文档库 最新最全的文档下载
当前位置:文档库 › 五年级奥数.计数综合.排列组合(ABC级).学生版

五年级奥数.计数综合.排列组合(ABC级).学生版

五年级奥数.计数综合.排列组合(ABC级).学生版
五年级奥数.计数综合.排列组合(ABC级).学生版

一、排列问题

在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.

一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.

根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.

排列的基本问题是计算排列的总个数.

从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .

根据排列的定义,做一个m 元素的排列由m 个步骤完成:

步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;

步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; ……

步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m -

-=-+()(种)方法;

由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+()()(),即

121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,

共有m 个因数相乘.

二、排列数

一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????(

)(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫知识结构

排列组合

记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-????(

)() .

在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.

三、组合问题

日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.

一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.

从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.

从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元

素的组合数.记作m

n C .

一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:

第一步:从n 个不同元素中取出m 个元素组成一组,共有m

n C 种方法; 第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.

根据乘法原理,得到m m m

n n m P C P =?. 因此,组合数12)112321

m

m n n

m m

P n n n n m C m m m P ?-?-??-+=

=

?-?-????()(()

()().

这个公式就是组合数公式.

四、组合数的重要性质

一般地,组合数有下面的重要性质:m n m

n n

C C -=(m n ≤) 这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从

n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法

恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.

例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n n C =,01n C =.

五、插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①

个物体,不能有没分到物体的组出现.

在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.

六、使用插板法一般有如下三种类型:

⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的

(1)n -个空隙中放上(1)m -个插板,所以分法的数目为1

1m n C --.

⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下

[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为

1(1)1m n m a C ----.

⑶m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样

就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.

【例 1】 4个男生2个女生6人站成一排合影留念,有多少种排法?如果要求2个女生紧挨着排在正中间

有多少种不同的排法?

【巩固】 4男2女6个人站成一排合影留念,要求2个女的紧挨着有多少种不同的排法?

【例 2】 将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生B 与C 必须相邻.请问共有多

少种不同的排列方法?

例题精讲

【巩固】6名小朋友、、、、、

A B两人必须相邻,一共有多少种不同的站法?

A B C D E F站成一排,若,

若、

A B两人不能相邻,一共有多少种不同的站法?

【例 3】书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果只要求童话书和漫画书不要分开有多少种排

法?

【巩固】四年级三班举行六一儿童节联欢活动.整个活动由2个舞蹈、2个演唱和3个小品组成.请问:如果要求同类型的节目连续演出,那么共有多少种不同的出场顺序?

【例 4】8人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻,有几种坐法?

【巩固】a,b,c,d,e五个人排成一排,a与b不相邻,共有多少种不同的排法?

【例 5】一台晚会上有6个演唱节目和4个舞蹈节目.求:

⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?

⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?

【巩固】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?

【例 6】有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?

【巩固】小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?

【巩固】有12块糖,小光要6天吃完,每天至少要吃一块,问共有种吃法.

【例 7】10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着.请问一共有多少种不同的放法?

【巩固】将13个相同的苹果放到3个不同的盘子里,允许有盘子空着。一共有种不同的放法。

【例 8】把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?

【巩固】三所学校组织一次联欢晚会,共演出14个节目,如果每校至少演出3个节目,那么这三所学校演出节目数的不同情况共有多少种?

【例 9】(1)小明有10块糖,每天至少吃1块,8天吃完,共有多少种不同吃法?

(2)小明有10块糖,每天至少吃1块,8天或8天之内吃完,共有多少种吃法?

【巩固】有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?

【例 10】马路上有编号为1,2,3,…,10的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只,在两端的灯也不能关掉的情况下,求满足条件的关灯

方法有多少种?

【巩固】学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中2盏灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?

【例 11】在四位数中,各位数字之和是4的四位数有多少?

【巩固】大于2000小于3000的四位数中数字和等于9的数共有多少个?

【例 12】所有三位数中,与456相加产生进位的数有多少个?

【巩固】从1到2004这2004个正整数中,共有几个数与四位数8866相加时,至少发生一次进位?

【随练1】 某小组有12个同学,其中男少先队员有3人,女少先队员有4人,全组同学站成一排,要求女

少先队员都排一起,而男少先队员不排在一起,这样的排法有多少种?

【随练2】 把7支完全相同的铅笔分给甲、乙、丙3个人,每人至少1支,问有多少种方法?

【随练3】 在三位数中,至少出现一个6的偶数有多少个?

【作业1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。

【作业2】 学校合唱团要从6个班中补充8名同学,每个班至少1名,共有多少种抽调方法?

家庭作业

课堂检测

【作业4】学校乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排照相,请问:

(1)如果要求男生不能相邻,一共有多少不同的站法?

(2)如果要求女生都站在一起,一共有多少种不同的站法?

【作业5】由0,1,2,3,4,5组成的没有重复数字的六位数中,百位不是2的奇数有个.

【作业6】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?

教学反馈

四年级奥数排列组合

小学四年级奥数题:排列组合 1.从19,20,21,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法有多少种? 2.安排7位老师在5月1日至5月7日值班,每人值班一天,其中甲、乙两人不安排在5月1日和5月2日,不同的安排方法数共有 ______。 3.一个篮球队有五名队员A ,B ,C ,D ,E ,由于某种原因, E不能做中锋,而其余4个人可以分配到五个位置的任何一个上,问一共有多少种不同的站位方法? 4.有两个女孩子站一排拍照,这时又来了三位男孩子一起拍,如果男孩子要站女孩子后面,一共多少种站法? 5.四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_________.

6.有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号? 7.用1 、2 、3 、 4、5 、6 、7 、 8可以组成多少个没有重复数字的四位数? 8.如下图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走。那么,从甲地到丙地共有多少种走法? 9.国家举行足球赛,共15个队参加。比赛时,先分成两个组,第一组8个队,第二组7个队。各组都进行单循环赛(即每个队要同本组的其他各队比赛一场)。然后再由各组的前两名共4个队进行单循环赛,决出冠亚军。问:①共需比赛多少场?②如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?

10.从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法? 11.从1到100的所有自然数中,不含有数字4的自然数有多少个? 12.A先生的衬衫都是由红、蓝、黄、绿、黑5种颜色中的任何两种组成的。某一周,从星期一到星期日A先生按下列规则挑选每天穿的衬衫: 1、每天都穿不同配色的衬衫; 2、同一种颜色不连续出现在连着的2天中; 3、有一个颜色出现在了4天中; 4、星期一穿的是蓝黑组合; 5、星期四的有绿色; 6、星期五不出现黄色; 7、红和黑组合不能出现。 请问:星期六穿的衬衫是哪两种颜色的组合。

小学五年级奥数专题之排列组合题一及答案

1、7个人站成一排,若小明不在中间,共有_______________种站法;若小明在两端,共有_________________种站法。 2、4个男生2个女生共6人站成一排合影留念,有________________种不同的排法;要求2个女生紧挨着有________________种不同的排法;如果要求2个女生紧挨着排在正中间有____________________种不同的排法。 3、A、B、C、D、E、F、G七位同学在操场排成一列,其中学生B与C必须相邻,请问共有________________________种不同的排法。 4、6名小朋友A、B、C、D、E、F站成一排,若A、B两人必须相邻,一共有________________________种不同的站法;若A、B两人不能相邻,一共有________________________种不同的站法;若A、B、C三人不能相邻,一共有________________________种不同的站法。 5、10个相同的球完全分给3个小朋友,若每个小朋友至少得1个,那么共有__________________种分法;若每个小朋友至少得2个,那么共有__________________种分法。 6、小红有10块糖,每天至少吃1块,7天吃完,她共有______________________种不同的吃法。 7、5个人站成一排,小明不在两端的排法共有__________________种。 8、停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有________________________种不同的停车文案。 9、将3盆同样的红花和4盆同样的黄花摆放在一排,要求3盆红花互不相邻,共有____________________种不同的放法。 10、12个苹果分给4个人,每人至少1个,则共有____________________种分法。 11、四年级三班举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成,请问如果要求同类型的节目连续演出,那么共有____________________种不同的出场顺序。

小学奥数~排列组合

5 数的一半,即 A = 60 种,选 B . 奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握, 实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效 途径;下面就谈一谈排列组合应用题的解题策略 . 1.相邻问题捆绑法 :题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排 列. 例 1. A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的 排法种数有 A 、60 种 B 、48 种 C 、36 种 D 、24 种 解析:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A 4 = 24 种, 4 答案: D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 解析:除甲乙外,其余 5 个排列数为 A 5 种,再用甲乙去插 6 个空位有 A 2 种,不同的排 5 6 法种数是 A 5 A 2 = 3600 种,选 B . 5 6 3.定序问题缩倍法 :在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3. A, B, C , D, E 五人并排站成一排,如果 B 必须站在 A 的右边( A, B 可以不相邻)那 么不同的排法种数是 A 、24 种 B 、60 种 C 、90 种 D 、120 种 解析: B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只是 5 个元素全排列 1 2 5 4.标号排位问题分步法 :把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如此继续下去,依次即可完成. 例 4.将数字 1,2,3,4 填入标号为 1,2,3,4 的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有 A 、6 种 B 、9 种 C 、11 种 D 、23 种 解析:先把 1 填入方格中,符合条件的有 3 种方法,第二步把被填入方格的对应数字填 入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3 ×1=9 种填法,选 B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例 5.(1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务,不同的选法种数是 A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 解析:先从 10 人中选出 2 人承担甲项任务,再从剩下的 8 人中选 1 人承担乙项任务, 第三步从另外的 7 人中选 1 人承担丙项任务,不同的选法共有C 2 C 1C 1 = 2520 种,选C . 10 8 7

五年级奥数题型-并附上100道奥数练习题

五年级奥数题型训练及答案(附上100道奥数练习题) 工程问题 1、某工车间共有77个工人,已知每天每个工人平均可加工甲种部件5个,或者乙种部件4个,或丙种部件3个。但加工3个甲种部件,一个乙种部件和9个丙种部件才恰好配成一套。问应安排甲、乙、丙种部件工人各多少人时,才能使生产出来的甲、乙、丙三种部件恰好都配套 2、哥哥现在的年龄是弟弟当年年龄的三倍,哥哥当年的年龄与弟弟现在的年龄相同,哥哥与弟弟现在的年龄和为30岁,问哥哥、弟弟现在多少岁 ------------------------------------------------------------------------------ 应用题 3.实验室中培养了一种奇特的植物,它生长得非

常迅速,每天都会生长到昨天质量的2倍还多3公斤.培养了3天后,植物的质量达到45公斤,求这株植物原来有多少公斤 分数应用题 4.实验小学六年级有学生152人.现在要选出男生人数的1/11 和女生5人,到国际数学家大会与专家见面.学校按照上述要求选出若干名代表后,剩下的男、女生人数相等.问:实验小学六年级有男生多少人 5、汽车若干辆装运一批货物。如果每辆装吨,这批货物就有2吨不能运走;如果每辆装4吨,装完这批货物后,还可以装其他货物1吨.这批货物有多少吨 6、一个分数,分子与分母的和是122,如果分子、分母都减去19,得到的分数约简后是1/5,那么原来的分数是多少

7、一个生产队共有耕地208亩,计划使水浇地比旱地队多62亩,那么水浇地和旱地各应是多少亩 8、有红黄两种玻璃球一堆,其中红球个数是黄球个数的倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个。 9.一个机床厂,今年第一季度生产车床198台,比去年同期的产量2倍多36台,去年第一季度生产多少台 10、同院三家的灯泡,一家是一个15瓦的,一家是一个25瓦的,一家是两个15瓦的,这个月共付电费元,按瓦数分配,各家应付电费多少 11.排列组合将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生与必须相邻.请问共有多少种不同的排列方法

小学奥数~排列组合

奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法种数是52 5 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列 数的一半,即5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务, 第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110 872520C C C =种,选C .

五年级奥数.计数综合.排列组合(ABC级)

一、 排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P . 根据排列的定义,做一个m 元素的排列由m 个步骤完成: 步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法; 步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; …… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方 法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+L ()()() ,即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1, 共有m 个因数相乘. 二、 排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????L ( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫 知识结构 排列组合

小学四年级奥数 第47讲:排列组合综合应用(一)

排列组合综合应用(一)2.组合: 从n个不同元素中任意取出m个(m≤n)元素组成一组,不.计.较.组.内.各.元.素. 【温故知新】的.顺.序.,叫做从n个不同元素中取出m个元素的一个组合。 一、你必须知道的 1.排列: 不同元素中任意取出m个(m≤n)元素,按.照.一.定.的.顺.序.排成一列,叫做从n 个不同元素中取出m个元素的一个排列。 所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记作A m n A n n n n m m n 1 2 1 所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n C n n n n m m n 1 2 1 ! m 重要结论 【例2】(★★★) 正六边形的中心和顶点共7 个点,以其中3 个点为顶点的三角形共有多少个? 【例1】(★★★) 六个人排成一排照相, ⑴若小明必须与小丽排在一起,有多少种排法? ⑵若小明和小丽不能排在一起,有多少种排法?

1

【例3】(★★★★) 【例4】(★★★★) 在新学期的班会上,大家从11 名候选人中选出班干部。请问:从15 名同学选出5 人,上场参加篮球比赛。 ⑴选出三人组成班委会,那一共有多少种选法?请问: ⑵从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共⑴如果甲、乙、丙三人中恰好入选一人,共有多少种选法?有多少种选法?⑵如果甲、乙、丙不能同时都入选,共有多少种选法? 【例5】 ⑴(★★) 在图中1×5的格子中填入1,2,3,4,5 这5 个数,要求,填入的数各不相同并且填在黑格里的数比它旁边的两个数都大。共有_____种不同的填法。 ⑵(★★★★) 在图中1×5的格子中填入1,2,3,4,5,6,7,8 中的5 个数,要求,填入的数各不相同并且填在黑格里的数比它旁边的两个数都大。共有_____ 种不同的填法。【例6】(★★★★★) 从10 名男生,8 名女生中选出8 人参加游泳比赛。在下列条件下,分别有多少种选法? ⑴恰有3 名女生入选; ⑵至少有两名女生入选; ⑶某两名女生,某两名男生必须入选; ⑷某两名女生,某两名男生不能同时入选; ⑸某两名女生,某两名男生最多入选两人。 2

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

高斯小学奥数四年级下册含答案第09讲_排列组合公式

第九讲排列组合公式

开篇漫画中,小高要想说对口诀还真不容易!我们学过乘法原理,口诀第一个字有6种说法,第二个字有5种说法,依此类推,口诀这六个字有654321720?????=种排法.我们也可以这样理解:只有把口诀这六个字按照正确的顺序排列好,才能练成高思神掌.把六个字排成一列,就是我们这一讲要学习的排列. 排列公式: 从m 个不同的元素中取出n 个(n m ≤),并按照一定的顺序排成一列,其方法数叫做从m 个不同元素中取出n 个的排列数,记作n m A ,它的计算方法如下: 比如,从1、2、3、4中挑两个数字组成一个两位数,十位上有1、2、3、4这4种选择,十位选定后,个位可以从剩下的三个数字中选,有3种选择.根据乘法原理可以知道,这样的两位数有4312?=个.我们也可以这样理解,要组成两位数相当于从1、2、3、4中 挑两个数字排成一行,有2 4 4312A =?=种排法,所以这样的两位数有12个. 关于排列数的计算,再给大家举几个例子: 455432120A =???=(从5开始递减地连乘4个数); 3 8876336=??=A (从8开始递减地连乘3个数); 1100100=A (从100开始递减地连乘1个数). 例题1 计算:(1)24A ;(2)4 10A ; (3)42 66 3A A -?. 「分析」直接用公式计算,主要要从几开始乘,连乘几个数. 练习1 计算:(1)3 7A ; (2)32 55 A A -. 生活中的许多问题其实就是排列问题.例如,你回家后,发现桌上有牛奶糖、巧克力和水果糖各一颗,你会按照什么顺序来吃这三种糖?先吃哪个再吃哪个,有多少种方式呢?这其实就是一个排列问题. n m A

小学奥数--排列组合教案

小学奥数-----排列组合教案 加法原理和乘法原理 排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从 A 地到 B 地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有 4 班,汽车有 3 班,轮船有 2 班。那么从 A 地到 B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有 3 条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。加法原理:完成一件工作共有N类方法。在第一类方法中有m 1 种不同的方法, 在第二类方法中有m 2种不同的方法,……,在第N类方法中有m n 种不同的方法, 那么完成这件工作共有N=m 1+m 2 +m 3 +…+m n 种不同方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完成第 二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件工作 共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N 步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。 运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。 【例题一】每天从武汉到北京去,有 4 班火车,2 班飞机,1 班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法? 【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机,三类乘坐洗车.

小学数学五年级奥数3--排列组合(一)

排列组合(一) 例1:探究“排列” 从1、2、3、4、5中挑两个数字组成一个两位数,共可组成多少个不同的两位数? 乘法原理:排列原理: 例2:探究“组合” 从1、2、3、4、5中挑选两个数字,有多少种选法? 乘法原理:组合原理: 例3:排队问题 有6个年龄互不相同的人,3人一排,站成两排。 (1)如果可以随便站,那么一共有多少种排法? (2)如果第一排的每一个人都比第二排的小,那么一共有多少种排法?

例4:圆圈连线 如图,在一个圆周上有9个点,以这些点为顶点或端点,一共可以画出()条线段;()个三角形;()个四边形。 练习1:从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数? 练习2:甲、乙、丙、丁四个人站成一排照相,一共有多少种不同的排法? 练习3:学生会召集各班正、副班长,学习委员开会。五(2)班参加会议的班干部到会堂后,发现还有11个空座位,那么他们一共有多少种不同的坐法?

练习4:从1、2、3、4、5中任意取三个数字,从6、7、8、9中任取两个数字,一共可以组成多少个没有重复数字的五位数? 练习5:在一个圆周上有7个点,那么以这些点为顶点或者端点,一共可以画出多少条线段?多少个三角形?多少个四边形? 练习6:一个圆周上有10个点,任意两点用线段连接,那么这些线段在圆内最多有多少个交点? 练习7:学校举行四、五、六年级的足球比赛,其中四年级共有8个班,五年级共有7个班,六年级共有6个班。比赛按年级分成3个小组,先各小组都进行单循环赛,然后再由各组的前两名共6个班进行单循环赛,决出冠亚军。一共需要比赛多少场?

四年年级奥数题页码问题

2013年四年级奥数题:页码问题 例题剖析 1.一本书共132页,在这本书的页码中,共用了多少个数字? 2.一本书有408页,要把它编出页码1,2,3,4,…,407,408,数字2一共要出现几次? 3.排一本辞典的页码共用了2925个数字,请你算一下,这本辞典有多少页? 4.有一本书的中间被撕掉了一张,余下各页的页码数之和正好是1145,那么被撕掉的那一张的页码数是几? 6.一本书100页,计算页码1﹣100这些自然数中的所有数字的和是多少? 练习 8.一本科幻小说共320页,问: (1)印这本科幻小说的页码共要多少个数字? (2)数字0在页码中共出现了多少次? 9.排一本学生词典的页码,共用了3829个数字,问这本词典共有几页? 10.一本故事书的页码,用了49个0,问这本书共有几页? 11.一本《新编小学生字典》共563页,需要多少个数码编页码? 12.一本书的页码,在排版时用了2691个数码,则这本书一共有多少页? 14.一本书的页码从1至82,共有82页,在把这本书的各页的页码累加起来时,有一个页码被错误的多加了一次,结果得到的和为3440.则这个被多加了一次的页码是多少? 16.排一本500页的书的页码,共需要多少个0? 17.有一本68页的书,中间缺了一张,小杰将残书的页码相加,得到2305,老师说小杰一定算错了,你知道为什么吗? 家庭作业: 18.一本《儿童时代》共98页,需要多少个数码编页码? 19.一本书的页码为1至82页,即共82页.把这本书的各页的页码累加起来时,有一页码漏加了.结果得到的和数为3396.问这个被漏加的页码是几? 2013年四年级奥数题:页码问题 参考答案与试题解析 例题剖析 1.一本书共132页,在这本书的页码中,共用了多少个数字? 考点:页码问题. 专题:传统应用题专题. 分析:从1到132页按数的位数分,可以分为:一位数、两位数、三位数.它们分别是1个、2个、3个数字,由此分析解答即可. 解答:解:一位数:1页到9页,有9个数字; 两位数:10页到99页,有90个数,共180个数字; 三位数:100页到132页,有33个数,共99个数字. 所以编辑这本书的页码有9+180+99=288个数字. 点评:注意分段解决页码问题. 2.一本书有408页,要把它编出页码1,2,3,4,…,407,408,数字2一共要出现几次? 考点:页码问题. 分析:这道题,如果一个一个数出来,是很容易遗漏的,竞赛时间也是不允许的.但如果把1到408

苏教版小学数学五年级下册专题练习题(排列组合)

五(下)数学兴趣班(6)(排列组合1) 班级姓名得分 1、由数字1、 2、 3、4可以组成多少个没有重复数字的三位数? 2、用0~9这十个数字可以组成多少个没有重复数字的四位数和四位偶数? 3、5个同学排成一排照相。问: (1)共有多少种排法? (2)如果某人不坐在两端,共有多少种排法? (3)如果某两人座位相邻,共有多少种排法?https://www.wendangku.net/doc/e72410351.html, 4、幼儿园里6名小朋友去坐3把不同的椅子(每人只能坐一把),有多少种不同 的坐法? 5、幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同 的坐法? 6、四名甲队队员,三名乙队队员站成一排,任何两名乙队队员不靠在一起,有 多少种不同的排法?

7、5个人排成一排,其中甲不站在两边,乙不站在中间,共有多少种排法? 8、用0、1、2、3这四个数字组成三位数,其中:新课标第一网 (1)有多少个没有重复数字的三位数? (2)有多少个不相等的三位数? (3)有多少个没有重复数字的三位偶数? (4)有多少个没有重复数字,且为3的倍数的三位数? 9、某沿海城市管辖7个县,这7个县的位置如图。 要求任意两个相邻的县染不同的颜色, 共有多少种不同的染法? 10、上午第一节到第四节准备上数学、语文、体育、英语各一节。如果限定数学 只能在前两节上,而体育不能在前两节。有多少种排课方式? 11、从1、3、5中任意取两个数字,从0、2、4任意取两个数字,共可组成多少 个没有重复数字的四位数?其中偶数有多少个? 12、用1、2、3、4、5这五个数码可以组成120个没有重复数字的四位数,将他 们从小到大排列起来,4125是第几个?

(完整版)四年级奥数题精选200题

四年级奥数精选200题 一、算式谜 1.在下面的数中间填上“+”、“-”,使计算结果为100。 1 2 3 4 5 6 7 8 9=100 2. ABCD+ACD+CD=1989,求A、B、C、D。 3. □4□□-3□89=3839。 4. 1ABCDE×3=ABCDE1,求A、B、C、D、E。 二、找规律 5.找找规律填数 76,2,75,3,74,4,( ),( ); 2,3,4,5,8,7,( ),( ); 2,1,4,1,8,1,( ),( )。 6.在( )内填入适当的数 1,1,2,3,5,8,( ),( ); 1,1,1,3,5,9,( ),( ); 0,1,2,3,6,11,( ),( ); 7.找规律在( )内填上合适的数 (1)0,1,3,8,21,55,( ); (2)2,6,12,20,30,42,( ); (3)1,2,4,7,11,16,( )。 (1)1,6,7,12,13,18,19,( );

8.选择 一个锐角三角形的一个内角是44度,其余两个角可能是() 36度和100度90度和46度 75度和61度18度和96度 9.简便计算 12×102-24 69×56+32×56-56 13×94+13×10-13×4 10.解决问题 一个三角形的三个内角分别为∠1,∠2和∠3,∠2=2∠1,∠3=∠2,求∠1=? 三、排列组合 11.小华、小花、小马三个好朋友要在一起站成一排拍一张照片。三个人争着要站在排头,无法拍照了。后来照相师傅想了一个办法,说:"我给你们每人站在不同位置都拍一张,好不好?"这下大家同意了。那么,照相师傅一共要给他们拍几张照片呢? 12.二(1)班的小平、小宁、小刚、小超4人排了一个小块板,准备"六、一"演出。在演出过程中,队形不断变化。(都站成一排)算算看,他们在演出小快板过程中,一共有多少种队形变化形式? 13."69"顺倒过来看还是"69",我们把这两个顺倒一样的数,称为一对数。你能在"0,1,6,9,8"这五个数中任意选出3个,可以组成几对顺倒相同的数? 14.有五种颜色的小旗,任意取出三面排成一行表示各种信号。问:共可以表示多少种

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

小学奥数专题排列组合

排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法 分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)

一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元 素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示.

五年级奥数:加法、乘法原理

加法原理 在日常生活与实践中,我们经常会遇到分组、计数的问题。解答这一类问题,我们通常运用加法与那里与乘法原理这两个基本的计数原理。熟练掌握这两个原理,不仅可以顺利解答这类问题,而求可以为今后升入中学后学习排列组合等数学知识打下好的基础。 什么叫做加法原理呢?我们先来看这样一个问题: 从南京到上海,可以乘火车,也可以乘汽车、轮船或者飞机。假如一天中南京到上海有4班火车、6班汽车,3班轮船、2班飞机。那么一天中乘做这些交通工具从南京到上海共有多少种不同的走法? 我们把乘坐不同班次的火车、汽车、轮船、飞机称为不同的走法,那么从南京到上海,乘火车有4种走法,乘汽车有6种走法,乘轮船有3种走法,乘坐飞机有2种走法。因为每一种走法都可以从南京到上海,因此,一天中从南京到上海共有4+6+3+2 = 15 (种)不同的走法。 我们说,如果完成某一种工作可以有分类方法,一类方法中又有若干种不同的方法,那么完成这件任务工作的方法的总数就等于各类完成这件工作的总 和。即N = m 1 + m 2 + … + m n (N代表完成一件工作的方法的总和,m1,m2, … m n 表示每一类完成工作的方法的种数)。这个规律就乘做加法原理。 例题与方法: 例1 书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 例2一列火车从上上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票?

例3、4 x 4的方格图中(如下图),共有多少个正方形? 例4、妈妈,爸爸,和小明三人去公园照相:共有多少种不同的照法? 练习与思考: 从甲城到乙城,可乘汽车,火车或飞机。已知一天中汽车有2班,火1. 车有4班,甲城到乙城共有()种不同的走法。 一列火车从上海开往杭州,中途要经过4个站,沿途应为这列火车准2. 备____种不同的车票。 3.下面图形中共有____个正方形。 4.图中共有_____个角。 5.书架上共有7种不同的的故事书,中层6本不同的科技书,下层有4钟不同的历史书。如果从书架上任取一本书,有____种不同的取法。 6.平面上有8个点(其中没有任何三个点在一条直线上),经过每两个点画一条直线,共可以画_____条直线。

(完整)小学数学排列组合

排列 例1:计算:⑴ ;⑵ . 25P 4377P P -计算:⑴ ;⑵ . 23P 32610P P -计算:⑴; ⑵. 321414P P -53633P P -例2:有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况? (照 相时3人站成一排) 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法? 9名同学站成两排照相,前排4人,后排5人,共有多少种站法? 5个人并排站成一排,其中甲必须站在中间有多少种不同的站法? 丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,人并排站成一排,奶奶要站在正中间,有多少种不同 5的站法? 例3:一列往返于北京和上海方向的列车全程停靠个车站(包括北京和上海),这条铁路线共需要多少种不 14同的车票. 例4:班集体中选出了5名班委,他们要分别担任班长,学习委员、生活委员、宣传委员和体育委员.问: 有多少种不同的分工方式? 例5:有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号? 有红、黄、蓝三种信号旗,把任意两面上、下挂在旗杆上都可以表示一种信号,问共可以组成多少种不同的 信号?

在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号? 例6:用1、2、3、4、5、6、7、8可以组成多少个没有重复数字的四位数? 由数字、、、、、可以组成多少没有重复数字的三位数? 123456 01234 例7:用、、、、可以组成多少个没重复数字的三位数? 例8:用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数? 用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数? 025678 例9:由,,,,,组成无重复数字的数,四位数有多少个? 12345 例10:用、、、、这五个数字,不许重复,位数不限,能写出多少个3的倍数? 例11:用1、2、3、4、5这五个数字可组成多少个比大且百位数字不是的无重复数字的五位数? 200003 用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数? 例12:由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在 个. 例13:千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有多少个? 09 例14:某管理员忘记了自己小保险柜的密码数字,只记得是由四个非数码组成,且四个数码之和是,那么确保打开保险柜至少要试几次?

小学奥数排列组合

小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一.计数专题:④排列组合 一.进门考 1.有四张数字卡片,用这四张数字卡片组成三位数,可以组成多少个? 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法? 3.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法? 4.从1到500的所有自然数中,不含有数字4的自然数有多少个? 5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米? (2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱? 58 7 6

6*.按1,2,3,4的顺序连线,有多少种不同的连法? 二.授新课 ①奥数专题:乘法原理 专题简析 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。 排列公式: 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边 从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 组合公式: 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .12)112321m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()().

四年级奥数排列组合(C级)

1. 了解排列、组合的意义 2. 明白排列和组合的联系与区别 3. 掌握排列和组合的常用解题方法。 4. 会分析排列组合与其他专题的综合应用,培养学生的逻辑思维能力。 一、 排列与组合 在生产生活中,常常用到排列与组合,尤其在计算机研究中。 (一) 排列 (1) 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列 中取出m 个元素的排列数,我们把它记做m n P .12.1m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. (2) 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????()().表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记 为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-????( )() . (二) 组合 (1) 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个 不同元素的组合数.记作m n C .12)112321 ?-?-??-+==?-?-????m m n n m m P n n n n m C P m m m ()(() ()().这个公式就是组合数 公式. (2) 一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)。这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成 一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元排列组合 考试要求 知识框架

相关文档
相关文档 最新文档