文档库 最新最全的文档下载
当前位置:文档库 › 概率论复习

概率论复习

概率论复习
概率论复习

一、1、.二项、泊松、正态分布的概率特征及联系:

(1)概率特征:

二项:二项分布即重复n次的伯努利试验。记作ξ~B(n,p);期望:E ξ=np;方差:Dξ=npq

在每次试验中只有两种可能的结果,而且是互相对立的,是独立的,与其它各次试验结果无关,结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努力试验。

泊松:当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。

随机变量X 只取非负整数值,取k值的概率为则随机变量X 的分布称为泊松分布,记作P(λ)。泊松分布的期望和方差均为λ.

正态:

主要特征

1.集中性:正态曲线的高峰位于正中央,即均数所在的位置。

2.对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

3.均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

(2)联系:

他们的适用范围不同。

正态分布是所有分布趋于极限大样本的分布,属于连续分布。

二项分布与泊松分布则都是离散分布,二项分布的极限分布是泊松分布、泊松分布的极限分布是正态分布。

2、辨析题2

互斥事件:不可能同事发生的两个事情. 从集合的角度说,设全集U,集合A,则A与CuA就是一对互斥事件. 从分类计数原理方面考虑. 相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响. 就是说可能取交集.从分步计数原理考虑.

互斥事件概率论术语.事件A和B的交集为空,A与B就是互斥事件,也叫互不相容事件.也可叙述为:不可能同时发生的事件.

互斥事件的概念公式:

P(A+B)=P(A)+P(B)

a是A的对立事件,

P(A)=1-P(a)

P(A)+P(B)不一定等于1

对立事件概率论术语。亦称“逆事件”。不可能同时发生。

若A交B为不可能事件,A并B为必然事件,那么称A事件与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有

且仅有一个发生。

对立事件概率之间的关系:

P(A)+P(B)=1

3、随机事件的独立性与变量的独立性

? 设A,B 是两个随机事件,若P(AB)=P(A)P(B)称A 与B 时相互独立..._

设 F (x ,y )及F x (X )F y (Y )分别是二维随机变 量 X Y 的分布函数及边缘分布 函数 .若对于所有 x y 有 P {X ≤ x ,Y ≤ y}=-P {X ≤ x }P{ Y ≤ y} 即 F (x , y )= F x (X )F y (Y )则称随机变量 X 和 Y 是相互独立。

4、矩估计法:替换思想。如果总体中有 K 个未知参数,可以用前 K 阶样本矩估计相应的前 阶总体矩,然后利用未知参数与总体矩的函数关系,求出参数的估计量。

似然法:构造似然函数。将在试验中概率最大的事件推断为最可能出现的事件。

匆匆过客

5、三大重要分布定义特征、密度曲线、分为点特征 答:

1

分布

2

6、

一、7、

随机事件A 发生的频率,是指在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值,在大量重复试验时,也就是说试验次数很大时,频率会逐步趋于稳定,总在某个常数附近摆动,且摆动幅度很小,那么这个常数叫做这个事件发生的概率。由此可见,随着试验次数的增多,频率会越来越接近于概率,可以看作是概率的近似值。但频率又不同于概率,频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,而概率是一个确定的常数,是客观存在的,与试验次数无关 , 概率可看作频率在理论上的期望值,并从数量上反映了随机事件发生的可能性。 联系:当试验次数很大时,事件发生的频率稳定在相应概率的附近,即试验频率稳定于理论概率,因此可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率。

区别:某随机事件发生的概率是一个常数,是客观存在的,与试验次数无关。而频率是随机的,试验前无法确定。概率的统计定义是用频率表示的,但它又不同于频率的定义,只是用频率来估算概率。频率是试验值,有不确定性,而概率是稳定值。

采用李雅普诺夫定理研究频率估计概率的误差

8、连续型随机变量指数分布具有记忆性是指在t 的间隔内其概率之差是相等的。

离散型随机变量的几何分布的无记忆性(即对任何正整数m,n ,有1 () .

X X E X μ=总是总体的数学期望的无偏估计量

P(X>m+n/X>m)=P(X>n)),也就是说,在已经作了m 次失败试验的条件下,还需要继续作n 次以上的试验的可能性,已从一开始就需要作n 次以上试验的可能性是一致的。这表明,几何分布在后面的计算中,把过去的m 次失败的信息遗忘了,就像刚开始计算一样。

9、随机变量的标准化,举出标准化的性质和应用。

性质: ()()??x x =-

p{x ≥0}=p{x ≤0}=1/2=φ(0)

应用:标准化以后是服从标准正态布,而不是一般的正态分布,而服从标准正态分布的随机变量,计算相关的问题可查正态分布表(实际上是标准正态分布的分布函数值表),这样很多问题就简单了.

10、参数估计中关于估计量的评选标准有:

3个:无偏性、有效性、相合性

无偏性特点:无偏估计量不唯一;

意义:无偏估计的实际意义就是无系统误差,无偏性就是样本的偏差。有效性:?θ的密集程度,越有效越密集

相合性:当n→∞时,估计量是否收敛。若收敛,相合。

二、辨析

1、A、B是随机事件,S是必然事件,Φ是不可能事件。

(1)A=S 的充要条件是 P(A)=1

错必然事件发生的概率为1,但概率为1的事件不一定为必然事件。连续型随机变量X,取值为样本空间中任意有限个点的概率为0,从整个样本空间剔除这有限个点,取到'非该有限个点'概率依然为1。

(2)B=Φ的充要条件是 P(B)=0

错同(1)理

2、期望,意思就是这个事情的总的平均结果会是怎样

通俗的讲,就是平均值,也可以说是平均水平

算法是

概率*取值的总和,反映的是事情达成的总的预期水平值

这就是期待值

希望对你有帮助

方差是标准差的平方

方差和标准差。方差和标准差是测算离散趋势最重要、最常用的指标。方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法。标准差为方差的平方根,用S表示。标准差相应的计算公式为

标准差是方差开方后的结果(即方差的算术平方根) 假设这组数据的平均值是m 方差公式

s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]

假设方差是a。则标准差就是这个方差开方

标准差与方差不同的是,标准差和变量的计算单位相同,比方差清楚,因此很多时候我们分析的时候更多的使用的是标准差。

3、大数定律与中心极限定理

1733年,德莫佛—拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限分布是正态分布。拉普拉斯改进了他的证明并把二项分布推广为更一般的分布。1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法。这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”。20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进

展。伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。

大数定律(law of large numbers),又称大数定理[1],是一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,虽然通常最常见的称呼是大数“定律”,但是大数定律并不是经验规律,而是严格证明了的定理。

有些随机事件无规律可循,但不少是有规律的,这些“有规律的随机事件”数学家伯努利在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。确切的说大数定律是以确切的数学形式表达了大量重复出现的随机现象的统计规律性,即频率的稳定性和平均结果的稳定性,并讨论了它们成立的条件。[2] 简单地说,大数定理就是“当试验次数足够多时,事件发生的频率无穷接近于该事件发生的概率”。该描述即伯努利大数定律。

在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。通俗地说,这个定理就是,在试验不变的条件下,重复试验多次,随机事件的频率近似于它的概率。比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们上抛硬币的次数足够多后,达到上万次甚至几十万几百万次以后,我们就会发现,硬币每一面向上的次数约占总次数的二分之一。偶然必然中包含着必然。

中心极限定理是研究独立随机变量和的极限分布为正态分布的问题。

设随机变量序列X1,X2,、、、Xn,、、、相互独立,均具有相同的数学期望与方差,且E(Xi)= Ui,D(Xi)=Ri^2>0,i=1,2,、、、,令:

Yn=X1+X2+、、、+Xn

Zn=〔Yn-E(Yn)〕/√D(Yn)=∑(Xi-Ui)/√∑Ri^2 (i=1,2、、、、n)

则称随机变量Zn为随机变量序列X1,X2,、、、,Xn的规范和。

概述

中心极限定理(central limit theorem)是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。

它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象。最早的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题。1716年前后,A.棣莫弗对n重伯努利试验中每次试验事件A 出现的概率为1/2的情况进行了讨论,随后,P.-S.拉普拉斯和A.M.李亚普诺夫等进行了推广和改进。自P.莱维在1919~1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等。极限定理是概率论的重要

内容,也是数理统计学的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。

中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n的正态分布

4、独立一定不相关,不相关不一定独立。不相关就是指非线性相关,非线性相关还可以有其他相关关系,所以不一定独立。

相关与否要看相关系数=cov(X,Y)=E(XY)-E(X)E(Y)是否为零,有可能在题目中可以直接算出E(XY)=E(X)E(Y),此时x,y不相关。

但即使E(XY)=E(X)E(Y),P{X<=x,Y<=y}也有可能不等于P{X<=x}P{Y<=y}

举个例子:

X -2 -1 1 2

Y

1 0 1/4 1/4 0

4 1/4 0 0 1/4

5.判对错并举例说明

(1)x为离散型,Y=g(x)为离散型函数。

(2)x为连续型,Y=g(x)为连续型函数。

答:(1)一定

(2)不一定

6、(1)不对(2)不对

7、显著性水平为a检验的拒绝域,与置信水平为1-a的置信区间互为补集的,也即:求接受域就是求置信区间,所以假设检验和区间估计本质是一回事。

8、(1)F(x)+F(y)不能作为随机变量的分布函数,当aF(x)+bF(y),a+b=1成立

(2)F(x)F(y)能作为随机变量的分布函数

f(x)+f(y)、f(x)f(y)都不能为某一随机变量的密度函数,同样af(x)+bf(y),a+b=1成立.

(3)能

9、(1)不对(2)对(3)对(4)对

10、对不一定对

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

(完整版)04183概率论与数理统计(经管类)_1001

浙04183# 概率论与数理统计(经管类)试题 第 1 页(共 5 页) 全国2010年1月高等教育自学考试 概率论与数理统计(经管类)试题 课程代码:04183 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ?B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B ) D.P (AB )=φ 2.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.8 1 B.41 C.8 3 D. 2 1 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53 )A |B (P =,则P (B )=( ) A. 51 B. 52 C. 5 3 D. 5 4 4.设随机变量X 则k= A.0.1 B.0.2 C.0.3 D.0.4 5.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( ) A.F(-a)=1-? a 0dx )x (f B.F(-a)= ? -a dx )x (f 21 C.F(-a)=F(a) D.F(-a)=2F(a)-1 6.设二维随机变量(X ,Y )的分布律为

浙04183# 概率论与数理统计(经管类)试题 第 2 页(共 5 页) 则P{XY=0}=( ) A. 121 B. 61 C. 3 1 D. 3 2 7.设随机变量X ,Y 相互独立,且X~N (2,1),Y~N (1,1),则( ) A.P{X-Y ≤1}=21 B. P{X-Y ≤0}=21 C. P{X+Y ≤1}= 2 1 D. P{X+Y ≤0}= 2 1 8.设随机变量X 具有分布P{X=k}=5 1 ,k=1,2,3,4,5,则E (X )=( ) A.2 B.3 C.4 D.5 9.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑ == 5 1 i i x 5 1x 和25 1 i i 2 )x x (41 s ∑=-= ,则 s ) x (5μ-服从( ) A.t(4) B.t(5) C.)4(2χ D. )5(2χ 10.设总体X~N (2 ,σμ),2 σ未知,x 1,x 2,…,x n 为样本,∑=--= n 1 i 2i 2 )x x (1 n 1 s ,检验假 设H 0∶2σ=2 0σ时采用的统计量是( )

概率论大作业讲解

现实生活中的大数定理及中心值定理的应用 电子工程学院

目录 摘要........................................... 错误!未定义书签。第一章引言...................................... 错误!未定义书签。第二章大数定律 (2) 2.1大数定律的发展历史 (2) 2.2大数定律的定义 (3) 2.3几个常用的大数定律 (3) 第三章大数定律的一些应用 (6) 3.1大数定律在数学分析中的一些应用 (6) 3.2大数定律在保险业的应用 (6) 3.3大数定律在银行经营管理中的应用 9结论 (11) 参考文献 (12)

对于随机现象而言,其统计规律性只有在基本相同的条件下进行大量的重复试验才能显现出来.本文主要是通过大数定律来讨论随机现象最根本的性质——平均结果稳定性的相关内容.大数定律,描述当试验次数很大时所呈现的概率性质的定律,是随机现象统计规律性的具体表现. 本文首先介绍了大数定律涉及的一些基础知识,以便于对文中相关知识的理解.通过比较,就不同条件下存在的大数定律做了具体的分析,介绍了几种较为常见的大数定律和强大数定律,总结了大数定律的应用,主要有大数定律在数学分析中的应用,大数定律在生产生活中的应用,大数定律在经济如:保险、银行经营管理中的应用等等,将理论具体化,将可行的结论用于具体的数学模型中,使大家对大数定律在实际生活中的应用价值有了更深的认识.

概率论与数理统计是研究随机现象的统计规律的科学,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来.在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律.大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带.大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值. 在现实生活中,经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然.又如:在分析天平上称重量为a 的物品,若以12,,x x 3,...,n x x 表示n 次重复称量的结果,经验告诉我们,当n 充分大时,它们的算术平均值1 1n i i X n =∑与a 的偏差就越小.这种思想,不仅在整个概率论中起着重要00作用,而且在其他数学领域里面也占据着相当重要的地位. 大数定律的发展与研究也经历了很长一段时间,伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理.现在,大数定律的相关模型已经被国内外广大学者所研究,特别是应用在实际生活中,如保险业得以存在并不断发展壮大的两大基石的一个就是大数定律.许多学者也已经在此领域中研究出了许多有价值的成果,讨论了在统计,信息论,分析、数论等方面的应用.在许多数学领域中,广大学者对某些具有特定类型的数学模型,都能利用大数定律的思考方式总结其代表性的性质及结论,使得这些类型的数学模型在进行讨论的时候大大简化了繁琐的论证过程,方便了研究.大数定律作为概率论的重要内容,其理论成果相对比较完善,这方面的文章较多,结果也比较完美,但对大数定律的应用问题的推广也是一项非常有价值的研究方向,通过对这些问题的应用推广,不仅能加深对大数定律的理解,而且能使之更为有效的服务于各项知识领域中.下面文中就通过对大数定律的讨论,给出了各大数定律之间的关系,归结出一般性结论.最后列举了一些能用大数定律来解决的实例,希望能通过这些实例,来进一步阐明大数定律在各个分支学科中的重要作用,以及在实际生活中的应用价值,加深大家对大数定律的理解.

概率论习题及答案()

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率. 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为.. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11()(),(|),36 P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) 2、设()0,P AB =则下列说法正确的是( ) 3、掷21n +次硬币,正面次数多于反面次数的概率为( ) 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ) 5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) .A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=0 6、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) .A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=1

概率论

一 1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。 2、已知,6.0)(,4.0)(,==?B P A P B A 则)(A B P -= 。 3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。 4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率 ,8.0)|(=A B P 则=?)(B A P 。 5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。 6、假设X 是连续型随机变量,其概率密度函数为???<<=. 030)(2其它,; ,x cx x f ,则 =c 。 7、设二维随机变量 ) ,(Y X 的联合分布函数为 ),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。 8、设Y 服从)4,5.1(N ,则=>}2{X P 。 9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。 10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y X T = 的分布为自由度为 的 分布。 二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。试分别按这两种抽取方式,求 (a)、两件都是次品的概率? (b)、第一件是次品,第二件是正品的概率?

04183概率论与数理统计(经管类)(有问题详解)

文案大全 04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

概率论浙大第四版答案

概率论浙大第四版答案 【篇一:概率论(浙大第四版)课后答案】 p> 浙大第四版(高等教育出版社) 第一章概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) o1n?100?s???,???,n表小班人数 n??nn (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) s={10,11,12,???,n,???} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的 盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就 停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。([一] (3)) s={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设a,b,c为三事件,用a,b,c的运算关系表示下列事件。(1)a发生,b与c不发生。 表示为: a或a- (ab+ac)或a- (b∪c) (2)a,b都发生,而c不发生。 表示为: ab或ab-abc或ab-c 表示为:a+b+c (3)a,b,c中至少有一个发生 (4)a,b,c都发生,表示为:abc (5)a,b,c都不发生,表示为:或s- (a+b+c)或a?b?c (6)a,b,c中不多于一个发生,即a,b,c中至少有两个同时 不发生相当于,,中至少有一个发生。故表示为:??。 (7)a,b,c中不多于二个发生。相当于:,,中至少有一个发生。 故表示为:??abc (8)a,b,c中至少有二个发生。 相当于:ab,bc,ac中至少有一个发生。故表示为:ab+bc+ac

济南大学概率论A大作业答案

第一章 概率论的基本概念 一、填空题 1.;)3(;)2(;)1(C B A C B A C B A C B A C AB )()4(C B C A B A C B A C B A C B A C B A 或; 2. 2 1 81,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 87; 7. 85; 8. 996.01211010 12或A -; 9. 2778.0185 6 446==A ;10. p -1. 二、选择题 D ;C ;B ;A ;D ; C ;D ;C ;D ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=) 相互独立, 又)B A B A P B P A P ,,9 1 )(),((==∴ .3 2 )(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P 2.解: 设事件A 表示“取得的三个数字排成一个三位偶数”,事件B 表示“此三位偶数的末 尾为0”,事件B 表示“此三位偶数的末尾不为0”,则: =)(A P )()(B P B P += .125 3 4 1 2123423=+A A A A A 3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率公式: )()()()((321321B A P B A P B A P B A B A B A P B P ++== ) )()()()()()(332211A B P A P A B P A P A B P A P ++= (1) 设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

04183概率论与数理统计(经管类)

04183概率论与数理统计(经管类) 一、单项选择题 1.若E(XY)=E(X))(Y E ?,则必有( B )。 A .X 与Y 不相互独立 B .D(X+Y)=D(X)+D(Y) C .X 与Y 相互独立 D .D(XY)=D(X)D(Y 2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回, 则第二次抽出的是次品的概率为 A 。 A .0.1 B .0.2 C .0.3 D .0.4 3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。 A .1)(=+∞F B .0)(=-∞F C .1)(0≤≤x F D .)(x F 连续 4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。 A .n k k m q p C B .k n k k n q p C - C .k n pq - D .k n k q p - 5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则 (23)D X Y ++= C A .8 B .16 C .20 D .24 6.设n X X X Λ21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中 心极限定理得()1n i i P X a a =?? ≥???? ∑为常数的近似值为 B 。 A .1a n n μσ-??-Φ ??? B .1-Φ C .a n n μσ-?? Φ ??? D .Φ 7.设二维随机变量 的联合分布函数为,其联合分布律为 则(0,1)F = C 。 A .0.2 B .0.4 C .0.6 D .0.8 8.设k X X X ,,,21Λ是来自正态总体)1,0(N 的样本,则统计量2 2221k X X X Λ++服从 ( D )分布 A .正态分布 B .t 分布 C .F 分布 D .2 χ分布 9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。 A .21)0(=≤+Y X P B .21)1(=≤+Y X P C .21)0(=≤-Y X P D .21)1(=≤-Y X P 10.设总体X~N (2,σμ),2 σ为未知,通过样本n x x x Λ21,检验00:μμ=H 时,需要 用统计量( C )。

概率论与数理统计大纲各章节作业

第一章随机事件与概率 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:Ω={(正,正),(正,反),(反,正),(反,反)}; A={(正,反),(正,正)}; B={(正,正),(反,反)}; C={(正,反),(正,正),(反,正)}。 2.设31)(=A P ,2 1)(=B P ,试就以下三种情况分别求)(A B P : (1)AB =?,(2)B A ?,(3)81)(=AB P 解: (1)5.0)()()()()(==-=-=B P AB P B P AB B P A B P (2)6/13/15.0)()()()()()(=-=-=-=-=A P B P AB P B P AB B P A B P (3)375 .0125.05.0)()()()(=-=-=-=AB P B P AB B P A B P 3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他 拨号不超过三次而接通所需的电话的概率是多少如果已知最后一个数字是奇数,那么此概率是多少 解: 记H 表拨号不超过三次而能接通。 Ai 表第i 次拨号能接通。 注意:第一次拨号不通,第二拨号就不再拨这个号码。 10 3819810991109101) |()|()()|()()()(2131211211321211=??+?+= ++=∴ ++=A A A P A A P A P A A P A P A P H P A A A A A A H 三种情况互斥 Θ 如果已知最后一个数字是奇数(记为事件B )问题变为在B 已发生的条件下,求H 再发生的概率。

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

浙大《概率论》习题

第一讲 1. 由盛有号码为N ,,2,1 的球的箱子中有放回的摸了n 次, 依次记其号码, 求这些号码按严格上升次序排列的概率. 2. 对任意凑在一起的40人, 求他们中没有两人生日相同的概率. 3. 从n 双不同的鞋子中任取)2(2n r r ≤只, 求下列事件的概率: (1) (1) 没有成双的鞋子; (2)只有一双鞋子; (3) 恰有二双鞋子; (4) 有r 双鞋子. 4. 从52张的一副扑克牌中, 任取5张, 求下列事件的概率: (1) (1) 取得以A 为打头的顺次同花色5张; (2) (2) 有4张同花色; (3) (3) 5张同花色; (4) (4) 3张同点数且另2张也同点数. 思考题: 1.(分房、占位问题)把n 个球随机地放入N 个不同的格子中,每个球落入各格子内的概率相同(设格子足够大,可以容纳任意多个球)。 I. I. 若这n 个球是可以区分的,求(1)指定的n 个格子各有 一球的概率;(2)有n 个格子各有一球的概率; 若这n 个球是不可以区分的,求(1)某一指定的盒子中恰有k 个球的概率;(2)恰好有m 个空盒的概率。 2.取数问题)从1-9这九个数中有放回地依次取出五个数,求下列各事件的概率: (1) (1) 五个数全不同;(2)1恰好出现二次;(3)总和为10. 第二讲 1. 在一张打方格的纸上投一枚直径为1的硬币, 问方格要多小时才能使硬币与线不相交的概率小于 2. 在某城市中共发行三种报纸:甲、乙、丙。在这个城市的居民中,订甲报(记为A)的有45%,订乙报(记为B)的有35%,订丙报(记为C)的有30%,同时订甲、乙两报(记为D)的有10%,同时订甲、丙两报(记为E)的有8%,同时订乙、丙两报(记为F)的有5%,同时订三中报纸(记为G)的有3%. 试表示下列事件, 并求下述百分比:(1)只订甲报的;(2)只订甲、乙两报的;(3)只订一种报纸的;(4)正好订两种报纸的;(5)至少订一种报纸的;(6)不订任何报纸的. 3. 在线段[0,1]上任意投三个点, 求0到这三点的三条线段能构成三角形的概率. 4. 设A, B, C, D 是四个事件, 似用它们表示下列事件: (1) (1) 四个事件至少发生一个; (2) (2) 四个事件恰好发生两个; (3) (3) A,B 都发生而C, D 不发生; (4) (4) 这四个事件都不发生; (5) (5) 这四个事件至多发生一个; (6) (6) 这四个事件至少发生两个; (7) (7) 这四个事件至多发生两个. 5. 考试时共有n 张考签, 有)(n m m ≥个同学参加考试. 若被抽过的考签立即放回, 求在考试结束后, 至少有一张考签没有被抽到的概率. 6. 在§3例5中, 求恰好有)(n k k ≤个人拿到自己的枪的概率. 7. 给定)(),(),(B A P r B P q A P p ?===, 求)(B A P 及)(B A P . 思考题 1.(蒲丰投针问题续)向画满间隔为a 的平行线的桌面上任投一直径)(a l l <为的半圆形纸片,求事件“纸片与某直线相交”的概率;

概率论课程期末论文大作业

《概率论与数理统计》论文题目:正态分布及其应用 学院:航天学院 专业:空间科学与技术 姓名:黄海京 学号:1131850108

正态分布及其应用 摘要:正态分布(normal distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。正态分布有极其广泛的实际背景, 例如测量误差, 人的生理特征尺寸如身高、体重等 ,正常情况下生产的产品尺寸:直径、长度、重量高度,炮弹的弹落点的分布等, 都服从或近似服从正态分布,以及确定医学参考值范围,药品规格,用量等。可以说,正态分布是自然界和社会现象中最为常见的一种分布, 一个变量如果受到大量微小的、独立的随机因素的影响, 那么这个变量一般是一个正态随机变量。 关键词:正态分布, 一、正态分布的由来 正态分布(normal distribution)又名高斯分布(Gaussian distribution)。正态分布概念是由德国的数学家和天文学家Moivre于1733年受次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。 正态分布是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:则其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。我们通常所说的标准正态分布是μ= 0,σ= 1的正态分布。 二、正态分布的特性 1. 正太分布的曲线特征 正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。 (1)集中性:正态曲线的高峰位于正中央,即均数所在的位置。 (2)对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。 (3)均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

(完整word版)04183概率论与数理统计(经管类)2015年真题2套及标准答案

全国高等教育自学考试 概率论与数理统计(经管类)2015年10月真题 (课程代码:04183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A ∪B)=( ) A.0 B.0.2 C.0.4 D.0.6 2.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.7 3.设随机变量X 的概率密度为=???≤≤=a x ax x f ,则常数其他,, 0, 10,)(2( ) A.0 B.3 1 C.2 1 D.3 4.设随机变量X 的分布律为 { }==-12 .06.02.01 012X P P X ,则( ) A.0.2 B.0.4 C.0.6 D.0.8 5.设二维随机变量(x,y)的分布律为{}==11 .02.01.013.02.01.00 2 10\X P Y X 则( ) A.0.1 B.0.2 C.0.3 D.0.4 6.设随机变量X ~N(3,22),则E(2X+2)=( ) A.3 B.6 C.9 D.15 7.设随机变量X 服从参数为3的泊松分布,Y 服从参数为5 1 的指数分布,且X,Y

互相独立,则D(X-2Y+1)=( ) A.23 B.28 C.103 D.104 8.已知X 与Y 的协方差Cov (X,Y )=2 1 -,则Cov (-2X,Y )=( ) A.21 - B.0 C.2 1 D.1 9.设)2(,...,,21>n x x x n 为总体X 的一个样本,且,未知)()(μμ=X E x 为样本均值,则μ的无偏估计为( ) A.x n B.x C.x n )1(- D. x n ) 1(1 - 10.设a 是假设检验中犯第一类错误的概率,0H 为原假设,以下概率为a 的是( ) A.{}不真接受00|H H P B.{}真拒绝00|H H P C.{}不真拒绝00|H H P D.{}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分) 11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____. 12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____. 13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则)(B A P Y =_____. 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____. 15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____. 16.设二维随机变量(X,Y)的分布律为c Y X 25 61 256 2590 10\则c=_____. 17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X ≤0,Y ≤0}用F(x,y)表

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结(概率论大作业)

最大似然估计学习总结 航天学院探测制导与控制技术杨若眉1110420123 摘要:最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。 关键词:最大似然估计;离散;连续;概率密度最大似然估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 “似然”是对likelihood 的一种较为贴近文言文的翻译,“似然”用现代的中文来说即“可能性”。故而,若称之为“最大可能性估计”则更加通俗易懂。最大似然法明确地使用概率模型,其目标是寻找能够以较高概率产生观察数据的系统发生树。最大似然法是一类完全基于统计的系统发生树重建方法的代表。该方法在每组序列比对中考虑了每个核苷酸替换的概率。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少? 我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持例如,转换出现的概率大约是颠换的三倍。在一个三条序列的比对中,如果发现其中有一列为一个C,一个T和一个G,我们有理由认为,C和T所

04183概率论与数理统计(经管类)_第2章课后答案

习题2.1 1.设随机变量X的分布律为P{X=k}=,k=1,2,N求常数a. N 解:由分布律的性质沫皿瑶=1得 P(X=1)申(X=2) + …P+X=N) =1 N* =1,即a=1 NI 2.设随机变量X只能取-1,0,1,2这4个值,且取这4个值相应的概率依次为一,一一—,求常数C. 花亡4c 5c l&c 解:- ---- ------------ : 2c 4c Sc 1.6c 37 C ~ 3?将一枚骰子连掷两次,以X表示两次所得的点数之和,以丫表示两次出现的最小点数,分别求X,丫的分布律. 注:可知X为从2到12的所有整数值. 可以知道每次投完都会出现一种组合情况,其概率皆为(1/6)*(1/6)=1/36 ,故 P(X=2)=(1/6)*(1/6)=1/36( 第一次和第二次都是1) P(X=3)=2*(1/36 )= 1/18(两种组合(1,2)(2,1)) P(X=4)=3*(1/36 )= 1/12(三种组合(1,3)(3,1)(2,2)) P(X=5)=4*(1/36 )= 1/9(四种组合(1,4)(4,1)(2,3)(3,2)) P(X=6)=5*(1/36 = 5/36(五种组合(1,5)(5,1)(2,4)(4,2)(3,3)) P(X=7)=6*(1/36) = 1/6(这里就不写了,应该明白吧) P(X=8)=5*(1/36) = 5/36 P(X=9)=4*(1/36) = 1/9 P(X=10)=3*(1/36) = 1/12 P(X=11)=2*(1/36) = 1/18 P(X=12)=1*(1/36) = 1/36 以上是X的分布律投两次最小的点数可以是1到6里任意一个整数,即丫的取值了. P(Y=1)=(1/6)*1=1/6 一个要是1,另一个可以是任何值

相关文档
相关文档 最新文档