐降低盐浓度洗脱,在地盐溶液或蒸馏水中,mRNA被洗下。

经过两次oligo(dT)纤维素柱,可得到较纯的mRNA。纯化的mRNA在70%乙醇中-70℃可保存1年以上。

RNA还可以通过酶促反应逆转录合成cDNA来加以研究,将双链cDNA和载体连接,然后转化扩增,即可获得cDNA文库,构建的cDNA文库可用于振和生物基因的结构、表达和调控的分析;

比较cDNA和相应基因组DNA序列差异可确定内含子存在和了解转录后加工等一序列问题。

cDNA合成及克隆的基本步骤包括用反转录酶合成cDNA第一链,聚合酶合成cDNA第二链,加入合成接头以及将双链DNA克隆到适当载体(噬菌体或质粒)。

四、DNA酶切及凝胶电泳

限制性内切酶能特异地结合于一段被称为限制性酶识别序列的DNA序列之内或其附近的特异位点上,并切割双链DNA。

它可分为三类,其中Ⅱ类限制性内切酶在分子克隆和微生物鉴定中得到广泛应用。

绝大多数Ⅱ类限制酶识别长度为4个或6个核苷酸的回文对称特异核苷酸序列。

与的在对称轴处切割,产生平末端的DNA片段,有的切割位点在对称轴一侧,产生带有单链突出末端的DNA片段称黏性末端。

利用限制性内切酶的这些性质,可以对各种DNA结构进行限制性内切酶分析。

DNA经限制性内切酶切割后,产生许多一定长度的片段,使用电泳的方法分离不同长度的片段,一种DNA结构就能形成一种特征性的图形,称为DNA的电泳图谱,为了获得条带清晰的电泳图谱,一般DNA用量为0.5~1μg。

限制性内切酶的酶解反应最适条件各不相同,各种酶有其相应的酶切缓冲液和最适反应温度(大多数为37℃)。

对质粒DNA酶切反应而言,限制性内切酶用量可按标准体系1μgDA加1单位酶,下滑1~2小时。

但要完全酶解则必须增加酶的用量,一般增加2~3倍,甚至更多,反应时间也要适当延长。

在酶切图谱制作过程中,琼脂糖或聚丙烯酰胺凝胶电泳是分离鉴定和纯化DNA片段的标准方法。

琼脂糖和聚丙烯酰胺可以制成各种形状、大小和孔隙度。

琼脂糖凝胶分离DNA片段大小范围较广,不同浓度琼脂糖凝胶可分离长度从200bp至近50kb的DNA 片段。

琼脂糖通常用水平装置在强度和方向恒定的电场下电泳。

聚丙烯酰胺分离小片段DNA(5~500bp)效果较好,其分辨力极高,甚至相差1bp的DNA片段就能分开。

聚丙烯酰胺凝胶通常采用垂直装置进行电泳。

电泳完毕后,使用溴化一啶染色,DNA片段聚集的地方,在紫外线下可以显示发橙色荧光的条带。

如果电泳中使用了已知大小的DNA片段作为分子量标志,可以测量并计算出每一DNA片段的长度。

结合使用多种限制性内切酶,通过综合分析将这些片段排列起来,便可作出DNA的限制性内切酶酶切图谱。

DNA限制性内切酶酶切图谱又称DNA的物理图谱,它由一系列位置确定的多种限制性内切酶酶切位点组成,以直线或环状图式表示。

需要注意DNA纯度、缓冲液、温度条件及限制性内切酶本身都会影响限制性内切酶的活性,只有严格控制条件才能保证酶切图谱的准确性。

第三节探针和杂交技术

DNA的双链结构解旋形成单链称为DNA的变性,变性后的DNA单链,仍可通过碱基配对重新次年工程双链结构,称为复性。

在复性过程中,不同来源的互补核苷酸系列形成稳定的杂合双链DNA的过程称为分子杂交。

带有可以识别标记的已知核苷酸系列称为探针,由于杂交过程的高度特异性,可以根据所使用的探针测知对应系列的存在,这种方法称为杂交技术。

核酸分子杂交具有很高的灵敏度和高度的特异性,因而该技术在分子生物学领域中已广泛地使用于克隆基因的筛选、酶切图谱的制作、基因组中特定基因系列的定性、定量检测和疾病的诊断等方面。

因而它不仅在分子生物学领域中具有广泛地应用,而且在临床诊断上的应用也日趋增多。

核算探针根据核酸的性质,可分为DNA和RNA探针。

分子生物研究中,DNA探针最为常用,通常使用已知的DNA片段,将带有显色酶促反应标记的单核苷酸合成其中,也可在PCR反应的过程中加入标记的单核苷酸,扩增的产物即可用作探针。

利用寡核苷酸探针可检测到靶基因上单个核苷酸的点突变。

常用的寡核苷酸探针主要有两种:

单一已知系列的寡核苷酸探针和许多简并性寡核苷酸探针组成的寡核苷酸探针库。

单一已知系列的寡核苷酸探针能与它们的目的系列准确配对,可以准确地设计杂交条件,以保证探针只与目的系列杂交而不与系列相近的非完全配对系列杂交,对于一些未知系列的目的片段则无效。

RNA探针一般都是单链,它具有单链DNA探针的优点,又具有许多DNA单链探针所没有的优点,主要是:RNA:DNA杂交体比DNA:DNA杂交体有更高的稳定性,所以在杂交反应中RNA探针比相同比活性的DNA 探针所产生信号要强。

RNA:RNA杂交体用RNA酶A酶切比S1酶切DNA:RNA杂交体容易控制,所以用RNA探针进行RNA结构分析比用DNA探针效果好。

分子杂交是通过各种方法将核酸分子固定在固相支持物上,然后用带有标记的探针与被固定的分子杂交,经显影后显示出目的DNA或RNA分子所处的位置。

根据被测定的对象,分子杂交基本可分为以下几大类:

(1)Southern杂交:

DNA片段经电泳分离后,从凝胶中转移到硝酸纤维膜或尼龙膜针上,然后与探针杂交。

被检对象为DNA,探针为DNA或RNA。

(2)Northern杂交:

RNA片段经电泳后,从凝胶中转移到硝酸纤维素滤膜上,然后用探针杂交。

被检对象为RNA,探针为DNA或RNA。

(3)其他:

根据杂交所用的方法,另外还有斑点杂交、狭槽杂交和原位杂交等。

有3种固相支持体可用于杂交:

硝酸纤维素滤膜、尼龙膜和Whatman 541滤纸。Whatman 541滤纸有很高的湿强度,最早用于筛选细菌菌落,与硝酸纤维滤膜相比有一些有限:它更便宜,杂交中更耐用,干燥过程中不易变形和碎裂等。

然而若变形过程不小心,杂交信号的强度会明显弱于用硝酸纤维滤膜时所得到的信号强度。

因此,常规的细菌筛选和各种杂交时多选用硝酸纤维滤膜作为固相支持体。

第四节扩增技术

PCR(聚合酶链反应)是一种选择性体外扩增DNA或RNA的方法。

它包括三个基本步骤:

①变形:双链DNA片段在94℃下解链;

②退火:两种寡核苷酸引物在适当温度(50℃左右)下与模板上的目的系列通过氢键配对;

③延伸:在Taq DNA聚合酶合成DNA的最适温度下,以目的DNA为模板进行合成。

由这三个基本步骤组成一轮循环,理论上每一轮循环将使目的DNA扩增一倍,这些经合成产生的DNA 又可作为下一轮循环模板,所以经25~35轮循环就可使DNA扩增达106倍。

PCR反应中的成分主要有:

(1)引物:

PCR反应产物的特异性由一堆上下游引物所决定。引物的好坏往往是PCR成败的关键。

(2)4种三磷酸脱氧核苷酸(dNTP):

理论上4种dNTP各20μmol/L,足以在100μl反应中合成2.6μg的DNA。

当dNTP终浓度大于50mmol/L时可抑制Taq DNA聚合酶的活性。

4种dNTP的浓度应该相等,以减少合成由于某种dNTP的不足出现的错误掺入。

(3)Mg2+:

Mg2+浓度对Taq DNA聚合酶影响很大,通常反应体系中Mg2+浓度范围为0.5~2mmol/L。

(4)模板:

PCR反应必须以DNA为模板进行扩增,模板DNA可以是单链分子,也可以是双链分子,可以是线状分子,也可以是环状分子(线状分子比环状分子的扩增能效果稍好),就模板DNA而言,影响PCR的主要因素是模板的数量和纯度。

(5)Taq DNA聚合酶:

Taq DNA聚合酶耐高温,其活性半衰期92.5℃为130分钟,95℃为40分钟,97℃为5分钟。

(6)反应缓冲液:

反应缓冲液一般含10~50mmol/L Tris·Cl,20℃下pH8.3~8.8,50mmol/L KCl和适当浓度的Mg2+。

利用扩增技术可以获得任何数量的已知基因或DNA片段,也可以进一步通过系列测定来逐段查明生物基因组的结构,在分子水平上的基因组多态性检测技术中,也有一些扩增技术为基础。

例如随机扩增的多态性DNA(RAPD)分析和扩增片段长度多态性(AFLP)分析。

前者利用一系列(通常数百个)不停的随机排列碱基顺序的寡聚核苷酸单链(通常为10聚体)为引物,对所研究基因组DNA进行PCR扩增;

后者则在限制酶切割的基础上,利用DNA片段两端的黏性末端连接人工合成的“接头”,再根据接头序列进行扩增。

扩增的产物电泳分离后形成图形,可以作为整个基因组的特征标志,也可以将扩增的片段测序后,对基因组的结构进行细致的分析。

第五节高通量检测技术

生物基因组是一个机器巨大的分子,目前,已经可以使用精确的测定方法,查明其中每一部分的特征。

然而,这种测定的数量及其庞大,迫切需要发展在一次测定中,获得成百上千反应的结果。

这样的技术,称为高通量检测技术。目前,生物芯片技术是发展最快,也是应用最为广泛的高通量技术。

生物芯片技术是20试剂90年代生命科学领域中迅速发展起来的一项新技术,其本质是固定在玻片等载体上的微型生物化学分析系统,芯片上每平方厘米可密集排列成千上万个生物分子,能快速准确地检测细胞、蛋白质、DNA及其他生物组分,并获得样品的有关信息,其效率是传统方法的成百上千倍。

根据芯片上的固定的探针不同,生物芯片包括基因芯片、蛋白质芯片、细胞芯片、组织芯片,另外根据原理还有元件型微阵列芯片、通道型微阵列芯片、生物传感芯片等新型生物芯片。

基因芯片也称为基因微阵列技术,指采用原位合成或显微打印手段,将数以万计的靶基因或寡核苷酸

片段固化于支持物表面上,产生探针阵列,然后与标记的样品进行杂交,通过监测杂交信号来实现对生物样品进行快速、并行、高效检测或医学诊断。

基因微阵列技术主要包括四个基本技术环节:芯片微阵列制备、样品的准备和标记、生物分子反应和信号的检测机数据分析处理。

目前微阵列技术在应用方面集中在以下几个方面:

①基因表达谱;

②比较基因组学;

③微生物检测;

④单核酸多态性分析;

⑤测序;

⑥其他。

目前生产的90%的基因芯片用于基因表达谱分析、病毒基因分型和SNP的研究。

与之相对应的,8.5%的芯片用于临床诊断。

与常规的检测手段相比较微阵列技术存在以下缺点:

①所需的设备昂贵。

②制备样品,标记过程复杂,耗费的时间过长。

③芯片用于检测缺少统一的标准化的问题,不同的技术平台判定阳性信号的标准不同。

④高度集成化样品制备、基因扩增、核算表计及检测仪器的研究和开发。

⑤不能对微生物特别是病毒进行定量分析。

虽然基因芯片技术在微生物诊断中存在一定的不足,但还存在很大的应用前景,其在微生物诊断中,具有以下优越性:

①高通量,可以同时对多种微生物进行监控。

②多条探针的分子杂交,可以有效地克服PCR易被污染的特点,从而提高了特异性。

③可以克服窗口期漏检情况的发生。

特别是将其应用于对集中微生物的多重感染的诊断上和鉴定新的病原微生物上,如在SARS病毒的鉴定中发挥了很大的作用。

可以预测在不久的将来,人们可望在一张基因芯片上检测到几乎所有病原微生物基因,在检测病原微生物的同时,还可以同步测试对药物的敏感性,实现真正意义上的病原微生物检测的技术革命。

《食品理化检验技术》课程标准

《食品理化检验技术》课程标准 课程名称:食品理化检验技术 课程类型:专业核心类 适用专业:食品营养与检测 课程学分:8 总学时:144 1 课程定位 食品理化检验技术是食品营养与检测专业的一门工学结合专业核心课程。 根据食品和农产品加工业发展的趋势及我国食品安全的现状,在充分进行专业调研的基础上,我院食品营养与检测专业以培养食品检验与质量安全控制技术人才为办学目标,主要为广东省食品及农产品加工企业培养食品检验与质量控制技术骨干,学生毕业后主要在食品检验与质量控制岗位上工作。 食品检验技术(包括感官检验、理化检验、微生物检验)属于产品质量控制范畴内的专门技术,在企业实际生产中具有十分重要的作用,它贯穿于食品产品研发、原料供应、生产和销售的全过程,是食品质量控制与安全保证不可缺少的手段。食品理化检验技术是依据食品相关标准,运用分析的手段,对各类食品(包括原料、辅料、半成品、成品及包装材料)的成分和含量进行检测,进而评定食品品质及其变化的一门实验学科。理化检验是企业检验岗位工作的主要内容,也是食品检验职业技能鉴定的核心部分。所以食品理化检验技术课程是专业课程体系中的核心课程,是一门技术性、应用性、实践性很强的课程。本课程的建设与改革对学生职业能力的培养、职业素养的养成和专业的发展起主要支撑作用。 本课程是学生在完成分析化学、生物化学、食品营养与卫生等课程的学习后再进行学习,并通过食品检验校内生产实训、顶岗实习等后续课程的强化,使学生可以逐步获得独立进行食品理化检验的工作能力,具有严谨求实的科学态度,增强食品食品质量安全的意识,提高自主学习、获取信息、团结协作、拓展创新等综合能力。 2 课程目标 本课程以“培养学生熟练掌握现代食品理化检验技术,熟悉食品相关标准,具有高水平的食品检验技能和良好的职业素养”为教学目标。

第一篇 微生物检验基本技术

第一章细菌检验基本技术 一、形态学检查 意义:1.为后续的进一步检验提供参考依据 2.迅速了解标本中有无细菌及菌量的大致情况 3.对少数具有典型形态特征的细菌可以做出初步诊断,为临床选用抗菌 药物治疗起重要的提示作用。 分为:染色标本和不染色标本的检查 1、不染色标本的检查:用于观察细菌的动力及运动情况。常用方法有压滴法和悬滴法。 2、染色标本检查:检查的内容:对标本合格与否进行评价;了解标本有无细菌及大致菌量;根据细菌形态、染色性质等对病原菌初步识别分类,决定进一步的生化反应鉴定血清学鉴定、并为临床选择用药提供帮助。 常用染色方法有:革兰染色(常用)、抗酸染色(结核病、麻风病)、荧光染色(结核、麻风、白喉、痢疾)、负染色(墨汁负染色法用于新型隐球菌检查)、特殊染色(鞭毛染色、荚膜染色、异染颗粒(白喉))。 二、培养与分离技术(关键) 目的:鉴定细菌的种类和保存菌种,为进一步确定细菌的致病性、药物敏感性提供依据。 牛肉膏无糖,可作为肠道细菌鉴别培养基的基础成分。 流感嗜血杆菌需要X因子和V因子。 理想的凝固物质具有的特性:本身不被细菌利用;在微生物生长温度范围内保持固体状态,凝固点的温度对微生物无害;不因消毒灭菌而破坏,透明度好,黏着力强。(琼脂最合适) 半固体培养基琼脂含量 0.3%~0.5%;固体培养基1.5%~2.0%。 培养基质量检验:1、无菌试验:将灭菌后的培养基置35℃温箱培养过夜,判定是否灭菌合格。2、效果检验:按不同的培养要求,接种相应菌种(符合要求的标准菌种),观察细菌的生长、菌落形态、色素、溶血及生化反应等特征,判断培养基是否符合要求。 制备好的培养基存放于冷暗处或4℃冰箱,一般不超过七天,如果用塑料袋密封。保存期可延长,但至多两周。 专性需氧:结核分枝杆菌、霍乱弧菌 微需氧菌(5%氧气、10%二氧化碳、85%氮气):空肠弯曲菌,幽门螺杆菌兼性厌氧菌:大多数病原菌 专性厌氧菌:破伤风梭菌、脆弱拟杆菌 二氧化碳培养(5%~10%二氧化碳):淋病奈瑟菌、脑膜炎奈瑟菌、布鲁菌 菌落是单个细菌在培养基上分裂繁殖而成的肉眼可见的细菌集落。 菌苔是由众多菌落连接而成的细菌群落。 三、生物化学鉴定技术 1、碳水化合物代谢试验 2、蛋白质和氨基酸代谢试验 3、碳源利用试验 4、呼吸酶类试验 5、其他

微生物检验技术考试要点(整理-中级)

检验技术资格考试考点精要——微生物学检验(中级) 1. 生物学按界门纲目科属种分类,种是最小单位。病毒分类:目、科、亚科、属、种。属名--VRir us 结尾的单词,亚科名--VRir inae结尾的单词,科名--VRir idae结尾的单词。目名—VRir ales。2004年ICTV 公布病毒分为:73个科、11个亚种、289个属。 2. 结核菌可利用甘油为碳源,梭状芽胞菌可以氨基酸为碳源,流感嗜血杆菌要Ⅴ,Ⅹ因子才能生长。 3. 药物敏感试验:纸碟法、小杯法、凹孔法、试管法。常用单片纸碟法、试管稀释法(以抗菌药物的最高稀释度仍能抑制细菌生长或杀菌管为终点,该管含药浓度为最低抑菌浓度MIC或最低杀菌浓度MBC),两值越低则表示越敏感。MIC与抑菌圈呈负相关,即抑菌环直径越大,MIC越小。 各药敏纸片间距不少于24mm,距平板内缘不小于15mm。 药物敏感实验判定标准:抑菌圈直径(毫米):20以上极敏、15~20高敏、10~14中敏、10以下低敏。不同的菌株、不同的抗生素纸片需参照NCCLs的标准或者CLSI标准。 多黏菌素抑菌圈;在9毫米以上为高敏,6—9毫米为低敏,无抑菌圈为不敏。 4.常用的免疫技术:酶免疫技术(EIA)、协同凝集试验、免疫荧光技术(IF)、对流免疫电泳(CIE)、免疫印迹技术。 5.病原菌核酸的检测:核酸杂交、PCR技术、基因芯片技术。 PCR技术—是选择DNA或RNA体外扩增技术,用标本提取DNA为扩增模板,选用一对特异寡核苷酸为引物,PCR一般要经历三十多次循环,经不同温度变性93-94℃(作用1min氢键断裂形成单链DNA)、退火40-60℃(迅速冷却30-60s引物与DNA模板结合,形成局部双链)、延伸70-75℃(在TaqDNA聚合酶作用下,以A、T、G、C四种脱氧核苷酸为原料,从引物5’→3’端延伸,合成与模板互补的DNA链。),扩增产物用溴乙啶染色的凝胶电泳。其具有特异、快速、灵敏、特异性强、操作简便、能够定量。引物是PCR特异性的决定因素,PCR反应中TaqDNA聚合酶、引物加量过多,可引起非靶序列扩增。 变性DNA常发生一些理化及生物学性质的改变: 1)溶液粘度降低。2)溶液旋光性发生改变。3)增色效应。热变性DNA一般经缓慢冷却后即可复性,此过程称之为" 退火",Tm低25℃左右的温度是复性的最佳条件。核酸实验中经常以迅速冷却至4℃以下方式保持DNA的变性(单链)状态。 基因芯片技术(DNA芯片、DNA微阵列)—主要过程:DNA微阵列的制备、样品的制备、靶分子和探针之间的杂交、杂交信号的检测与分析。具有快速、敏感、高通量检测平台。 核酸杂交(基因探针杂交技术)--是指单链RNA和DNA或DNA和DNA或RNA和RNA,根据碱基配对原则,借氢键相连而形成杂交分子的过程。杂交百分率>70%(≥69%)为高度同源性,同源性在60%以上是一个种,同源性在60%--70%是同一种内不同亚种,同源性在20%--60%同一属内不同菌种,同源性

核酸检测基本 知识

核酸检测基本知识 1.什么是核酸检测 核酸的定义:核酸是由核苷酸或脱氧核苷酸通过3′,5′-磷酸二酯键连接而成的一类生物大分子。 核酸具有非常重要的生物功能,主要是贮存遗传信息 和传递遗传信息。 2.核酸的分类 核酸大分子可分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。 3.核酸的组成

DNA和RNA都是由一个一个核苷酸(nucleotide)头尾相连而形成的,由C、H、O、N、P,5种元素组成。DNA是绝大多数生物的遗传物质,RNA是少数不含DNA的病毒(如HIV病毒,流感病毒,SARS病毒等)的遗传物质。RNA平均长度大约为2000个核苷酸,而人的DNA却是很长的,约有3X10^9个核苷酸。 4.核酸的功能 在蛋白质的复制和合成中起着储存和传递遗传信息的 作用。核酸不仅是基本的遗传物质,而且在蛋白质的生物 合成上也占重要位置,因而在生长、遗传、变异等一系列 重大生命现象中起决定性的作用。 DNA与RNA都是核酸,它们在化学组成上有什么区别如 下: DNA与RNA的比较DNA RNA 主要存在部位细胞核细胞质 基本组成单位脱氧核苷酸核糖核苷酸碱基种类A、G、C、T A、G、C、U 五碳糖种类脱氧核糖核糖 核苷酸链两条脱氧核苷酸链一条核糖核苷酸链 5.检测方法 核酸检测方法,主要通过同时进行靶核酸扩增和可检 测信号的生成来检测样品中的靶核酸。可应用于临床微生

物学、血液筛选、遗传病诊断和预防、法医学等领域的核 酸检测。 目前主要使用的方法有以下几种: a.核酸序列依赖性扩增法 NASBA是由一对引物介导的、连续均一的、体外特异性 核苷酸序列等温扩增RNA的新技术。反应在42℃进行,可在2h内将RNA模板扩增约109倍。NASBA原理是提取病毒RNA,加入AMV逆转录酶、RNA酶H、T7RNA聚合酶和引物进行扩增。 整个反应分非循环相和循环相:在非循环相中,引物I与模板RNA退火后在AMV逆转录酶的作用下合成cDNA,形成RNA:DNA 杂合体,随即RNaseH降解RNA,引物Ⅱ与cDNA退火,在反转录酶作用下合成第2条DNA互补链。双链DNA可在T7RNA聚合酶的作用下,经其启动子序列起动而转录RNA,RNA又可在反转录酶的作用下反转录成DNA,进入循环相,对模板进行大量 扩增。 b.转录介导的扩增技术 TMA技术原理与NASBA基本一致,略有不同之处是TMA利用的是MMLV逆转录酶及T7RNA聚合酶两种酶,MMLV逆转录酶既有逆转录酶的活性又具有RNA酶H活性。反应在41.5℃进行,可在1h内将RNA模板扩增约109倍。 c.连接酶酶促链式反应(LCR) LCR是基于靶分子依赖的寡核苷酸探针相互连接的一种

微生物检验的基本操作技术

微生物检验的基本操作技术 一、无菌操作技术 1、定义 是指在执行实验过程中,防止一切微生物侵入机体和保持无菌物品及无菌区域不被污染的操作技术和管理方法; 无菌操作技术是微生物实验的基本技术,是保证微生物实验准确和顺利完成的重要环节。 2、内容 无菌操作技术主要包括两方面: 1)创造无菌的培养环境。包括提供密闭的培养容器、培养容器的灭菌、培养基的灭菌等; 2)在操作和培养过程中防止一切其它微生物的侵入的措施。包括紫外线杀菌、甲醛熏蒸、超净台的消毒与检测、操作工具、器皿灭菌、操作方法等。 3、无菌操作原则 1)在执行无菌操作时,必须明确物品的无菌区和非无菌区,接种时必须穿工作服、戴工作帽,应在进无菌室前用肥皂洗手,然后用75%酒精棉球将手擦干净; 2)在操作前20~30分钟要先启动超净台和紫外灯,进行接种所用的吸管、平皿及培养基等必须经消毒灭菌,打开包装未使用完的器皿,不能放置后再使用,金属用具应高压灭菌或用95%酒精点燃烧灼3次后使用。严禁用手直接拿无菌物品,如瓶塞等,而必须用消毒的钳、镊子等; 3)从包装中取出吸管时,吸管尖部不能触及外露部位,使用吸管接种于试管或平皿时,吸管尖不能触及试管或平皿边; 4)接种样品、转种细菌必须在酒精灯前操作,接种细菌或样品时,吸管从包装中取出后及打开试管塞都要通过火焰消毒; 5)接种环或接种针在接种细菌前应经火焰烧灼全部金属丝,必须时还要烧到环和针与杆的连接处; 6)吸管吸取菌液或样品时,应用相应的橡皮头吸取,不得直接用口吸。倾倒平板应在超净台内操作,并且在开启和加盖瓶塞时需反复用酒精灯烧。 二、无菌操作的环境要求 1、无菌室 (1)无菌室的结构:更衣间、缓冲间、操作间;

食品微生物检验技术复习题完整版

食品微生物检验技术复 习题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

名词解释 样品(sample)是指从某一总体中抽出的一部分。 食品采样(sampling)是指从较大批量食品中抽取能较好地代表其总体样品的方法。 接种:将微生物接到适于它生长繁殖的人工培养基上或活的生物体内的过程叫做接种。 菌落总数:指一定数量或面积的食品样品,在一定条件下进行细菌培养,使每一个活菌只能形成一个肉眼可见的菌落,然后进行菌落计数所得的菌落数量。 V-P试验:某些细菌在葡萄糖蛋白胨水培养基中能分解葡萄糖产生丙酮酸,丙酮酸缩合,脱羧成乙酰甲基甲醇,后者在强碱环境下,被空气中氧氧化为二乙酰,二乙酰与蛋白胨中的胍基生成红色化合物,称V-P(+)反应。 生理生化试验:微生物生化反应是指用化学反应来测定微生物的代谢产物,生化反应常用来鉴别一些在形态和其它方面不易区别的微生物。因此微生物生化反应是微生物分类鉴定中的重要依据之一。 硫化氢(H2S)试验:有些细菌可分解培养基中含硫氨基酸或含硫化合物,而产生硫化氢气体,硫化氢遇铅盐或低铁盐可生成黑色沉淀物。 增殖培养基: 在普通培养基中加入一些某种微生物特别喜欢的营养物质,以增加这种微生物的繁殖速度,逐渐淘汰其它微生物,这种培养基称为增殖培养基。 外源性污染:食品在生产加工、运输、贮藏、销售食品过程中不遵守操作规程或不按卫生要求使食品发生污染称为外源性污染,也称为第二次污染. 环状沉淀反应:是一种定性试验方法,可用已知抗体检测未知抗原。将已知抗体注入特制小试管中,然后沿管壁徐徐加入等量抗原,如抗原与抗体对应,则在两液界面出现白色的沉淀圆环。 微生物性食物中毒:食用被微生物或微生物毒素污染的食品而引起的中毒称为微生物性食物中毒。 无菌接种操作:培养基经高压灭菌后,用经过灭菌的工具在无菌条件下接种含菌材料于培养基上,这过程叫做无菌接种操作。 菌落:指细菌在固体培养基上生长繁殖而形成的能被肉眼识别的生长物,它是由数以万计相同的细菌集合而成。 细菌总数:指一定数量或面积的食品样品.经过适当的处理后,在显微镜下对细菌进行直接计数。其中包括各种活菌数和尚未消失的死菌数。 大肠菌群:系指一群在37度能发酵乳糖、产酸、产气、需氧和兼性厌氧的革兰氏阴性的无芽胞杆菌。 淀粉水解试验:某些细菌可以产生分解淀粉的酶,把淀粉水解为麦芽糖或葡萄糖。淀粉水解后,遇碘不再变蓝色。 糖酵解试验:不同微生物分解利用糖类的能力有很大差异,或能利用或不能利用,能利用者,或产气或不产气。可用指示剂及发酵管检验。甲基红(Methyl Red)试验:肠杆菌科各菌属都能发酵葡萄糖,在分解葡萄糖过程中产生丙酮酸,进一步分解中,由于糖代谢的途径不同,可产生乳酸,琥珀酸、醋酸和甲酸等大量酸性产物,可使培养基PH值下降至以下,使甲基红指示剂变红。 靛基质(Imdole)试验:某些细菌能分解蛋白胨中的色氨酸,生成吲哚。吲哚的存在可用显色反应表现出来。吲哚与对二甲基氨基苯醛结合,形成玫瑰吲哚,为红色化合物。尿素酶(Urease)试验:有些细菌能产生尿素酶,将尿素分解、产生2个分子的氨,使培养基变为碱性,酚红呈粉红色。氧化酶(Oxidase)试验:氧化酶亦即细胞色素氧化酶,为细胞色素呼吸酶系统的终末呼吸酶,氧化酶先使细胞色素C氧化,然后此氧化型细胞色素C再使对苯二胺氧化,产生颜色反应。硫化氢-靛基质-动力(SIM)琼脂试验:试验方法:以接种针挑取菌落或纯养物穿刺接种约1/2深度,置36±1℃培养18~24h,观察结果。培养物呈现黑色为硫化氢阳性,混浊或沿穿刺线向外生长为有动力,然后加Kovacs氏试剂数滴于培养表面,静置10min,若试剂呈红色为靛基质阳性。培养基未接种的下部,可作为对照。选择培养基:在培养基中加入某种物质以杀死或抑制不需要的菌种生长的培养基,称之为选择培养基。鉴别培养基: 在培养基中加入某种试剂或化学药品,使难以区分的微生物经培养后呈现出明显差别,因而有助开快速鉴别某种微生物。这样的培养基称之为鉴别培养基。 无菌技术:指在微生物实验工作中,控制或防止各类微生物的污染及其干扰的一系列操作方法和有关措施。 粪大肠菌群:系一群需氧及兼性厌氧,在℃培养24h内能发酵乳糖产酸产气和分解色氨酸产生靛基质的革兰氏阴性无芽胞杆菌。玻片凝集法:是一种常规的定性试验方法。原理是用已知抗体来检测未知抗原。常用于鉴定菌种、血型。试管凝集法:是一种定量试验方法。多用已知抗原来检测血清中有无相应抗体及其含量。常用于协助诊断某些传染病及进行流行病学调查。 沉淀反应:可溶性抗原与相应抗体结合,在有适量电解质存在下,经过一定时间,形成肉眼可见的沉淀物,称为沉淀反应(Precipitation)。絮状沉淀反应:将已知抗原与抗体在试管(如凹玻片)内混匀,如抗原抗体对应,而又二者比例适当时,会出现肉眼可见的絮状沉淀,此为阳性反应。琼脂扩散试验:利用可溶性抗原抗体在半固体琼脂内扩散,若抗原抗体对应,且二者比例合适,在其扩散的某一部分就会出现白色的沉淀线。每对抗原抗体可形成一条沉淀线。有几对抗原抗体,就可分别形成几条沉淀线。大肠菌群MPN:大肠菌群MPN是采用一定的方法,应用统计学的原理所测定和计算出的一种最近似数值。 大肠菌群值:大肠菌群值是指在食品中检出一个大肠菌群细菌时所需要的最少样品量。内源性污染:凡由动物体在生活过程中,由于本身带染的微生物而造成食品的污染者,称为内源性污染,也称第一次污染.食品腐败变质:是指食品受到各种内外因素的影响,造成其原有化学性质或物理性质发生变化,降低或失去其营养价值和商品价值的过程.

食品理化检验技术试题及参考答案

《食品理化检验技术》试题及参考答案 填空题(每小题2分,共计20分) 1.液态食品的相对密度可反应液态食品的和。 2.样品的制备是指对采集的样品进行、。混匀等处理工作。 3.食品中水的有在形式有和两种。 4.膳食纤维是指有在于食物不能被人体消化的和的总和。 5.碘是人类必需的营养素之一:它是的重要组成成分。 6.食品中甜味剂的测定方法主要有、、薄层色谱法等。 7.合成色素是用人工方法合成得到的,主要来源于及副产品。 8.食品中农药残留分析的样品前处理一般包括三个步聚:即、和浓缩。9.赭曲霉毒素的基本化学结构是由连接到β-苯基丙氨酸上的衍生物。 10.镉是一种蓄积性毒物,主要蓄积部位是肾和。 11.丙稀酰胺由于分子中含和,具有两个活性中心,所以是一种化学性质相当活泼的化合物。 12.雷因许氏试验是常用于和快速检验的定性实验。 多项选择题(每小题2分,共计10分) 1.关于保健食品的叙述正确的是() A.具有特定保健功能 B、可以补充维生素、矿物质 C、适宜特定人群食用 D、具有调节机体功能,不以治疗疾病为目的 2.标准分析法的研制程序包括() A.立项 B、起草 C、征求意见 D、审查 3.食品样品制备的一般步骤分为() A.去除非食品部分 B、除去机械杂质 C、均匀化处理 D、无机化处理 4.在常压下于()0C()h干燥食品样品,使其中水分蒸发逸出,食品样品质量达到恒重。 A.950C-1050C B、900C-1000C C、2-4h D、4-6h 5.通常食品中转基因成分定性,PCR检测可分为以下几个步骤() A.确定待测目标序列 B、引物设计和PCR扩增 C、PCR反应体系的构建 D、电泳及结果分系 判断题(每小题2分,共计20分) 1.海豚毒素是一种小分子非蛋白类神经毒素,其毒性比剧毒药物青化钾还要大1000倍,与人的致死量为0.5mg() 2.塑料种类繁多,按受热后的性能变化可分为热固性和热塑性。() 3.将真核细胞中主要的已知基因mRNA通过逆转录PCR扩增合成不同基因的c DNA探针,并制 成基因芯片。() 4.现场样品的采集必须遵照统计学意义上的随机原则,从而使所采集的样品具有代表性,并能最终保证检测结果的可靠性和准确性。() 5.食品中丙烯酰胺的主要来源是热力加工食品,其形成的机制目前基本的到确认。()6.PCBs不是公认的持久性有机污染物。() 7.分光光度法是测定挥发性亚硝胺类化合物的方法。() 银白色软金属,原子量112.41,密度8.6,熔点320.90C,沸点7670C。() 8.C d 9.氨基甲酸酯是继有机磷农药后的一类重要的防腐剂。() 10.皂苷对人体的新陈代谢起着重要生理作用,它可以抵制血清中指类氧化,抵制过氧化酯质生成。()

常见实验方法的写作套路核酸检测篇9-Digital PCR

编号:2-9 主题:digital PCR 概述: Digital PCR(dPCR)即数字PCR,它是一种核酸分子绝对定量技术。相较于qPCR,数字PCR可以直接数出DNA分子的个数,是对起始样品的绝对定量。数字PCR是最新的定量技术,基于单分子PCR方法来进行计数的核酸定量,是一种绝对定量的方法。由于数字PCR能够直接数出DNA分子的个数,是对起始样品的绝对定量,因此特别适用于依靠Real-time PCR的Ct值不能很好分辨的应用领域,例如:拷贝数变异、突变检测、基因相对表达研究(如等位基因不平衡表达)、二代测序结果验证、miRNA表达分析、单细胞基因表达分析等。目的: 对DNA分子的个数进行绝对定量。 原理: 其主要采用当前分析化学热门研究领域的微流控或微滴化方法,将大量稀释后的核酸溶液分散至芯片的微反应器或微滴中,每个反应器的核酸模板数少于或者等于1个。这样经过PCR循环之后,有一个核酸分子模板的反应器就会给出荧光信号,没有模板的反应器就没有荧光信号。根据相对比例和反应器的体积,就可以推算出原始溶液的核酸浓度。 步骤: 1.分离并纯化基因组DNA; 2.计划数字PCR实验,确定样品的最佳稀释度,以获得数字PCR答案;

3.上样,将DNA样品与TaqMan Assay以及OpenArray数字PCR预混液上样到OpenArray 384孔板; 4.循环和成像,利用OpenArray AccuFill 系统将反应上样到OpenArray平板。将OpenArray平板插入OpenArray箱中,装满浸液,并用封箱胶水密封。利用OpenArray? 实时定量PCR系统开展读取。 5.快速轻松地获取和分析数据。 流程图:

最新29微生物检验技术基础知识汇总

29微生物检验技术基 础知识

一、以下每一道考题下面有A、B、C 、D、 E 五个备选答案。请从中选择一个最佳答案,并在答题卡上将相应题号的相应字母所属的方框涂黑。 1机体抵抗病原微生物的屏障结构包括 A皮肤与黏膜 B血脑脊液屏障 C胎盘屏障 D免疫系统 E B和C 2有关内毒素的描述哪一项是错误的 A均由革兰阴性菌产生 B其化学成分为脂多糖 C160℃,2~4小时才被破坏 D毒害效应具有组织器官选择性 E毒性作用较弱 3下列描述哪一项是错误的 A病原菌致病力的强弱程度称为毒力 B毒力主要由侵袭力和毒素所决定 C破伤风毒素属于内毒素 D侵袭力是指病原菌突破宿主机体的防御功能,并能在体内定居、繁殖和扩散的能力E以上均不是 4下列哪种成分不属于外毒素 A 脂多糖 B 痉挛毒素 C 肉毒毒素 D 表皮剥脱毒素 E霍乱肠毒素 5下列哪种成分不属于外毒素 A 金黄色葡萄球菌肠毒素 B产毒性大肠杆菌肠毒素 C 白喉毒素 D 表皮剥脱毒素 E 类脂A 6内毒素的毒性作用包括 A发热反应 B白细胞反应 C内毒素血症与内毒素休克 D以上都是 E A和C 7慢性志贺菌感染的病程一般在多少以上A2周 B1个月 仅供学习与交流,如有侵权请联系网站删除谢谢2

C 2个月 D6周 E 7周 8志贺菌随饮食进入体内,导致人体发病,其潜伏期一般为 A1天之内 B1~3天 C5~7天 D7~8天 E 8天以后 9下列关于结核分枝杆菌描述正确的是A类脂质为胞壁中含量最多的成分 B产生外毒素 C产生内毒素 D耐药性低 E 一般采用革兰染色 10我国的卫生标准中,每升饮用水中不得超过多少个大肠杆菌 A1个 B 3个 C 5个 D7个E8个 11大肠杆菌指数测定时,37℃培养24小时,能发酵乳糖并具有下列何种特征者为阳性 A产酸 B产酸产气 C产酸不产气 D产气不产酸 E以上都不产生 12下列何种细菌为革兰阴性菌 A脑膜炎奈瑟菌 B结核分枝杆菌 C铜绿假单细胞 D枯草芽胞杆菌 E白喉棒状杆菌 13下列何种细菌为革兰阳性杆菌 A大肠杆菌 B铜绿假单细胞 C产气肠杆菌 D结核分枝杆菌 E肺炎克雷伯杆菌 14下列何种细菌为革兰阴性球菌 仅供学习与交流,如有侵权请联系网站删除谢谢3

核酸检测技术的应用

核酸检测技术的应用 规ELISA检测。部分标本因为ELISA检测项目不合格直接被淘汰而未 进入到核酸检测环节,有303616份标本分别实行混样核酸检测(191222人份)和单人份核酸检测(112394人份)。⑴混样核酸检测:按照试剂盒说明书要求,筛选ELISA检测合格标本实行8个标本混样 核酸检测,无反应性pooling的8个标本视为该项目核酸检测合格, 有反应性pooling实行标本的拆分单检,拆分无反应性的标本判为合格,拆分亦有反应性的标本判为该项目核酸检测不合格。⑵单人份核 酸检测:采用单个标本核酸检测模式,按照试剂盒和全自动核酸检测 设备要求实行检测,检测无反应性的标本视为HBVDNA、HCVRNA、HIV- 1RNA项目联检合格,检测有反应性的标本则视为HBVDNA、HCVRNA、 HIV-1RNA项目联检不合格。 1.2统计学处理采用x²检验,比较各项目不合格率的差异, p<0.05为差异有统计学意义。 2结果 其中112394人份采用单人份核酸检测系统实行检测,检出单独NAT不 合格数148例,不合格率为1.32‰;191222人份标本采用另外的混样 核酸检测系统实行检测,检出单独NAT不合格数63例,不合格率为 0.33‰.两者不合格率比较,有显著性差异(P<0.05)。 单采血小板标本中,采用ELISA方法检测全血标本278214人份,HBsAg、抗-HCV、抗-HIV-1/2三项不合格数2536例,不合格率为 9.1‰;采用ELISA方法检测单采血小板标本27698人份,HBsAg、抗-HCV、抗-HIV-1/2三项不合格数78例,不合格率为2.8‰.两者不合格 率比较,有显著性差异(P<0.05)。 类,一类为NAT反应性而ELISA无反应性,即为单独NAT不合格结果, 此类不合格的检出即为NAT在血液筛查中所发挥的检测效能。另一类 为NAT反应性ELISA亦为反应性。303616份标本中全血标本和单采血

食品微生物检验的内容及检测技术

食品微生物检验的内容及检测技术 食品安全检验过程的主要内容 食品微生物的检验。食物在生产过程中以及放置过程中会受到环境中微生物的损坏或影响,在部分研究中,将食品中细菌数量对食品的损坏程度作为食品安全检测的首 要内容。在食品微生物的检验过程中,我们主要对人体有害微生物进行检验,其中在食品安全检验过程中,因为食品中有多种微生物共存现象,所以在检验前,微生物检验员要把不同的菌体进行分离,这样才能更加清楚的了解各种微生物的数量及菌体的分布情况,包括生产型食品微生物,如醋酸杆菌,酵母菌等和使食物变质的微生物,如霉菌、细菌等和食源性病原微生物如溶血性大肠杆菌,肉毒杆菌等。对食品原辅料微生物的控制和产成品微生物的检验是保证食品安 全的重要途径。 针对食品致病菌的相关检验。不同的致病菌会对人们的身体健康有不同程度的危害,像我们在生活中经常吃到的大米,有些不法商家将发霉的大米加工后再次放入市场进行二次销售,虽然经加工后,在外表上和普通大米没啥两样,但这种大米中含有黄曲霉这一致病菌,据可靠信息表明,黄曲霉的危害性十分巨大,如果人们长时间吃这样的大米,出

现癌症的风险要比常人高出很多倍,由此可见,食品中致病菌的检验是保证我们能吃到放心食品十分关键的微生物检 测技术,所以我们在致病菌的检验上对不同种类的致病菌进行定量严格检验。如乳制品和肉制品的致病菌主要是黄曲霉菌和大肠杆菌,而蛋制品中则容易出现染沙门菌、大肠菌群、大肠杆菌和金黄色葡萄球菌,罐头食品容易出现肉毒梭菌、产气荚膜梭菌、蜡样芽胞杆菌。 食品微生物检验中的主要特点 对食品检测要求相对较高。在食品微生物的一系列检验中,由于食品中涉及的微生物种类较多,因此加大了食品微生物检验的难度。国家标准或行业标准对不同食品中微生物的含量特别是致病菌的含量有明确的要求。在食品的运输过程中,食品致病菌以及其他微生物对相应的食品有一定的污染,随着微生物种类的增多,检测人员需要对食品受致病菌影响的程度、食品保质期以及其他相关的标准进行测量,难度会随着微生物种类的增多而复杂。所以在微生物检验上我们对每一阶段的食品安全检测都要重视,在各个微生物的测量上,相关的检测技术要求就有所提高。 食品微生物检验效率。随着食品市场的商品流通提高,人们对食品需求不断增加,而食品安全问题却在日益严重,为了保障人们在能够及时满足食品种类和数量要求的同时,进一步促进食品安全的保障措施落实,必须加强食品安

食品理化检验试题及答案

食品理化检验试题及答案 (每空4分,共100分) 姓名:得分: 一、填空题 1、食品检验由食品检验机构指定的检验人独立进行。 2、GB5009上的准确称取是指用天平进行的称量操作,其准确度为 ±0.0001g。 3、采样应注意样品的生产日期、批号、代表性和均匀性(掺伪和 食物中毒样品除外)。 4、食品理化实验室个人防护设施主要包括护目镜,工作服,口罩, 手套。 二、选择题: 1、食品理化检验包括(ABC) A、快检筛查 B、定性 C、定量 2、法定计量单位包括(AC) A、mol/L B、% C、kg D meq ): 3、食品安全标准应当包括下列内容(ABCDEFGH A食品、食品相关产品中的致病性微生物、农药残留、兽药残留、 重金属、污染物质以及其他危害人体健康物质的限量规定; B食品添加剂的品种、使用范围、用量; C专供婴幼儿和其他特定人群的主辅食品的营养成分要求; D对与食品安全、营养有关的标签、标识、说明书的要求;

E食品生产经营过程的卫生要求; F与食品安全有关的质量要求; G食品检验方法与规程; H其他需要制定为食品安全标准的内容。 4、掺伪或中毒样品采样应注意(B) A 代表性 B典型性 C普遍性 5、一般样品在检验后应保存(A)个月 A 一、 B 三、 C 六、D九 6、罐头或其它小包装食品同一批号,包装小于250克时,采样应 不少于(D)个 A 3、 B 6、 C 9 、D10 7、下列单位哪些是错误的写法(AC) A mg/Kg、 B g/100g、 C PH 、 D mol/L 8、被测物质含量在

核酸检测技术的应用

核酸检测技术的应用 1资料与方法 1.1检测方法及判定规则305912份全血标本和单采血小板标本进行常规ELISA检测。部分标本因为ELISA检测项目不合格直接被淘汰而未 进入到核酸检测环节,有303616份标本分别进行混样核酸检测(191222人份)和单人份核酸检测(112394人份)。⑴混样核酸检测:按照试剂盒说明书要求,筛选ELISA检测合格标本进行8个标本混样 核酸检测,无反应性pooling的8个标本视为该项目核酸检测合格, 有反应性pooling进行标本的拆分单检,拆分无反应性的标本判为合格,拆分亦有反应性的标本判为该项目核酸检测不合格。⑵单人份核 酸检测:采用单个标本核酸检测模式,按照试剂盒和全自动核酸检测 设备要求进行检测,检测无反应性的标本视为HBVDNA、HCVRNA、HIV- 1RNA项目联检合格,检测有反应性的标本则视为HBVDNA、HCVRNA、 HIV-1RNA项目联检不合格。 1.2统计学处理采用x²检验,比较各项目不合格率的差异, p<0.05为差异有统计学意义。 2结果 2.1单检模式及混检模式下的NAT结果303616人份标本进行核酸检测,其中112394人份采用单人份核酸检测系统进行检测,检出单独NAT不 合格数148例,不合格率为1.32‰;191222人份标本采用另外的混样 核酸检测系统进行检测,检出单独NAT不合格数63例,不合格率为 0.33‰.两者不合格率比较,有显著性差异(P<0.05)。 2.2全血标本和单采血小板标本ELISA检测结果305912份全血标本和单采血小板标本中,采用ELISA方法检测全血标本278214人份,HBsAg、抗-HCV、抗-HIV-1/2三项不合格数2536例,不合格率为 9.1‰;采用ELISA方法检测单采血小板标本27698人份,HBsAg、抗-

2014微生物检验技术试题2013真题

1 病例标本送检,一般常规进行的检验包括 A. 直接涂片镜检,分离培养,生化反应和血清学试验 B. 药敏试验,动物实验,生化反应和血清学试验 C. 直接涂片镜检,分离培养,药敏试验,动物试验 D. 直接涂片镜检,药敏试验,动物试验和血清学试验 E. 染色镜检,药敏试验,动物试验和血清学试验 答案: A 解析: 2 医疗机构污水微生物样品应采集 A. 各科室冲洗流入下水道的污水 B. 患者使用后流入的污水 C. 污水贮存池内的污水 D. 该机构污水最终排放口的污水 E. 手术室流出的污水 答案: D 解析: 3 能形成草绿色溶血环的细菌是 A. 甲型溶血性链球菌 B. 表皮葡萄球菌 C. 炭疽杆菌 D. 丙型溶血性链球菌 E. 嗜血杆菌 答案: A 解析: 4 同一水源,同一时间采集多类检测指标的水样时,应先采集哪项指标的水样 A. 挥发性酚 B. 金属 C. 有机物 D. 微生物 E. 放射性 答案: D 解析: 5 用于PCR实验的仪器称为 A. 色谱仪 B. 质谱仪 C. 酶标仪 D. 紫外透射仪 E. DNA扩增仪 答案: E 解析: 6 PCR是 A. 补体结合试验 B. 血凝抑制试验

C. 聚合酶链反应 D. 酶联免疫吸附分析 E. 肥达反应 答案: C 解析: 7 不会使医疗机构污水中总游离余氯结果偏低的因素是 A. 水样经强光照射 B. 水样经过振荡 C. 水样经过高温 D. 水样立即检测 E. 水样放置一段时间后检测 答案: D 这是2013年微生物检验技术考试原题,因为时间匆忙,刚刚整理完50道题,请考生关注我的空间或者百度“新浪博客卫生资格考试”,另有复习指导书电子版免费赠! 8 游泳池水细菌总数培是 A. 36℃,24h B. 37℃,48h C. 28℃,24h D. 28℃,48h E. 44℃,24h 答案: B 解析: 9 醋酸纤维膜电泳主要用于 A. 小分子多肽分离 B. 抗原或抗体分离 C. 免疫球蛋白分离 D. 盐的分离 E. 糖的分离 答案: C 解析: 10 生活饮用水采样后如不能立即检验,其保存温度和时间为 A. ﹣2℃,4h B. ﹣4℃,6h C. 0℃,4h D. 2℃,4h E. 4℃,4h 答案: E 解析: 11 在做证实试验时,挑取蜡样芽胞杆菌在选择性培养基上的典型菌落的数目为 A. 5个 B. 10个

食品理化检验实验指导书

食品理化检验实验指导书 适用课程: 食品理化检验(实验) 食品理化检验实训 食品检验技术(实验) 食品检验技术实训 食品卫生与营养检测(实验) 食品卫生与营养检测综合实训

目录 实验部分 实验一常压干燥法测定面粉的水分含量 (1) 实验二面粉总灰分的测定 (3) 实验三果汁饮料中总酸及pH的测定 (5) 实验四牛乳中还原糖的测定 (8) 实验五酱油中氨基酸态氮的测定 (10) 实验六索氏提取法测定花生中粗脂肪的含量 (12) 实验七牛奶粗脂肪含量的测定 (14) 实验八酱油中氯化钠含量的测定 (16) 实验九酸水解法测定火腿肠中脂肪含量 (19) 实验十油脂酸价、过氧化值测定 (21) 实验十一分光光度法测定火腿肠中亚硝酸盐的含量 (23) 实验十二硫代巴比妥酸比色法测定食品中的山梨酸含量 (24) 实验十三水果中维生素C含量的测定 (28) 实验十四果胶的提取 (33) 实验十五果胶的测定 (35) 实验十六高效液相使用技能训练(色谱法测定茶叶中提取物) (36) 实验十七银耳中SO2(漂白剂)的含量测定 (40) 选做实验 实验一比重瓶法测定酱油的相对密度 (42) 实验二酶水解法测定食品中淀粉含量 (43) 实验三乳化剂—蔗糖脂肪酸酯中游离蔗糖的测定 (45) 实验四白酒中甲醇的测定——品红亚硫酸比色法 (47) 实验五紫外分光光度法测定鸡蛋中的维生素A (49) 实验六薄层层析法测定果酱中苯甲酸、山梨酸的含量 (51) 实验七纸层析法测定β-胡萝卜素 (53) 实验八分光光度法测定海带中碘的含量 (55) 实训部分 模块一基本技能训练 (57) 实训一常用电器的使用技能 (57) 实训二常用的物理检验仪器使用技能训练 (60) 实训三酸度计和电动磁力搅拌器的使用技能 (68) 实训四索氏提取器的安装和使用技能训练 (73) 实训五微量凯氏定氮仪的安装和使用技能训练 (75) 实训六薄层板的制备技术和薄层分析的点样技术训练 (77) 模块二综合实训 (78) 实训一糕点产品的理化检测 (78) 实训二酱菜类产品的理化检测 (79) 实训三肉制品的理化检测 (80)

核酸检测技术及其在国内外血液筛检中的应用

核酸检测技术及其在国内外血液筛检中的应用 输血相关传染病的预防和控制已经成为全社会关注的焦点,新技术的引进是进一步提高血液安全性的重要一环。本文就病原体核酸检测技术(nucleic acid testing, NAT)及其在国内外血液筛检中的应用情况和结果作一介绍,并对该方法在我国推广和应用的必要性和可行性作初步探讨。 1. NAT在血液筛检中的必要性 酶免检测(EIA)技术已经广泛运用于血液筛检,该方法的灵敏度和特异性也在不断地改进和提高,但每年仍有少数新发输血后肝炎病例报道,如美国无偿献血者每单位供血传播HBV、HCV和HIV 的危险性分别为1∶66000、1∶103000和1∶676000[1]。这些危险的主要原因是: 病毒感染者“窗口期”献血,病毒变异,免疫静默感染(immuno silent infection)以及人工操作错误[2]。所谓“窗口期”,是指从感染病原开始,直至用某种检测方法能够检测到该病原存在为止的这一段时间[3]。血清学抗原、抗体检测的“窗口期”较长, 如HBsAg、抗-HIV、抗-HCV检测的“窗口期”分别为45-56d、22d、72d[4,5],故美国90%以上输血传播HIV和HBV以及75%以上输血传播HCV的危险性来自“窗口期”感染献血[6]。EIA“窗口期”漏检是当前影响血液安全性进一步提高的瓶颈,对于献血者的筛选,单纯抗原或抗体血清学检测不能有效地保障血液安全。 NAT检测是直接检测病原体核酸的一系列技术的总称。其基本步骤包括核酸提取、扩增、和检测。NAT敏感性高,可检出标本中极微量的核酸,在病毒感染后数天即能检出,可大大缩短“窗口期”。初步研究表明,混合血样NAT检测可将HBV、HCV和HIV感染的平均“窗口期”缩短9d(缩短“窗口期”20%)、59d(82%)和11d(50%)[5,7];此外NAT还可以检出因上述其它3种原因而漏检的被感染献血。如法国应用NAT,从大约150万份献血中筛检出4份HCV RNA阳性、抗体阴性的样本,其中1份即为免疫静默感染[8]。尽管NAT从理论上并不能完全消除感染“窗口期”,但病毒核酸转阳之前的血液传染性极低,可以有效地预防经输血传播病毒性疾病[9]。因此,NAT的引入可使输血传播疾病的危险性降到最低[10]。 2. NAT检测的技术方法 1985年具有划时代意义的聚合酶链反应(polymerase chain reaction, PCR)的发明,标志着NAT 的诞生。随后,在PCR的基础上,派生出许多其它原理的体外NAT方法[11]。这些技术灵敏度和特异性或高或低,操作或简单或复杂,适合在各自不同的领域运用,目前适用于大样本量血液筛查并能满足高灵敏度要求的扩证扩增技术主要为PCR技术和TMA技术。 2.1 PCR扩增方法 PCR是一种体外模拟自然DNA复制过程的核酸扩增技术,以其高敏感性、高特异性和快速简便等优势得到了广泛的应用。通过简单的技术改进和联合,涌现出了各种各样不同的PCR方法,如检测RNA的逆转录PCR(RT PCR)、敏感性和特异性均较高的巢式PCR (nested PCR)、可对靶序列进行定量检测的定量PCR、检测基因超长分布的多重PCR以及PCR结合酶标技术(PCR ELISA)、PCR结合寡核酸探针杂交技术(PCR SSOP)、荧光PCR和免疫PCR等。 目前在临床检测中使用较多的是荧光定量PCR,主要用于各种传染病的诊断、病毒滴度监测以及疗效评估,因采用荧光标记的探针杂交或直接使用能和双链DNA结合的荧光素检测PCR扩增产物,

[医学类试卷]临床医学检验技术初级(士)(微生物学及检验)模拟试卷5.doc

[医学类试卷]临床医学检验技术初级(士)(微生物学及检验)模拟试 卷5 1 下列微生物中,属非细胞型微生物的是( ) (A)细菌 (B)支原体 (C)衣原体 (D)病毒 (E)放线菌 2 属于真核细胞型微生物的是( ) (A)病毒 (B)细菌 (C)支原体 (D)立克次体 (E)真菌 3 细菌属于原核细胞型微生物的主要依据是( ) (A)形态微小,结构简单

(B)原始核,细胞器不完善(C)二分裂方式繁殖 (D)有细胞壁 (E)对抗生素敏感 4 真核细胞型微生物的特点是( ) (A)典型的核结构 (B)体积微小 (C)有细胞壁 (D)无完整细胞器 (E)对抗生素敏感 5 细菌的基本结构不包括( ) (A)细胞膜 (B)细胞质 (C)核质 (D)细胞壁 (E)菌毛

6 质粒是细胞的( ) (A)核质DNA (B)胞质DNA (C)核质RNA (D)胞质RNA (E)极体 7 下列不是细菌的特殊结构的是( ) (A)异染颗粒 (B)荚膜 (C)芽胞 (D)菌毛 (E)鞭毛 8 关于菌毛的叙述,错误的是( ) (A)多见于革兰阴性菌 (B)有普通菌毛与性菌毛 (C)在光学显微镜下看不到

(D)是细菌的运动器官 (E)普通菌毛与细菌的致病力有关9 血琼脂上的溶血环不包括( ) (A)δ溶血 (B)α溶血 (C)β溶血 (D)γ溶血 (E)双环溶血 10 细菌L型的特点错误的是( ) (A)对青霉素敏感性降低 (B)对表面活性剂敏感性增高(C)革兰染色均为阳性 (D)高度多形性 (E)抗原性改变 11 细菌按抗原结构不同而分为( ) (A)血清型

食品理化检验知识大全

食品理化检验 名词解释 1.水溶性灰分是指总灰份中可溶于水的部分、 2.水不溶性灰分是指总灰份中不溶于水的部分; 3.酸不溶性灰分是指总灰份中不可溶于酸的部分。 4.食品的总酸度是指食品中所有酸性成分的总量,它的大小可用碱滴定来测定; 5.有效酸度是指被测液中H+ 的活度,其大小可用酸度计(即pH计)来测定; 6.挥发酸是指食品中易挥发的有机酸,其大小可用蒸馏法分离,再借标准碱滴定来测 定; 7.牛乳总酸度是指外表酸度和真实酸度之和,其大小可用标准碱滴定来测定。 8.粗脂肪是经前处理而分散且干燥的样品用无水乙醚或石油醚等溶剂回流提取,使样 品中的脂肪进入溶剂中,回收溶剂后所得到的残留物,即为脂肪(或粗脂肪)。 9.还原糖是所有的单糖和部分的双糖由于分子中含有未缩合羰基具有还原性故称为还 原糖。 10.总糖是食品中还原糖分与蔗糖分的总量。还原糖与蔗糖分的总量俗称总糖量。 11.蛋白质系数是一般蛋白质含氮量为16%,即一份氮素相当于6.25份蛋白质,此数值 (6.25)称为蛋白质系数。 12.密度是指单位体积物质的质量。 13.相对密度(比重)是指物质的密度与参考物质的密度在规定条件下的比值。 14.食品理化检验学:是研究和评定食品品质及其变化的一门技术性和实践性很强的应用科 学。 15.食品污染:是指食物中原来含有或者加工时人为添加的生物性或化学性物质,其共同特 点是对人体健康有急性或慢性危害。 16.干法灰化:是用高温灼烧的方式破坏样品中有机物的方法,也称灼烧法。 17.湿法消化:利用强氧化剂加热消煮,破坏样品中有机物的方法。 18.样品采集:就是从总体中抽取样品的过程; 19.样品:就是从总体中抽取的一部分分析材料。 20.可疑值:在实际分析测试中,由于随机误差的存在,使多次重复测定的数据不可能完全 一致,而存在一定的离散性,并且常常出现一组测定值中某一两个测定值与其余的相比,明显的偏大或偏小,这样的值称为可疑值。 21.极值:虽然明显偏离其余测定值,但仍然是处于统计上所允许的合理误差范围之内,与 其余的测定值属于同一总体,称为极值。极值是一个好值,这是必须保留。 22.异常值:可疑值与其余测定值并不属于同一总体,超出了统计学上的误差范围,称为异 常值、界外值、坏值,应淘汰。总酸度:指食品中所有酸性成分的总量。 23.有效酸度:指被测溶液中H+ 的浓度。 24.挥发酸:指食品中易挥发的有机酸。 25.酸性食品:经消化吸收、代谢后,最后在人体内变成酸性物质,即能够产生酸性物质的 称为酸性食品。 26.碱性食品:代谢后能够产生碱性物质的食品。

相关文档