文档库 最新最全的文档下载
当前位置:文档库 › 高考物理电磁感应双杆模型(答案)

高考物理电磁感应双杆模型(答案)

高考物理电磁感应双杆模型(答案)
高考物理电磁感应双杆模型(答案)

1、双杆所在轨道宽度相同——常用动量守恒求稳定速度

1.两根足够长的固定的平行金属导轨位于同一水平面内,两

导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少.

(2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少?

解析:ab 棒向cd 棒运动时,磁通量变小,产生感应电流.ab

棒受到与运动方向相反的安培力作用作减速运动,cd 棒则在

安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.临

界状态下:两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 作匀速运

动.

(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,

有mv mv 20= 根据能量守恒,整个过程中产生的总

热量2

02204

1)2(2121mv v m mv Q =-=

(2)设ab 棒的速度变为初速度的3/4时,cd 棒的速度为v 1,则由动量守恒可知:

1004

3

mv v m mv +=。此时回路中的感应电动势和感应电流

分别为:BL v v E )43(10-=,R

E

I 2=。此时cd 棒所受的安

培力:IBL F =,所以cd 棒的加速度为 m

F

a = 由以上各式,可得

m R

v L B a 4022= 。

2、双杆所在轨道宽度不同——常用动量定理找速度关系 2..如图所示,光滑导轨、

等高平行放置,

间宽

度为

间宽度的3倍,导轨右侧水平且处于竖直向上的匀

强磁场中,左侧呈弧形升高。、

是质量均为

电阻均

为R 的金属棒,现让

从离水平轨道高处由静止下滑,设

导轨足够长。试求: (1)、棒的最终速度;(2)全过程

中感应电流产生的焦耳热。 【解析】下滑进入磁场后切割磁感线,在电路中产

生感应电流,

各受不同的磁场力作用而分别作变减

速、变加速运动,电路中感应电流逐渐减小,当感应电流为零时,

不再受磁场力作用,各自以不同的速度匀速

滑动。

(1)自由下滑,机械能守恒: ①

由于、串联在同一电路中,任何时刻通过的电流总相

等,金属棒有效长度,故它们的磁场力为: ②

在磁场力作用下,、各作变速运动,产生的感应电动势方向相反,

当时,电路中感应电流为零(

),

安培力为零,、

运动趋于稳定,此时有:

所以

受安培力作用,动量均发生变化,由动量定理得:

④ ⑤

联立以上各式解得:

(2)根据系统的总能量守恒可得:

3. 如图所示,abcd 和a /b /c /d /

为水平放置的光滑平行导轨,区域内充满方向竖直向上的匀强磁场。ab 、a /b /间的宽度是cd 、c /d /间宽度的2倍。设导轨足够长,导体棒ef 的质量是棒gh 的质量的2倍。现给导体棒ef 一个初速度v 0,沿导轨向左运动,当两棒的速度稳定时,两棒的速度分别是多少?

解析:当两棒的速度稳定时,回路中的感应电流为零,设导体棒

ef 的速度减小到v 1, 导体棒gh 的速度增大到v 2, 则有2BLv 1-BLv 2=0,即v 2=2v 1。

对导体棒ef 由动量定理得:01222mv mv t I BL -=?--

对导体棒gh 由动量定理得:02-=?-

mv t I BL 。 由以上各式可得:02013

2

,31v v v v ==

。 3、磁场方向与导轨平面不垂直

4. 如图所示,ab 和cd 是固定在同一水平面内的足够长平行金属导轨,ae 和cf 是平行的足够长倾斜导轨,整个装置放在竖直向上的匀强磁场中。在水平导轨上有与导轨垂直的导体棒1,在倾斜导轨上有与导轨垂直且水平的导体棒2,两棒与导轨间接触良好,构成一个闭合回路。已知磁场的磁感应强度为B ,导轨间距为L ,倾斜导轨与水平面夹角为θ,导体棒1和2质量均为m ,电阻均为R 。不计导轨电阻和一切摩擦。现用一水平恒力F 作用在棒1上,从静止开始拉动棒1,同时由静止开始释放棒2,经过一段时间,两棒最终匀速运动。忽略感应电流之间的作用,试求: (1)水平拉力F 的大小;

(2)棒1最终匀速运动的速度v 1的大小。

解析(1)1棒匀速:BIL F =2棒匀速:θtan mg BIL = 解得:θtan mg F =

(2)两棒同时达匀速状态,设经历时间为t ,过程中平 均感应电流为I ,据动量定理, 对

1

棒:

01-=-mv Lt I B Ft ;对

2棒:

0c o s s i n 2-=?-?mv t L I B t mg θθ

联立解得:θcos 12v v =

匀速运动后,有:θcos 21BLv BLv E +=,R

E I 2= 解得:

)cos 1(tan 222

21θθ+=L B mgR v

5. 如图,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l ,匀强磁场垂直于导轨所在的平面(纸面)向里,磁感应强度的大小为B ,两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为m 1、m 2和R 1、R 2,两杆与导轨接触良好,与导轨间的动摩擦因数为μ,已知:杆1被外力拖动,以恒定的速度v 0沿导轨运动;达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略,求此时杆2克服摩擦力做功的功率。

6. 两根足够长的平行金属导轨,固定在同一水平面上,导轨

的电阻很小,可忽略不计。导轨间的距离L=0.2m 。磁感强度B=0.50T 的匀强磁场与导轨所在平面垂直。两根质量均为m=0.10kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω。在t=0时刻,两根金属杆并排靠在一起,且都处于静止状态。现有一与导轨平行,大小为0.20N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动。经过t=5.0s ,金属杆甲的加速

度为1.37m/s 2

,问此时甲、乙两金属杆速度v 1、v 2及它们之间的距离是多少?

R

v v l B F 2)(2122-=安 ① ma F F =-安 ②

21mv mv Ft += ③

由①②③三式解得:s m v s m v /85.1,/15.821==

对乙:2mv t HB =? ④ 得C Q mv QIB 85.12

==

又R

BlS R Q 22相对

=?=

φ ⑤ 得m S 5.18=相对

7. 如图,水平平面内固定两平行的光滑导轨,左边两导轨间的距离为2L ,右边两导轨间的距离为L ,左右部分用导轨材料连接,两导轨间都存在磁感强度为B 、方向竖直向下的匀强磁场。ab 、cd 两均匀的导体棒分别垂直放在左边和右边导轨间,ab 棒的质量为2m ,电阻为2r ,cd 棒的质量为m ,电阻为r ,其它部分电阻不计。原来两棒均处于静止状态,cd 棒在沿导轨向右的水平恒力F 作用下开始运动,设两导轨足够长,两棒都不会滑出各自的轨道。

⑴试分析两棒最终达到何种稳定状态?此状态下两棒的加速度各多大?

⑵在达到稳定状态时ab 棒产生的热功率多大?

解:⑴cd 棒由静止开始向右运动,产生如图所示的感应电流,设感应电流大小为I ,cd 和ab 棒分别受到的安培力为F 1、F 2,

速度分别为v 1、v 2,加速度分别为a 1、a 2,则

r

v v BL r BLv BLv r E I 3)2(3232121-=-==

F 1=BIL F 2=2BIL

② m BIL F a -=

1 m

BIL

m BIL a ==222

开始阶段安培力小,有a 1>>a 2,cd 棒比ab 棒加速快得多,随着(v 1-2v 2)的增大,F 1、F 2增大,a 1减小、a 2增大。当 a 1=2a 2时,(v 1-2v 2)不变,F 1、F 2也不变,两棒以不同的加速度匀加速运动。将③式代入可得两棒最终作匀加速运动加速度:

m

F a 321=

m

F a 32=

⑵两棒最终处于匀加速运动状态时a 1=2a 2,代入③式得:

BL

F

I 3=

⑤ 此时ab 棒产生的热功率为:2

222

922L

B r

F r I P =?=

8. 两根水平平行固定的光滑金属导轨宽为L ,足够长,在其上放置两根长也为L 且与导轨垂直的金属棒ab 和cd ,它们的质量分别为2m 、m ,电阻阻值均为R (金属导轨及导线的电阻均可忽略不计),整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中。

(1)现把金属棒ab 锁定在导轨的左端,如图甲,对cd 施加

与导轨平行的水平向右的恒力F ,使金属棒cd 向右沿导轨运动,当金属棒cd 的运动状态稳定时,金属棒cd 的运动速度是多大?

(2)若对金属棒ab 解除锁定,如图乙,使金属棒cd 获得瞬时水平向右的初速度v 0,当它们的运动状态达到稳定的过程中,流过金属棒ab 的电量是多少?整个过程中ab 和cd 相对运动的位移是多大?

⑴当cd 棒稳定时,恒力F 和安培力大小相等,方向相反,以速度v 匀速度运动,有: F =BIL ………①

又R BLv I 2=

……②

联立得: 222L

B FR v = ……③

⑵ab 棒在安培力作用下加速运动,而cd 在安培力作用下减

速运动,当它们的速度相同,达到稳定状态时,回路中的电流消失,ab ,cd 棒开始匀速运动。

设:这一过程经历的时间为t ,最终ab 、cd 的速度为v ′,通过ab 棒的电量为Q 。则对于ab 棒由动量守恒:BILt =2mv ′ 即:BLQ =2 mv ′……④

同理,对于cd 棒:-BILt =mv ′-mv 0 即: BLQ =m (v 0-v ′)…………⑤ 由④⑤ 两式得:BL

m v Q 320=……⑥

设整个过程中ab 和cd 的相对位移为S ,由法拉第电磁感应定

律得: t BLS t E =

?Φ=………⑦

流过ab 的电量:t R

E

Q 2=

……⑧ 由⑥⑦⑧两式得:2

2034L

B R

m v S =

……⑨ 评分标准:①⑥式各3分,②③⑨式各2分,④⑤⑦⑧式各1分,共16分。

9. 如图所示,固定于水平桌面上足够长的两平行导轨PQ 、MN ,PQ 、MN 的电阻不计,间距为d =0.5m .P 、M 两端接有一只理想电压表,整个装置处于竖直向下的磁感强度B =0.2T 的匀强磁场中.电阻均为Ω=1.0r ,质量分别为m 1=300g 和m 2=500g 的两金属棒L 1、L 2平行的搁的光滑导轨上,现固定棒L 1,L 2在水平恒力F =0.8N 的作用下,由静止开始作加速运动,试求: (1)当电压表读数为U =0.2V 时,棒L 2的加速度多大? (2)棒L 2能达到的最大速度v m .

(3)若固定L 1,当棒L 2的速度为v ,且离开棒L 1距离为s 的同时,撤去恒力F ,为保持棒L 2作匀速运动,可以采用将

B

从原值(B 0=0.2T )逐渐减小的方法,则磁感应强度B 应怎样随时间变化(写出B 与时间t 的关系式)?

(1)∵L 1与L 2串联 ∴流过L 2的电流为:I =21

.02.0==r u A ①

L 2所受安培力为F ′=BdI =0.2N ②

2.15

.02.08.02=-='-=

∴m F F a m/s 2

③ 评分标准:①②③式每式各2分.

(2)当L 2所受安培力F 安=F 时,棒有最大速度v m ,此时电路中电流为I m .则F 安=Bd I m ④

I m =r Bdv m

2 ⑤ F 安=F ⑥ 由④⑤⑥式得v m =16

22

2=d B Fr m/s ⑦ 评分标准:④⑤⑥式每式1分,⑦式2分. (3)要使L 2保持匀速运动,必须回路中磁通量保持不变,设

撤去恒力F 时磁感应强度为B 0,t 时磁感应强度为B t ,则B 0ds =B t d (s +vt ) ⑧ (2分)

vt

s s B B t +=

∴0 ⑨ (2分)

10. 如图所示,有上下两层水平放置的平行光滑导轨,间距是L ,上层导轨上搁置一根质量为m ,电阻是R 的金属杆ST ,下层导轨末端紧接着两根竖直平面内的半径为r 的光滑绝缘半圆形轨道,在靠近半圆形轨道处搁置一根质量也是m ,电阻也是R 的金属杆AB 。上下两层平行导轨所在区域里有一个竖直向下的匀强磁场。当闭合开关S 后,当有电荷量q 通过金属杆AB 时,杆AB 滑过下层导轨,进入半圆形轨道并且刚好能通过轨道最高点D ′F ′后滑上上层导轨。设上下两层导轨都是够长,电阻不计。 ⑴求磁场的磁感应强度

⑵求金属杆AB 刚滑到上层导轨瞬间,上层导轨和金属杆组成的回路中的电流

⑶问从AB 滑到上层导轨到具有最终速度这段时间里上层导轨回路中有多少能量转变为内能?

解:⑴开关闭合后,有电流通过AB 棒,在安培力F 作用下获

得加速度,离开下层

轨道时速度为v 0,由动量定理,得0m v F t

B I L t B L q

=

== ⑴ AB 棒在半圆轨上运动时,机械能守恒,则

22

011222mv mv mgr =+ ⑵

AB 棒在半圆轨最高点时,由牛顿第二定律得2

mv mg

r = ⑶

联解⑴⑵⑶式,得:

B =

⑵AB

滑入上层轨道瞬间的速度为

v

产生感应电动势为0E BLv == 回路中电流

002E

I R == ⑶当两杆速度相等时,回路中磁通量不变化,电流为零,两

杆作匀速直线运 动,达到最终速度v ,由动量守恒定律,得

0012 2mv mv v v ===由能量关系,得:22011111122222244U mv mv mgr m gr mgr ?=

-?=-??=

11. 如图2—10所示,足够长的两根相距为0.5m 的平行光滑导轨竖直放置,导轨电阻不计,磁感应强度B 为0.8T 的匀强磁场的方向垂直于导轨平面。两根质量均为0.04kg 、电阻均为0.5Ω的可动金属棒ab 和cd 都与导轨接触良好,导轨下端连接阻值为1Ω的电阻R ,金属棒ab 用一根细绳拉住,细绳允许承受的最大拉力为0.64N 。现让cd 棒从静止开始落下,直至细绳刚被拉断,此过程中电阻R 上产生的热量为0.2J ,求:(1)此过程中ab 棒和cd 棒产生的热量cd ab Q Q 和; (2)细绳被拉断瞬时,cd 棒的速度v 。 (3)细绳刚要被拉断时,cd 棒下落的高度h 。

标准答案:(1)0.4J 0.9J (2)1.88m/s (竖直向下) (3)3.93m 提示:(

1)

R r

Q J 6.0Q R r Q Q J 4.0Q r R Q Q cd cd ab R ab =====并

并并并

(2

s

/m 88.1BL

)

R r (I v A 9.0I A 3.0I A 6.0LB

mg

T I cd cd R m ab =+====-=

(3)2mv 2

1

Q mgh =

-总 h=3.93m 12. 如图所示,两条光滑平行导轨相距为L ,被固定在与水平面成θ的绝缘斜面上,导轨的电阻忽略不计。ab 、cd 是横放在导轨上的直导线,它们的质量均为m ,电阻均为R 。整个装

置处于垂直于导轨所在平面向下的匀强磁场中,磁场的磁感应强度为B 。现直导线ab 在平行于导轨向上的恒定拉力作用下沿导轨向上匀速运动,直导线cd 处于静止状态,求作用在ab 上的恒定拉力的功率。

解答:

ab 向上运动,ab 中产生感应电动势,感应电流的

方向为b a c d b ,cd 受到沿斜面向上的安培力,并且处于静止状态,设电路中的电流为I ,则有 θmgsin BIL = ○1 设ab 向上运动的速度为v ,则有

2R

BLv I =

2

ab 受到沿斜面向下的安培力,设恒定拉力为F ,则有 θmgsin BIL F += ○3 由○1○2○3式可得F 的功率

R )BL

mgsin 4(

Fv P 2

θ==

高考物理电磁感应现象的两类情况(大题培优)及答案

高考物理电磁感应现象的两类情况(大题培优)及答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

2020高考物理 专题9电磁感应热点分析与预测 精品

2020高考物理热点分析与预测专题9·电磁感应 一、2020大纲解读 本专题涉及的考点有:电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则、自感现象、日光灯等.《2020考试大纲》对自感现象等考点为Ⅰ类要求,而对电磁感应现象、磁通量、法拉第电磁感应定律、楞次定律、导体切割磁感线时的感应电动势、右手定则等考点为Ⅱ类要求. 电磁感应是每年高考考查的重点内容之一,电磁学与电磁感应的综合应用是高考热点之一,往往由于其综合性较强,在选择题与计算题都可能出现较为复杂的试题.电磁感应的综合应用主要体现在与电学知识的综合,以导轨+导体棒模型为主,充分利用电磁感应定律、楞次定律、安培力、直流电路知识、磁场知识等多个知识点,可能以图象的形式进行考查,也可能是求解有关电学的一些物理量(如电量、电功率或电热等).同时在求解过程中通常也会涉及力学知识,如物体的平衡条件(运动最大速度求解)、牛顿运动定律、动能定理、动量守恒定理(双导体棒)及能量守恒等知识点.电磁感应的综合应用突出考查了考生理解能力、分析综合能力,尤其是考查了从实际问题中抽象概括构建物理模型的创新能力. 二、重点剖析 电磁感应综合应用的中心是法拉第电磁感应定律,近年来的高考中,电磁感应的考查主要是通过法拉第电磁感应定律再综合力、热、静电场、直流电路、磁场等知识内容,有机地把力与电磁结合起来,具体反映在以下几个方面: 1.以电磁感应现象为核心,综合应用力学各种不同的规律(如牛顿运动定律、动量守恒定律、动能定理)等内容形成的综合类问题.通常以导体棒或线圈为载体,分析导体棒在磁场中因电磁感应现象对运动情况的影响,解决此类问题的关键在于运动情况的分析,特别是最终稳定状态的确定,利用物体的平衡条件可求最大速度之类的问题,利用动量观点可分析双导体棒运动情况. 2.电磁感应与电路的综合问题,关键在于电路结构的分析,能正确画出等效电路图,并结合电学知识进行分析、求解.求解过程中首先要注意电源的确定.通常将切割磁感线的导体或磁通量发生变化的回路作为等效电源.若产生感应电动势是由几个相互联系部分构成时,可视为电源的串联与并联.其次是要能正确区分内、外电路,通常把产生感应电动势那部分电路视为内电路.最后应用全电路欧姆定律及串并联电路的基本性质列方程求解. 3.电磁感应中的能量转化问题 电磁感应过程实质是不同形式的能量转化的过程,而能量的转化则是通过安培力做功的形式而实现的,安培力做功的过程,是电能转化为其他形式的能的过程,“外力”克服安培力做功,则是其他形式的能转化为电能的过程.求解过程中主要从以下三种思路进行分析:①利用安培力做功求解,电磁感应中产生的电能等于克服安培力所做的功.注意安培力应为恒力.②利用能量守恒求解,开始的机械能总和与最后的机械能总和之差等于产生的电能.适用于安培力为变力.③利用电路特征来求解,通过电路中所产生的电能来计算. 4.电磁感应中的图象问题 电磁感应的图象主要包括B-t图象、Φ-t图象、E-t图象和I-t图象,还可能涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象.一般又可把图象问题分为两类:①由给定的电磁感应过程选出或画出正确的图象.②由给定的有关图象分析电磁感应过程,求解相应的物理量.解答电磁感应中的图象问题的基本方法是利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解答. 三、高考考点透视 1.电磁感应中的力和运动 例1.磁悬浮列车是一种高速低耗的新型交通工具。它的驱动系统简化为如下模型,固定在列车下端的动力绕组可视为一个矩形纯电阻金属框,电阻为R,金属框置于xOy平面内,长边MN长为l,平行于y轴,宽为d的NP边平行于x轴,如图1所示。列车轨道沿Ox方向,轨道区域内存在垂直于金属框平面的磁场,磁

电磁感应,杆,双杆模型(教师版)

第九章冲刺985深化内容 电磁感应失分点之(三)——电磁感应中的“杆+导轨”类问题(3大模型) 电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下: 模型一 单杆+电阻+导轨模型 [初建模型] [母题] (2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求: (1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。 [思路点拨] [解析] (1)设杆cd 下滑到某位置时速度为v , 则杆产生的感应电动势E =BLv , 回路中的感应电流I =E R +R 杆所受的安培力F =BIL 根据牛顿第二定律有 mg sin θ-B 2L 2v 2R =ma 当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m = 2mgR sin θ B 2L 2 ,方向沿导轨平面向下。

(2)杆cd 从开始运动到达到最大速度过程中, 根据能量守恒定律得mgx sin θ=Q 总+1 2mv m 2 又Q 杆=12Q 总,所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2 θ B 4L 4。 [答案] (1)g sin θ,方向沿导轨平面向下 2mgR sin θB 2L 2 ,方向沿导轨平面向下 (2)1 2 mgx sin θ-m 3g 2R 2sin 2θ B 4L 4 [内化模型] 单杆+电阻+导轨四种题型剖析 杆以速度v 切割

高考模型——电磁场中的双杆模型

高考模型——电磁场中的双杆模型 研究两根平行导体杆沿导轨垂直磁场方向运动是力电知识综合运用问题,是电磁感应部分的非常典型的习题类型,因处理这类问题涉及到力学和电学的知识点较多,综合性较强,所以是学生的一个难点,下面就这类问题的解法举例分析。 一、在竖直导轨上的“双杆滑动”问题 1.等间距型 如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强 磁场中,两根质量相同的金属棒a和b和导轨紧密接触且可自由滑动,先固 定a,释放b,当b速度达到10m/s时,再释放a,经1s时间a的速度达到12m/s, 则: A、当va=12m/s时,vb=18m/s B、当va=12m/s时,vb=22m/s C、若导轨很长,它们最终速度必相同 D、它们最终速度不相同,但速度差恒定 【解析】因先释放b,后释放a,所以a、b一开始速度是不相等的,而且b的速度要大于a 的速度,这就使a、b和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。开始两者的速度都增大,因安培力作用使a的速度增大的快,b的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g的匀加速直线运动。 在释放a后的1s对a、b使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s它的冲量大小都为I,选向下的方向为正方向。 当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。释放棒后,经过时间t,分别以 和为研究对象,根据动量定理,则有: 对a有:( mg + I ) · t = m v a0, 对b有:( mg -I ) · t = m v b-m v b0 联立二式解得:v b = 18 m/s,正确答案为:A、C。 在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度 。当棒的速度与棒接近时,闭合回路中的逐渐减小,感应电流 也逐渐减小,则安培力也逐渐减小。最后,两棒以共同的速度向下做加速度为g的匀加速运动。 2.不等间距型

近十年年高考物理电磁感应压轴题

θ v 0 y M a B 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =2.0m ,b =0.15m 、c =0.10m 。工作时,在通道内沿z 轴正方 向加B =8.0T 的匀强磁场;沿x 轴正方向加匀强电场,使两金属板间的电压U =99.6V ;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=0.22Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =5.0m /s 的速度匀速前进。若以船为参照物,海水以5.0m /s 的速率涌入进 水口由于通道的截面积小球进水口的截面积,在通道内海水速率增加到v d =8.0m /s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U /=U -U 感计算,海水受到电磁力的80%可以 转化为对船的推力。当船以v s =5.0m /s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b=9.6 V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2R = 23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2R 由于I 恒定 R /=v 0rt ∝t

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

电磁感应双杆问题

电磁感应双杆问题(排除动量畴) 1.导轨间距相等 例3. (04)如图所示,在水平面上有两条平行导电导轨MN 、PQ ,导轨间距离为l 。匀强磁场垂直于导轨所在平面(纸面)向里,磁感应强度的大小为B 。两根金属杆1、2摆在导轨上,与导轨垂直,它们的质量和电阻分别为1m 、2m 和1R 、2R ,两杆与导轨接触良好,与导轨间的动摩擦因数为μ。已知:杆1被外力拖动,以恒定的速度0υ沿导轨运动,达到稳定状态时,杆2也以恒定速度沿导轨运动,导轨的电阻可忽略。求此时杆2克服摩擦力做功的功率。 解法1:设杆2的运动速度为v ,由于两杆运动时,两 杆间和导轨构成的回路中的磁通量发生变化,产生感 应电动势 )(0v v Bl E -= ① 感应电流 2 1R R E I += ② 杆2作匀速运动,它受到的安培力等于它受到的摩擦力,g m BlI 2μ= ③ 导体杆2克服摩擦力做功的功率 gv m P 2μ= ④ 解得 )]([212 2202R R l B g m v g m P +- =μμ ⑤ 解法2:以F 表示拖动杆1的外力,以I 表示由杆1、杆2和导轨构成的回路中的电流,达到稳定时,对杆1有 01=--BIl g m F μ ① 对杆2有 02=-g m BIl μ ② 外力F 的功率 0Fv P F = ③ 以P 表示杆2克服摩擦力做功的功率,则有01212)(gv m R R I P P F μ-+-= ④ 由以上各式得 )]([212 202R R l B g m v g m P g +- =μμ ⑤ 2. 导轨间距不等 例4. (04全国)如图所示中1111d c b a 和2222d c b a 为在同一竖直平面的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的11b a 段与22b a 段是竖直的,距离为1l ;11d c 段与22d c 段也是竖直的,距离为2l 。11y x 和22y x 为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为1m 和2m ,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R 。F 为作用于金属杆11y x 上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路上的热功率。 解:设金属杆向上运动的速度为υ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少。由法拉第电磁感应定律,回路中的感应电动势的大小υ)(21l l B E -= 回路中的电流R E I = 方向沿着顺时针方向 两金属杆都要受到安培力的作用,作用于杆11y x 的安培力为11BIL f =,方向向上;作用于杆22y x 的安培力为22BIL f =,方向向下。当金属杆作匀速运动时,根据牛顿第二定律有 0f f g m g m F 2121=-+-- 2 1 0v

2018年高考物理试题分类解析电磁感应

2018年高考物理试题分类解析:电磁感应 全国1卷 17.如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心。轨道的电阻忽略不计。OM是有一定电阻、可绕O转动的金属杆。M端位于PQS上,O M与轨道接触良好。空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OM从OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ)。在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则 B B ' 等于 A. 5 4 B. 3 2 C. 7 4 D.2 【解析】在过程Ⅰ中 R r B R t R E t I q 2 __4 1 π ? = ?Φ = = =,在过程Ⅱ中 2 2 1 ) ' (r B B R q π ? - = ?Φ =二者相等,解得 B B ' = 3 2 。 【答案】17.B 全国1卷 19.如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态。下列说法正确的是 A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向

D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【解析】A .开关闭合后的瞬间,铁芯内磁通量向右并增加,根据楞次定律,左线圈感应电流方向在直导线从南向北,其磁场在其上方向里,所以小磁针的N 极朝垂直纸面向里的方向转动,A 正确; B 、 C 直导线无电流,小磁针恢复图中方向。 D .开关闭合并保持一段时间再断开后的瞬间,电流方向与A 相反,小磁针的N 极朝垂直纸面向外的方向转动,D 正确。 【答案】19.AD 全国2卷 18.如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域, 区域宽度均为l ,磁感应强度大小相等、方向交替向上向下。一边长为 3 2 l 的正方形金属线框在导轨上向左匀速运动,线框中感应电流i 随时间t 变化的正确图线可能是 【解析】如图情况下,电流方向为顺时针,当前边在向里的磁场时,电流方向为逆时针,但因为两导体棒之间距离为磁场宽度的 2 3 倍,所以有一段时间两个导体棒都在同一方向的磁场中,感应电流方向相反,总电流为0,所以选D. 【答案】18.D 全国3卷 20.如图(a ),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧。导线 PQ 中通有正弦交流电流i ,i 的变化如图(b )所示,规定从Q 到P 为电流的正方向。导线框R 中的感应电动势

电磁感应中的单杆和双杆问题(习题,问题详解)

电磁感应中“滑轨”问题归类例析 一、“单杆”滑切割磁感线型 1、杆与电阻连接组成回路 例1、如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、阻值为R /2的金属导线ab 垂直导轨放置 (1)若在外力作用下以速度v 向右匀速滑动,试求ab 两点间的电势差。 (2)若无外力作用,以初速度v 向右滑动,试求运动过程中产生的热量、通过ab 电量以及ab 发生的位移x 。 例2、如右图所示,一平面框架与水平面成37°角,宽L=0.4 m ,上、下两端各有一个电阻R 0=1 Ω,框架的其他部分电阻不计,框架足够长.垂直于框平面的方向存在向上的匀强磁场,磁感应强度B =2T.ab 为金属杆,其长度为L =0.4 m ,质量m =0.8 kg ,电阻r =0.5Ω,棒与框架的动摩擦因数μ=0.5.由静止开始下滑,直到速度达到最大的过程中,上端电阻R 0产生的热量Q 0=0.375J(已知sin37°=0.6,cos37°=0.8;g 取10m /s2)求: (1)杆ab 的最大速度; (2)从开始到速度最大的过程中ab 杆沿斜面下滑的距离;在该过程过ab 的电荷量.关键:在于能量观,通过做功求位移。 2、杆与电容器连接组成回路 例3、如图所示, 竖直放置的光滑平行金属导轨, 相距L , 导轨一端接有一个电容器, 电容量为C, 匀强磁场垂直纸面向里, 磁感应强度为B, 质量为m 的金属棒ab 可紧贴导轨自由滑动. 现让ab 从高h 处由静止下滑, 不考虑空气阻力, 也不考虑任何部分的电阻和自感作用.求金属棒下落的时间? 问金属棒的做什么运动?棒落地时的速度为多大? 例4、光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。求导体棒的最终速度。 3、杆与电源连接组成回路 例5、如图所示,长平行导轨PQ 、MN 光滑,相距5.0 l m ,处在同一水平面中,磁感应强度B =0.8T 的匀强磁场竖直向下 穿过导轨面.横跨在导轨上的直导线ab 的质量m =0.1kg 、电阻R =0.8Ω,导轨电阻不计.导轨间通过开关S 将电动势E =1.5V 、电阻r =0.2Ω的电池接在M 、P 两端,试计算分析: (1)在开关S 刚闭合的初始时刻,导线ab 的加速度多大?随后ab 的加速度、速度如何变化? (2)在闭合开关S 后,怎样才能使ab 以恒定的速度υ =7.5m/s 沿导轨向右运动?试描述这时电路中的能量转化情况(通过具体的数据计算说明). 二、“双杆”滑切割磁感线型 a b C v 0

高三物理电磁感应知识点

届高三物理电磁感应知识点 物理二字出现在中文中,是取格物致理四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思。小编准备了高三物理电磁感应知识点,具体请看以下内容。 1.电磁感应现象 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。 (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即0。 (2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。 (3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。 2.磁通量 (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过

该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。 3.楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。 (2)对楞次定律的理解 ①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。 ②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。 (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍 原电流的变化(自感)。 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=n/t

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

近十年年高考物理电磁感应压轴题

θ v 0 x y O M a b B N 电磁感应 2006年全国理综 (北京卷) 24.(20分)磁流体推进船的动力来源于电流与磁场间的相互作用。图1是平静海面上某 实验船的示意图,磁流体推进器由磁体、电极和矩形通道(简称通道)组成。 如图2所示,通道尺寸a =,b =、c =。工作时,在通道内沿z 轴正方向加B =的匀强磁 场;沿x 轴正方向加匀强电场,使两金属板间的电压U =;海水沿y 轴正方向流过通道。已知海水的电阻率ρ=Ω·m 。 (1)船静止时,求电源接通瞬间推进器对海水推力的大小和方向; (2)船以v s =s 的速度匀速前进。若以船为参照物,海水以s 的速率涌入进水口由于通 道的截面积小球进水口的截面积,在通道内海水速率增加到v d =s 。求此时两金属板间的感应电动势U 感。 (3)船行驶时,通道中海水两侧的电压U / =U -U 感计算,海水受到电磁力的80%可以转 化为对船的推力。当船以v s =s 的船速度匀速前进时,求海水推力的功率。 解析24.(20分) (1)根据安培力公式,推力F 1=I 1Bb ,其中I 1= R U ,R =ρac b 则F t = 8.796==B p U Bb R U ac N 对海水推力的方向沿y 轴正方向(向右) (2)U 感=Bu 感b= V (3)根据欧姆定律,I 2= 600)('4=-=pb ac b Bv U R U A 安培推力F 2=I 2Bb =720 N

推力的功率P =Fv s =80%F 2v s =2 880 W 2006年全国物理试题(江苏卷) 19.(17分)如图所示,顶角θ=45°,的金属导轨 MON 固定在水平面内,导轨处在方向竖直、磁感应强度为B 的匀强磁场中。一根与ON 垂直的导体棒在水平外力作用下以恒定速度v 0沿导轨MON 向左滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均匀为r 。导体棒与导轨接触点的a 和b ,导体棒在滑动过程中始终保持与导轨良好接触。t =0时,导体棒位于顶角O 处,求: (1)t 时刻流过导体棒的电流强度I 和电流方向。 (2)导体棒作匀速直线运动时水平外力F 的表达式。 (3)导体棒在0~t 时间内产生的焦耳热Q 。 (4)若在t 0时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。 19.(1)0到t 时间内,导体棒的位移 x =t t 时刻,导体棒的长度 l =x 导体棒的电动势 E =Bl v 0 回路总电阻 R =(2x +2x )r 电流强度 022E I R r ==(+) 电流方向 b →a (2) F =BlI =22 02 22E I R r ==(+) (3)解法一 t 时刻导体的电功率 P =I 2 R =23 02 22E I R r ==(+) ∵P ∝t ∴ Q =2P t =232 02 2(22E I R r ==+) 解法二 t 时刻导体棒的电功率 P =I 2 R 由于I 恒定 R / =v 0rt ∝t

2020高考物理专题十 电磁感应

专题十电磁感应 挖命题 【考情探究】 分析解读导体棒切割磁感线的计算限于导线方向与磁场方向、运动方向垂直的情况。本专题主要研究电磁感应现象的描述、感应电流的方向的判断(楞次定律、右手定则)、感应电动势的大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容,近几年多放在第一道计算题考查。在高考中电磁感应现象多

与磁场、电路、力学、能量等知识结合,综合性较高,因此在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路,要研究与实际生活、生产科技相结合的实际应用问题。命题趋势:(1)楞次定律、右手定则、左手定则的应用。(2)与图像结合考查电磁感应现象。(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用。 【真题典例】 破考点 【考点集训】 考点一电磁感应现象、楞次定律 1.(2018江苏海安高级中学阶段检测,8)(多选)如图所示,A为一固定的圆环,条形磁铁B从左侧无穷远处以初速度v0沿圆环轴线移向圆环,穿过后移到右侧无穷远处。下列说法中正确的是( )

A.若圆环A是电阻为R的线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 B.若圆环A是一超导线圈,磁铁移近圆环直至离开圆环这一过程中圆环中的感应电流方向发生变化 C.若圆环A是电阻为R的线圈,磁铁的中点通过环面时,圆环中电流为零 D.若圆环A是一超导线圈,磁铁的中点通过环面时,圆环中电流为零 答案AC 2.(2018江苏泰州、宜兴能力测试,3)如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管。下列说法正确的是( ) A.电流计中的电流先由a到b,后由b到a B.a点的电势始终低于b点的电势 C.磁铁减少的重力势能等于回路中产生的热量 D.磁铁刚离开螺线管时的加速度小于重力加速度 答案D 3.(2017江苏扬州中学月考,7)(多选)一个水平固定的金属大圆环A,通有恒定的电流,方向如图所示,现有一小金属环B自A环上方落下并穿过A环,B环在下落过程中保持水平,并与A环共轴,那么在B环下落过程中( )

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析一、电磁感应现象的两类情况 1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求: (1)金属棒pq到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq运动到时,金属棒gh的速度大小; (3)金属棒gh产生的最大热量。 【答案】(1) (2) (3) 【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量; 解:(1)金属棒pq下滑过程中,根据机械能守恒有: 在圆弧底端有 根据牛顿第三定律,对圆弧底端的压力有 联立解得 (2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有 对于金属棒pq有 对于金属棒gh有

高考物理专题 电磁感应(含答案)

专题十一电磁感应 考纲解读 分析解读本专题主要内容有电磁感应现象的描述、感应电流方向的判断(楞次定律、右手定则)、感应电动势大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容。在高考中,电磁感应现象多与磁场、电路、力学、能量等知识结合,综合性较高,因此,在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路和方法,还要研究与实际生活、生产科技相结合的实际应用问题,便于全面提高分析解决综合性问题和实际应用问题的能力。 命题探究

(1)设两导线的张力大小之和为T,右斜面对ab棒的支持力的大小为N1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为N2。对于ab棒,由力的平衡条件得 2mgsinθ=μN1+T+F① N1=2mgcosθ② 对于cd棒,同理有 mgsinθ+μN2=T③ N2=mgcosθ④ 联立①②③④式得 F=mg(sinθ-3μcosθ)⑤ (2)由安培力公式得 F=BIL⑥ 这里I是回路abdca中的感应电流。ab棒上的感应电动势为 ε=BLv⑦ 式中,v是ab棒下滑速度的大小。由欧姆定律得 I=⑧ 联立⑤⑥⑦⑧式得 v=(sinθ-3μcosθ)⑨

五年高考考点一楞次定律

1.(2017课标Ⅲ,15,6分)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是() A.PQRS中沿顺时针方向,T中沿逆时针方向 B.PQRS中沿顺时针方向,T中沿顺时针方向 C.PQRS中沿逆时针方向,T中沿逆时针方向 D.PQRS中沿逆时针方向,T中沿顺时针方向 答案 D 2.(2017天津理综,3,6分)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是() A.ab中的感应电流方向由b到a B.ab中的感应电流逐渐减小 C.ab所受的安培力保持不变 D.ab所受的静摩擦力逐渐减小 答案 D 3.(2016课标Ⅱ,20,6分)(多选)法拉第圆盘发电机的示意图如图所示。铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触。圆盘处于方向竖直向上的匀强磁场B中。圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()

电磁感应单杆模型专项训练

电磁感应单杆模型 1.如图所示,固定于水平面的U 形导线框处于竖直向下的匀强磁场中(磁场足够大),磁场的磁感应强度为B ,点a 、b 是U 形导线框上的两个端点。水平向右恒力F 垂直作用在金属棒MN 上,使金属棒MN 以速度v 向右做匀速运动。金属棒MN 长度为L ,恰好等于平行轨道间距,且始终与导线框接触良好,不计摩擦阻力,金属棒MN 的电阻为R 。已知导线ab 的横截面积为S 、单位体积自由电子数为n ,电子电量为e ,电子定向移动的平均速率为v ?。导线ab 的电阻为R ,忽略其余导线框的电阻。则,在t 时间 A .导线ab 中自由电子从a 向b 移动 B .金属棒MN 中产生的焦耳热Q =FL C .导线ab 受到的安培力大小F 安=nSLev ?B D .通过导线ab 横截面的电荷量为BLv R 2.如图所示,足够长的光滑导轨竖直放置,匀强磁场的磁感应强度B =2.0T ,方向垂直于导轨平面向外,导体棒ab 长L =0.2 m (与导轨的宽度相同,接触良好),其电阻 r =1.0 Ω,导轨电阻不计。当导体棒紧贴导轨匀速下滑时,两只均标有“3V ,1.5 W ”字样的小灯泡恰好正常发光。求: (1)通过导体棒电流的大小和方向; (2)导体棒匀速运动的速度大小。 3.如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有 一阻值R =3Ω的定值电阻,下端开口,轨道间距L =1 m 。整个装置处于磁感应强度B =2T 的匀强磁场中,磁场方向垂直斜面向上。质量m =1kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1Ω,电路中其余电阻不计。金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好。不计空气阻力影响。已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,取g =10m/s 2 。 ⑴求金属棒ab 沿导轨向下运动的最大速度v m ; ⑵求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ; ⑶若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为1.5J ,求流过电阻R 的总电荷量q 。 M N B b a F v × × a B b B R θ θ M N P Q a b

高考物理电磁感应

高考物理电磁感应

第一课时:电磁感应现象、楞次定律 _____班姓名_____________ 【知识梳理】 1.产生感应电流的条件:只要穿过闭合回路的磁通量发生变化.引起磁通量变化的原因很多,如面积的变化、正对面积的变化、磁场强度的变化等。 2.楞次定律:判断感应电流方向。感应电流的磁场总是阻碍引起感应电流磁场磁通量的变化。应用楞次定律判断感应电流的方向的具体步骤为:(1)明确原磁通量的方向(2)判断磁通量的增减情况(3)确定感应电流的磁场的方向(4)利用安培定则反推感应电流的方向. 4.导体切割磁感线产生感应电流的方向用右手定则来判断较为简便. 5.楞次定律中的“阻碍”作用正是能的转化和守恒定律的反映.愣次定律的另一种表述:感应电流的效果总是反抗引起感应电流的原因.当问题不涉及感应电流的方向时,用另一种表述判断比较方便.【知识梳理】 例1.(2002年上海卷) 如图所示,A、B为大小、形状均相同且内壁光滑,但用不同材料制成的圆管,竖直固定在相同高度。两个相同的磁性小球,

同时从A、B管上端的管口无初速释放,穿过A管的小球比穿过B管的小球先落到地面。下面对于两管的描述中可能正确的是( ) A.A管是用塑料制成的,B管是用铜制成的B.A管是用铝制成的,B管是用胶木制成的C.A管是用胶木制成的,B管是用塑料制成的D.A管是用胶木制成的,B A B 例2.(2003年上海综合卷11)唱卡拉OK用的话筒,内有传感器。其中有一种是动圈式的,它的工作原理是在弹性膜片后面粘接一个轻小的金属线圈,线圈处于永磁体的磁场中,当声波使膜片前后振动时,就将声音信号转变为电信号。下列说法正确的是:() A.该传感器是根据电流的磁效应工作的 B.该传感器是根据电磁感应原理工作的 C.膜片振动时,穿过金属线圈的磁通量不变D.膜片振动时,金属线圈中不会产生感应电动势

(完整版)电磁感应双杆模型

b a c d B R M N P Q L 应用动量定理与动量守恒定律解决双导体棒切割磁感线问题 1.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求: (1)开始时,导体棒ab 中电流的大小和方向; (2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为 4 3 v 0时,cd 棒加速度的大小。 2.如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .忽略摩擦 (1)求:ab 到达圆弧底端时对轨道的压力大小 (2)在图中标出ab 刚进入磁场时cd 棒中的电流方向 (3)若cd 离开磁场时的速度是此刻ab 速度的一半, 求:cd 离开磁场瞬间,ab 受到的安培力大小 3.(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。请问: (1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少? (2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少? (3)整个过程中产生的内能是多少? 4.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。两金属棒ab 、cd 垂直于两导轨且与导轨接触良好。棒ab 质量为2 m ,电阻为r ,棒cd 的质量为m ,电阻为r 。重力加速度为g 。开始棒cd 静止在水平直导轨上,棒ab 从圆弧顶端无初速度释放,进入水平直导轨后与棒cd 始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。棒ab 与棒cd 落地点到桌面边缘的水平距离之比为3: 1。求: (1)棒ab 和棒cd 离开导轨时的速度大小; (2)棒cd 在水平导轨上的最大加速度; (3)两棒在导轨上运动过程中产生的焦耳热。 B a b c d R

相关文档
相关文档 最新文档