文档库 最新最全的文档下载
当前位置:文档库 › 龙开口电站钢衬钢筋混凝土坝后背管非线性分析

龙开口电站钢衬钢筋混凝土坝后背管非线性分析

龙开口电站钢衬钢筋混凝土坝后背管非线性分析
龙开口电站钢衬钢筋混凝土坝后背管非线性分析

混凝土结构非线性分析

姓 名:季敏 学 号:08 手机号: 第2章 混凝土强度准则 2.1 混凝土破坏曲面的特点及表述 2.1.1 混凝土的破坏类型及其特点 混凝土在复杂应力状态下的破坏比较复杂,如果从混凝土受力破坏机理来看,有两种最基本的破坏状态,即受拉型和受压型。受拉型破坏以直接产生横向拉断裂缝为特征,混凝土在裂缝的法向丧失强度而破坏。受压型破坏以混凝土中产生纵向劈裂裂缝、几乎在有方向都丧失强度而破坏。无论何种破坏,均是以混凝土单元达到极限承载力为标志。 判断混凝土材料是否已达破坏的准则,称为混凝土的破坏准则。从塑性理论的观点来看,混凝土的破坏准则(failure criteria of concrete )就是混凝土的屈服条件或强度理论。由于混凝土材料的特殊、复杂而多变,至今还没有一个完整的混凝土强度理论,可以概括、分析和论证混凝土在各种条件的真实强度。因此,必须考虑用较简单的准则去反映问题的主要方面。目前仍把混凝土近似看成均质、各向同性的连续介质,如何可用连续介质力学分析。如果以主应力来表示,混凝土的破坏曲面可以用式(,其破坏与静水压力关系很大,所以其破坏曲面是以 σ1 =σ2=σ 3 为轴线为锥面,如图 2.1.2 混凝土破坏曲面的特点及其表述 图 σ 1 , σ 2 ,σ3,取拉应力为正,正应力为负。空间中与各坐标轴保持等 距离的各点连线,称为静水压力轴(hydrostatic axis )。静水压力轴上任意点的应力状态满足 σ1 = σ2 =σ 3 ,且任意点至坐标原点的距离均为σ 1 3 (或 σσ3233,)。静水压力轴通过坐标原点,且与各坐标轴的夹角相等,均为) (31cos 1 -=α。 混凝土破坏曲面的三维立体图不易绘制,更不便于分析和应用,所以通常用扁平面或拉压子午面上的平面图形来表示[图,(c )]。与静水压力轴垂直的平面称为扁平面(deviatoric planes )。三个主应力轴在扁平面上的投影各成120 角,不同静水压力下的扁平面包络线构成一组封闭曲线,形状呈有规律的变化[图π,π平面上的应力状态表示纯剪状态,无静水压力分量。拉压子午,拉压子午面(meridian planes )为静水压力轴和一个主应力轴[图σ3,同时通过另两轴(σ 1 轴和 σ 2 轴)的等分线。拉压子午面与破坏曲面的交线分别称为拉、压子午线

引水道钢衬段混凝土施工技术措施

目录 1 简述 (1) 1.1 主要编制依据 (1) 1.2工程概况 (1) 2 施工总布置 (1) 2.1混凝土供应及运输道路 (1) 2.2风水电布置 (2) 3 施工总程序 (2) 4 施工方法 (4) 4.1 分层分块 (4) 4.2 模板方案及安装 (5) 4.3 基岩面、基础面及施工缝处理 (5) 4.4 测量放线 (5) 4.5 钢筋制作及安装 (6) 4.6埋件安装 (6) 4.7灌浆管布置 (6) 4.8混凝土浇筑 (7) 4.8.1浇筑前准备 (7) 4.8.2仓位验收 (7) 4.8.3混凝土拌制、运输 (8) 4.8.4混凝土入仓、振捣 (8) 4.9 脱模、养护 (9) 5 施工计划及进度 (9) 6 施工资源 (9) 6.1施工设备配置 (9) 6.2劳动力配置计划 (9) 7 质量保证措施 (9) 7.1质量控制管理措施 (9) 7.2工艺质量控制措施 (10) 8 安全保证措施 (11) 8.1 危险源分析 (11) 8.2 施工现场安全技术措施 (11) 8.3 混凝土浇筑安全措施 (12) 8.4 运输安全措施 (12) 8.5 供电与电气设备安全措施 (12) 9 文明施工与环境保护措施 (13) 9.1 文明施工措施 (13) 9.2 环保措施 (13)

引水道钢衬段混凝土施工技术措施 1简述 1.1 主要编制依据 1、《引水道开挖支护图(1/7~7/7)》 2、《引水道压力钢管结构图(1/2~2/2)》 3、《引水道压力钢管回填灌浆及钢筋混凝土段和钢管段连接详图》 4、《水工混凝土施工规范(DL/T5144)》 5、《水工混凝土钢筋施工规范(DL/T5169)》 6、《引水发电系统接地布置图(1/2~2/2)》 7、其它相关技术规程、规范及技术要求 1.2工程概况 糯扎渡水电站引水发电系统土建及金属结构安装工程中引水道采用单机单管供水,共布置9条引水道,各管道间平行布置,引水道分为上水平段、上弯段、竖井段、下弯段及下水平段。引水下平段和锥管段为钢管衬砌,钢管与围岩之间回填混凝土。引水道钢管段混凝土回填施工主要范围为引水道下平段起点至距离地下厂房上游边墙0.5m处。钢衬段钢管长度55m,其中标准段长36m,内径为8.8m,锥管段长18m,内径为8.8~7.2m,凑合节长1m。钢衬段施工具体工程量见下表1。 表1 主要工程量表 2施工总布置 2.1混凝土供应及运输道路 施工所需的混凝土由本标120拌和站拌制,用6m3混凝土搅拌运输车运至施工现场。根据施工总体程序安排,7#、8#、9#引水下平洞回填混凝土、1#~6#引水下平洞2#施工支洞上游侧及2#施工支洞段混凝土从2#施工支洞入仓,1#~6#引水下平洞2#

燃气薄壁不锈钢管的性能与连接方式比较

燃气薄壁不锈钢管的性能与连接方式比较 2011-8-2陈文张玉梅曾令基 分享到: QQ空间新浪微博开心网人人网 摘要:介绍了燃气薄壁不锈钢管的性能,分析了CJJ 94—2009《城镇燃气室内工程施工与质量验收规范》推荐使用的几种薄壁不锈钢管连接方式的特点,对其进行了比较。 关键词:薄壁不锈钢管;性能;连接方式;环压式 Performance of Thin.walled Stainless Steel Gas Pipe and Comparison of Connection Modes CHEN Wen,ZHANG YumeiZENG Lingji Abstract:The performance of thin-walled stainless steel gas pipe is introduced.The eharacte ristics of some connection modes of the pipe recommended by Code for Construction and Qualit y Acceptance of City Indoor Gas Engineering(CJJ 94—2009)are analyzed and compared. Key words:thin-walled stainless steel pipe;performance;connection mode;ring compression 1 概述 随着我国国民经济的快速发展,城镇住宅、公共建筑和旅游设施大量兴建,对流体(水、燃气)输送、供应提出了新的要求。在输送管道中,镀锌钢管已经结束了百年辉煌的历史,各种新型塑料管及复合管得到迅速发展,但各种管材还不同程度地存在着一些不足,远不能完全满足人们的需要和对流体输送的要求。因此,有关专家预言:建筑流体管材最终将回到金属管时代。根据国外的应用经验,金属管中的薄壁不锈钢管将可能成为综合性能最好的管材之一。CJJ 94—2009《城镇燃气室内工程施工与质量验收规范》将薄壁不锈钢管列为室内燃气管道的选用管材,这是对薄壁不锈钢管多年来在燃气领域中的应用给予的充分肯定。薄壁不锈钢管具有安装简便,安全可靠,因其管壁较薄(但其强度并不低)而成本较低,使用寿命较长(大致为铜管的2倍,碳钢管的2.5~4倍,复合管的2~3倍)等优点,其应用于燃气室内管道的综合性价比较高,因此薄壁不锈钢管已成为目前较为理想的燃气室内用管材,具有较广阔的开发和应用前景[1]。 2 薄壁不锈钢管在燃气领域的应用 薄壁不锈钢管诞生于20世纪50年代,瑞典学者首先提出了薄壁不锈钢管概念并申请专利;70年代,德国马普尔斯公司开始将其投入生产,并开始应用于建筑冷、热水;80年代,日本开始将其应用于建筑冷、热水;1998年,我国开始生产建筑冷、热水薄壁不锈钢管;2003年,薄壁不锈钢管开始应用于燃气管道。薄壁不锈钢管是传统管材的换代产品,也是节能、节材和环保要求的必然。除燃气领域外,薄壁不锈钢管在给水、排水、消防等领域也有广泛应用。 住房和城乡建设部很重视薄壁不锈钢管的推广应用,CJ/T 151—2001《薄壁不锈钢水管》、GB/T 12771—2008《流体输送用不锈钢焊接钢管》等标准已陆续发布执行。住房和城乡建设部现已发文,相关管道工程技术规程及安装图集正由同济大学负责编制。GB 50028—2006《城镇燃气设计规范》明确规定薄壁不锈钢管可应用于室内燃气管道中,这为薄壁不锈钢管在室内燃气安装中发挥作用提供了广阔的空间。 3 室内燃气管道工程对管材的基本要求 室内燃气管道要承受一定的压力,燃气泄漏将会导致爆炸、火灾,造成人员伤亡和经济损失。因此,对室内燃气管道管材的基本要求是:有足够的机械强度(抗拉强度、延伸率),连接性好,具有不透气性。要满足管材的基本要求,应从以下几方面进行选材: ① 材料的强度性能 管道材料的强度性能应从抗拉强度极限、屈服极限、延伸率等几个参数进行分析。这几个参数因材质不同而有较大的变化,钢管的抗拉强度极限一般为335~565MPa,屈服极限一般为205~480MPa,钢的延伸率越大,其屈服极限越低,塑性越好,越易焊接加工。 ②材料的断裂韧性

ansys非线性分析指南

ANSYS 非线性分析指南(1) 基本过程 第一章结构静力分析 1. 1 结构分析概述 结构分析的定义: 结构分析是有限元分析方法最常用的一个应用领域。结构这个术语是一个广义的概念,它包括土木工程结构,如桥梁和建筑物;汽车结构,如车身、骨架;海洋结构,如船舶结构;航空结构,如飞机机身、机翼等,同时还包括机械零部件,如活塞传动轴等等。 在ANSYS 产品家族中有七种结构分析的类型,结构分析中计算得出的基 本未知量- 节点自由度,是位移;其他的一些未知量,如应变、应力和反力, 可通过节点位移导出。 七种结构分析的类型分别是: a. 静力分析- 用于求解静力载荷作用下结构的位移和应力等。静力分析 包括线性和非线性分析。而非线性分析涉及塑性、应力刚化、大变形、大应变、超弹性、接触面和蠕变,等。 b. 模态分析- 用于计算结构的固有频率和模态。 c. 谐波分析- 用于确定结构在随时间正弦变化的载荷作用下的响应。 d. 瞬态动力分析- 用于计算结构在随时间任意变化的载荷作用下的响应,并且可计及上述提到的静力分析中所有的非线性性质。 e. 谱分析- 是模态分析的应用拓广,用于计算由于响应谱或PSD 输入 随机振动引起的应力和应变。 f. 屈曲分析- 用于计算屈曲载荷和确定屈曲模态,ANSYS 可进行线性特征值和非线性屈曲分析。 g. 显式动力分析- ANSYS/LS-DYNA可用于计算高度非线性动力学和复 杂的接触问题。 除了前面提到的七种分析类型,还有如下特殊的分析应用: ? 断裂力学 ? 复合材料 ? 疲劳分析

? p-Method 结构分析所用的单元:绝大多数的ANSYS 单元类型可用于结构分析。单元类型从简单的杆单元和梁单元一直到较为复杂的层合壳单元和大应变实体单元 1.2 结构线性静力分析 静力分析的定义: 静力分析计算在固定不变的载荷作用下结构的响应。它不考虑惯性和阻尼的影响,如结构受随时间变化载荷的情况。可是静力分析可以计算那些固定不变的惯性载荷对结构的影响,如重力和离心力;以及那些可以近似为等价静力作用的随时间变化载荷,如通常在许多建筑规范中所定义的等价静力风载和地震载荷。 静力分析中的载荷: 静力分析用于计算由那些不包括惯性和阻尼效应的载荷作用于结构或部件上引起的位移、应力、应变和力。固定不变的载荷和响应是一种假定,即假定载荷和结构的响应随时间的变化非常缓慢,静力分析所施加的载荷包括: ? - 外部施加的作用力和压力 ? - 稳态的惯性力如中力和离心力 ? - 位移载荷 ? - 温度载荷 线性静力分析和非线性静力分析 静力分析既可以是线性的也可以是非线性的。非线性静力分析包括所有的非线性类型:大变形、塑性、蠕变、应力刚化、接触、间隙单元、超弹性单元等,本节主要讨论线性静力分析,非线性静力分析在下一节中介绍。 线性静力分析的求解步骤 1 建模 2 施加载荷和边界条件求解 3 结果评价和分析

ANSYS结构非线性分析指南连载四

ANSYS结构非线性分析指南连载四--第四章材料非线性分析 (二) (2014-04-27 10:47:15) 转载▼ 标签: it 4.3 超弹性分析 4.3.1 超弹理论 4.3.1.1 超弹的定义 一般工程材料(例如金属)的应力状态由一条弹塑性响应曲线来描述,而超弹性材料存在一个弹性势能函数,该函数是一个应变或变形张量的标量函数,而该标量函数对应变分量的导数就是相应的应力分量。 上式中:[S]=第二皮奥拉-克希霍夫应力张量 W=单位体积的应变能函数 [E]=拉格朗日应变张量 拉格朗日应变可以由下式表达:[E]=1/2([C]-I) 其中:[I]是单位矩阵,[C]是有柯西-格林应变张量 其中[F]是变形梯度张量,其表达式为: x:变形后的节点位置矢量 X:初始的节点位置矢量 如果使用主拉伸方向作为变形梯度张量和柯西-格林变形张量的方向,则有: 其中: J=初始位置与最后位置的体积比 材料在第i个方向的拉伸率 在ANSYS程序中,我们假定超弹材料是各向同性的,在每个方向都有完全相同的材料特性,在这种情况下,我们既可以根据应变不变量写出应变能密度函数,也可以根据主拉伸率写出应变能密度函数。 应变不变量是一种与坐标系无关的应变表示法。使用它们就意味着材料被假定是各向同性的。Mooney -Rivlin和Blatz-Ko应变能密度函数都可以用应变不变量表示,应变不变量可以柯西-格林应变张量和主拉伸率表示出来:

一个根据应量不变量写出来的应变能密度函数如下: 为材料常数,上式是两个常数的Mooney-Rivlin应变能密度函数。 超弹材料可以承受十分大的弹性变形,百分之几百的应变是很普遍的,既然是纯弹性应变,因此超弹性材料的变形是保守行为,与加载路径无关。 4.3.1.2 不可压缩缩性 大多数超弹材料,特别是橡胶和橡胶类材料,都是几乎不可压缩的,泊松比接近于0.5,不可压缩材料在静水压力下不产生变形,几乎不可压缩材料的泊松比一般在0.48至0.5之间(不包含0.5),对这些材料,在单元公式中必须考虑不可压缩条件。在ANSYS程序中,不可压缩超弹单元修改了应变能密度函数,在单元中明确地包含了压力自由度。压力自由度使不可压缩条件得到满足,而不降低求解速度。压力自由度是一种内部自由度,被凝聚在单元内部。 4.3.1.3 超弹单元 有三种单元适合于模拟超弹性材料: 不可压缩单元有HYPE56,58,74和158,这些单元适用于模拟橡胶材料。 可压缩单元有HYPER84和86,HYPER84既可以是4节点矩形也可以是8节点矩形单元,这种单元主要用来模拟泡沫材料。 18X族单元(除LIMK和BEAM单元外,包括SHELL181, PLANE182,PLANE183,SOLID185,SOLID186,和SOLID187)。18X族单元消除了体积锁定,既适用于不可压材料,又适用于可压材料。参见《ANSYS Elements Reference》的“Mixed U-P Formulations”。 4.3.2 超弹材料选项 超弹性可用于分析橡胶类材料(elastomers),这种材料可承受大应变和大位移,但体积改变极微(不可压缩)。这种分析需用到大应变理论[ NLGEOM ,ON]。图4-13是一个例子。 图4-13 超弹性结构 在ANSYS超弹性模型中,材料响应总是假设各向同性和等温性。由于这一假设,应变能势函数按应变不变量来表示。除非明确指出,超弹性材料还假设为几乎或完全不可压缩材料。材料热膨胀也假定为各向同性的。 ANSYS在模拟不可压缩或几乎不可压缩超弹性材料时,应变能势函数有几种选项。这些选项均适用于SHELL181,PLANE182, PLANE183, SOLID185, SOLID186, SOLID187 单元。可以通过TB ,HYPER 命令的 TBOPT参数进入这些选项。

钢筋混凝土梁非线性分析作业

钢筋混凝土梁非线性分析 主要内容 第一部分:荷载及梁的尺寸 第二部分:建模 第三部分:加载、求解 第四部分:计算结果及分析 第一部分:荷载及梁的尺寸 材料性能: 混凝土弹性模量E=25500MPa,泊松比ν=0.3,轴抗拉强度标准值为1.55MPa,单轴抗压强度定义为-1,则程序不考虑混凝土的压碎行为,关闭压碎开关。裂缝张开传递系数0.4,裂缝闭合传递系数1 。钢筋为双线形随动硬化材料,受拉钢筋弹性模量E=200000MPa, 泊松比ν=0.3,屈服应力=350MPa,受压钢筋以及箍筋E=200000MPa,,泊松比ν=0.3,屈服应力=200MPa。 第二部分:建模 由于对称约束,只需要建立1/2模型即可,在对称面上可以采用对称约束。建立好的模型见下图: (1)进入ANSYS,设置工程名称为RC-BEAM (2)定义分析类型为结构分析

(3)定义单元类型在单元库中选65号实体单元为二号单元,建立混凝土模型;选LINK8单元为一号单元,模拟钢筋模型;定义辅助网格单元MESH200及其形状选择。 1)钢筋混凝土有限元模型的合理选用 ①整体式 整体式有限元模型是将钢筋弥散于整个单元中,将加筋混凝土视为连续均匀材料,求出的是一个统一的刚度矩阵。该方法优点是建模方便,分析效率高;缺点是不适用于钢筋分布较不均匀的区域,且不易得到钢筋内力。主要用于钢筋混凝土板、剪力墙等有大量钢筋且钢筋分布较均匀的构件。 ②组合式 组合式有限元模型是将纵筋密集的区域设置为不同的体,使用带筋的SOLID65单元,而无纵筋区则设置为无筋SOLID65单元。这样就可以将钢筋区域缩小,接近真实的工程情况。这种模型假定钢筋和混凝土两者之间的相互粘接良好,没有相对滑移。在单元分析时,可分别求得混凝土和钢筋对刚度矩阵的贡献,组成一个复合的、单元刚度矩阵。 ③分离式 分离式有限元模型采用SOLID65来模拟混凝土,空间LINK8杆单元来模拟纵筋,这样的建模能够模拟混凝土的开裂、压坏现象及求得钢筋的应力,还可以对杆施加预应力来模拟预应力混凝土。钢筋单元与混凝土单元共用节点,以实现整体工作过程中自由度的耦合。缺点是建模比较复杂,单元较多,且容易出现应力集中拉坏混凝土的问题。 2)单元选取及其本构关系 对于混凝土材料模型,ANSYS可通过专门的单元类型SOLID65(三维钢筋混凝土实体单元)和专门的材料模型CONCRETE来实现;而混凝土结构中的钢筋的主要作用是承受轴向的拉力或压力,因此,钢筋单元可选用LINK8杆单元,材料采用随动硬化双线性弹塑性(Kinematic hardening plasticity)模型。这样,由实体单元SOLID65 和杆单元LINK8共同构成的钢筋混凝土模型能很好地反映钢筋混凝土的特性,模拟出其压碎及开裂的破坏过程。 2).1混凝土单元 SOLID65单元具有八个节点,每个节点有三个自由度,即具有X、Y、Z三个方向的线位移;采用整体式模型时还可对三个方向的含筋情况进行定义。该实体模型可具有拉裂与压碎的性能。CONCRETE材料特性用的是William-Wamke 五参数破坏准则和拉应力准则的组合模式,可以自由定义混凝土开裂后裂缝张开和闭合时的剪力传递系数、混凝土的应力一应变关系以及混凝土的单向和多向拉压强度等。 混凝土采用William-Wamke五参数破坏准则,程序将根据SOLID单元8个积分点上的多轴应力状态和破坏准则判断材料发生何种破坏,如果使用ANSYS 中的塑性模型考虑混凝土材料的塑性行为,塑性只能发生在W-W五参数准则所定义的破坏面以内。一旦材料超出了破坏面,将进入破坏状态。前两个参数的取

钢衬段砼浇筑措施(8.20改)

压力管道钢衬段砼浇筑施工措施 1、工程概况 1.1 概述 瀑布沟水电站6条压力管道下平段砼衬砌包括两部分:钢衬段和钢筋砼衬砌段,每条钢衬段长65m,衬砌厚度为80cm。6条压力管道钢衬段砼桩号(1#压力管道:(管 1)0+468.7~(管 1 )0+533.7;2#压力管道;(管 2 )0+441.7~(管 2 )0+506.7;3#压 力管道:(管 3)0+414.6~(管 3 )0+479.6;4#压力管道:(管 4 )0+387.7~(管 4 )0+452.7; 5#压力管道:(管 5)0+360.6~(管 5 )0+425.6;6#压力管道:(管 6 )0+333.7~(管 6 )0+398.7)。 1.2 主要工程量 压力管道钢衬段施工主要工程量 注:最终工程量应以实际发生量计。 2、施工布置 2.1 施工道路 毛头码拌和楼→左低干线路→进厂交通洞/10#施工支洞→1#施工支洞→压力管道下平段。 2.2 施工风、水、电布置 沿用厂房及1#施工支洞的风、水、电系统。 3、施工程序及施工工艺 3.1 施工程序:钢管集中运输→钢管分段(15m左右)安装→砼分段回填→下一段钢管安装 钢衬段砼分仓:每条压力管道钢衬段长为65m,并都在1#施工支洞下游。安装压力管道的方向从上游向厂房方向安装,钢管安装单节长度最大为2.7m,待钢管安装5-6节后,进行一次混凝土浇筑,考虑到混凝土浇筑难度和与钢管安装的协调,每仓混凝

土浇筑分段长度原则上不超过12m,并且衬砌砼和钢衬回填砼为最后一仓浇筑,其他仓号全断面浇筑。 根据设计文件:水引字2007-09号总028号为保证厂房压力管道砼衬砌和钢衬接头连结成整体,需要对压力管道钢衬起点接头进行以下处理:(1)衬砌砼内的外层纵向钢筋须应伸入钢衬段回填砼内1.5m,外层设置相同直径和间距的4根环向钢筋,内层纵向钢筋于钢衬的首端加劲环焊接;(2)衬砌砼和钢衬回填砼必须同时浇筑,加劲环附近应加强振捣,保证浇筑的质量,衬砌砼段的环向施工缝应在接头前3m以外设置。 3.2 施工工艺流程图: 图1:压力钢管回填混凝土施工工艺流程图 (1)施工准备:主要是混凝土配合比设计、特殊材料供应和储存等施工准备。

钢筋混凝土梁ansys非线性分析大作业

钢筋混凝土非线性分析2015大作业 1、参数选择 梁的截面宽度为200mm,上部配置2Φ8受压筋,混凝土的净保护层厚度为25 mm(从纵向钢筋外边缘算起),箍筋两端区采用8@100的双肢箍,中间区取8@200 双肢箍 1)梁的截面高度选300mm; 2)两加载间的距离选1000mm; 3)混凝土选C30; ; 4)纵向受拉钢筋配筋选218 2、描述选用的有限元模型及单元的特点 采用ansys软件进行模拟计算,钢筋混凝土模型采用分离式模型,不考虑钢筋与混凝土之间的相对滑移。 混凝土采用solid65单元模拟,solid65用于模拟三维有钢筋或无钢筋的混凝土模型。该单元能够计算拉裂和压碎。在混凝土应用中,该单元的实体功能可以用于建立混凝土模型,同时,还可用加筋功能建立钢筋混凝土模型。另外,该单元还可以应用于加强复合物和地质材料。该单元由八个节点定义,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。至多可以定义三种不同规格的钢筋。 钢筋单元采用link180单元模拟,link180是一个适用于各类工程应用的三维杆单元。根据具体情况,该单元可以被看作桁架单元、索单元、链杆单元或弹簧单元等等。本单元是一个轴向拉伸一压缩单元,每个节点有三个自由度:节点坐标系的x,y,z方向的平动。本单元是一种顶端铰接结构,不考虑单元弯曲。本单元具有塑性、蠕变、旋转、大变形和大应变功能。缺省时,当考虑大变形时任何分析中LINK180单元都包括应力刚化选项。 3、描述选用的混凝土与钢筋粘结滑移本构关系的具体形式、参数等。

钢筋的应力应变关系曲线 考虑到极限塑性应变最大值为0.01,钢筋本构模型采用多线性模型kinh,初始弹性模量为Es=200000Mpa,强化系数为0.001。 混凝土的应力应变关系曲线 混凝土选用各向同性的miso模型,当计入下降端时,程序报错,所以只取了前面的上升段,用5段折线模拟混凝土应力应变曲线。 不考虑混凝土与钢筋之间的相对滑移 4、迭代方法和收敛标准。 使用修正的Newton-Raphson迭代方法进行求解。收敛标准采用位移来控制

混凝土结构抗震非线性分析模型_方法及算例

第 23卷增刊 II Vol. 23 Sup. II 工程力学 2006年 12 月 Dec. 2006 ENGINEERING MECHANICS 131 文章编号:1000-4750(2006Sup.II-0131-10 混凝土结构抗震非线性分析模型、方法及算例 *叶列平,陆新征,马千里,汪训流,缪志伟 (清华大学土木工程系,北京 100084 摘要 :结构在大震作用下会进入非线性并产生损伤,准确预测地震荷载下钢筋混凝土结构的非线性行为,对评 估混凝土结构的抗震安全性具有重要意义。清华大学土木工程系近年来开发的适用于钢筋混凝土杆系结构的纤维 模型 THUFIBER 程序,适用于预应力混凝土杆系结构的纤维模型 NAT-PPC 程序,以及适用于剪力墙结构的分层 壳墙元模型的非线性分析程序。这些程序可以直接将构件的非线性节点力 (轴力、剪力和弯矩、节点变形 (平动和 转动和材料的非线性应力 -应变行为联系起来,可以模拟各种复杂受力构件的滞回行为和轴力-双向弯曲-剪切 耦合行为,借助通用有限元程序方便的前后处理功能和非线性计算功能,该程序可以准确模拟地震作用下结构的 三维非线性地震响应,也可模拟爆炸、倒塌等极端非线性行为,通过一系列的数值分析与试验结果的对比和工程 应用算例,说明所研发程序的精度和计算能力。

关键词 :钢筋混凝土;地震;非线性;杆件;纤维模型;剪力墙;分层壳单元 中图分类号:TU375 文献标识码:A NONLINEAR ANALYTICAL MODELS, METHODS AND EXAMPLES FOR CONCRETE STRUCTURES SUBJECT TO EARTHQUAKE LOADING *YE Lie-ping, LU Xin-zheng, MA Qian-li, WANG Xun-liu, MIAO Zhi-wei (Department of Civil Engineering, Tsinghua University, Beijing 100084, China Abstract: Structures may enter nonlinear stage in strong earthquake, precise prediction for the nonlinear behavior of reinforced concrete (RC structures in earthquake is important to assess the earthquake resistant safety of the structures. This paper presents the programs recently developed by the Civil Engineering Department of Tsinghua University, which include the fiber model THUFIBER for RC frames, the program NAT-PPC for prestressed concrete (PC frames, and the multi-layer shell element based shear wall program. These programs can connect the nonlinear nodal force/nodal displacement relationship of elements directly with the nonlinear stress/strain relationship of materials. Complicated cyclic behaviors and coupled axial force-biaixal bending-shear behaviors of RC structures can be correctly simulated. And furthermore, with the convenient pre/post processing and the nonlinear capacity of general finite element software, these programs not only can precisely simulate nonlinear seismic response of spatial strutures, but also can simulate some extreme nonlinear problems such as blast or collapse. The precision and the capacity of the programs are illustrated in this paper with a series of applications. Key words:reinforced concrete; seismic; nonlinear; beam-column element; fiber model; shear wall; multi-layer shell ———————————————— 收稿日期:2006-06-19

坝下游面钢衬钢筋混凝土管道结构优化布置.

第25卷第4期2006年8月 水力发电学报 JOURNAL0F HYDROEI正C聊CENGINEERING V01.25No.4 Aug.,2006 坝下游面钢衬钢筋混凝土管道结构优化布置 张伟,伍鹤皋,王从保 (武汉大学水资源与水电工程科学国家重点实验室,武汉430072) 摘要:本文从管道截面形状、钢材用量和钢筋布置、钢衬外包混凝土厚度,管道与坝体相对位置及接缝处理四个方面,论述坝下游面钢衬钢筋混凝土管道结构设计的优化方法和原则。结合某水电站工程的实际,从优选的角度对该工程坝下游面钢衬钢筋混凝土管道的布置进行对比分析,表明从减小管线长度、节省工程投资的角度出发,建议采用半埋,外包1.5m厚混凝土的结构布置形式。 关键词:水工结构;结构优化布置;有限单元法;背管;钢衬钢筋混凝土;钢材配置;管坝接缝面 中圈分类号:1v732.4文献标识码:A optiIIIizationofarrangementofsteelliIlingreinf.orced concretepenstocksonthedow璐treams珈瞪aceof d锄s zHANGWei,WUHegao,wANGC0ngbao (&砒硒rh6Dm幻可旷耽fer&删脚口以州rop删erE昭i船e—ng&如聊e,耽^帆‰如e瑙妙,贶,l肌430072)Abst强ct:Fromthesectionsh印e0fpenstocks,allocationof8teelandarr蚰gementofreinforcingbar,thickness0fconcretearoundsteelpipeaswellastheinted.acebetweenthedamandthepenstock,theoptirIIizationmethodandprinciple 0f8t11JcturaldesignofsteelliningI-einfbrcedconcretepenstocksonthedownstreamsu五aceofdamshavebeendiscussed.Inacco耐ancewiththepracticeofJinanqiaohydmpowerstation,contmstiVean8lysisonthean.angementofthiskindofpenstockhasbeenca而edoutbymeaJlsofoptimizationrnethod.Ana玎.肌gementofsemi—buriedt),pewith1.5m—thickconcretewallissuggestedinoIdertoreducethelengthofpipelineandeconorni舱theinvestmentoftheen百neering. KeywordIs:hydmulicstructure;stmctumloptimization;finiteelenlentmethod;penstocksondown8treamsud.aceofdams;reinforcedconcretewithsteelliner;allocationofsteel;inted.acebetweendamandpenstock 坝下游面钢衬钢筋混凝土压力管道作为电站引水管道新的结构形式,在上世纪60年代首先出现于前苏联。我国研究人员自70年代末开始对其展开研究,并先后在东江、紧水滩、五强溪、李家峡、三峡等大型坝后式水电站中采用了这种管道形式。在论证三峡压力管道布置形式过程中,经过设计院和许多高校及科研单位全面系统的对比分析后,认为坝下游面浅槽式钢衬钢筋混凝土管道方案具有减少坝体混凝土施工与管道安装的干扰、尤其适用于碾压混凝土坝,对坝体应力削弱小、允许外包混凝土开裂以充分发挥钢材强度等优点,因此将其定为三峡水电站压力管道的最终方案¨”。随着三峡水利枢纽工程建设的顺利进行和部分机组投产发电,为我国后续工程压力管道的布置和设计提供了丰富的工程经验,如在建和拟建的向家坝、景洪、金安桥、观音岩和龙开口等大型水电站,均将这种管道布置形式作为坝后式厂房压力管道布置的重要比较方案。 本文主要对坝下游面电站压力引水管道(又简称为背管)的横截面形状、钢材用量和钢筋配置、钢衬外包混凝土厚度、背管与坝体相对位置及连接处理等四个方面进行分析与总结。 1背管布置形式与结构型式选择 电站压力引水管道确定为背管后,其布置形式和结构型式的选择主要包括以下内容:管道截面形状,钢材用 收稿日期:2005.04.06 作者简介:张伟(19r77一),男,博士研究生

不锈钢管道各种连接方式的原理及优缺点

管材管件的连接方式有很多种,它们各自有各自的优缺点,我们要根据自身的情况慎选适合自己的连接方式,不要人云亦云。以下是各种连接方式的连接原理及优缺点。 卡压式连接 连接原理:采用径向收缩外力(液压钳)将管件卡紧在管子上,并通过O型密封圈的止水,达到连接效果。 优缺点:1.实现管子、管件薄壁化,节约材料 2.连接强度低(接口连接强度不到管体强度的1/3) 3.管道不可拆卸 4.管子端口的毛刺、飞边清除不净会损坏胶圈,成为日后漏水的隐患 环压式连接 连接原理:采用径向收缩外力(液压钳)将管件卡紧在管子上,并通过宽带胶密封圈的止水,达到连接效果。 优缺点:1.实现管子、管件薄壁化,节约材料 2.由于比卡压式增加了一道压坑,所以连接强度稍比卡压式好(接口强度仍达不到管体强度的1/2) 3.管道不可拆卸 4.由于压坑是圆环型的,所以管子易转动,影响密封效果 5.管子端口的毛刺、飞边清除不净会损坏胶圈,成为日后漏水的隐患 卡凸式连接 连接原理:采用径向收缩外力(液压钳)将管件卡紧在管子上,并通过宽带胶密封圈的止水,达到连接效果。 优缺点:1.可拆卸 2.管子安装增加管端滚压凸环的工序 3.铸造的管件成本较高 4.接口强度比卡压式好 法兰连接 连接原理:采用拧紧螺栓,将带有法兰片的两连接件连接,并通过平面密封片的密封,达到连接效果。 优缺点:1.可拆卸 2.连接强度高 3.安装简易,质量稳定

4.法兰片成本太高 沟槽连接 连接原理:采用拧紧管件的螺母,将扩有凸环的管子与管件轴向压紧,并通过通过锥型密封圈的止水,达到连接效果。 优缺点:1.可拆卸 2. 管子安装增加管端滚压凹环的工序 3.铸造的卡箍成本很高 4.不能在有负压的管路中使用 焊接连接 连接原理:采用热熔工艺,将两连接件熔接,达到连接的效果。 优缺点:1.连接强度高 2.现场焊接口的焊缝气体保护难以达标,造成焊缝易生锈,直接降低管道的使用寿命 3.安装质量对焊接工人技术依赖性强,质量难稳定 锥螺纹连接 连接原理:采用直接旋紧管件或管子,将带有圆锥管螺纹的内、外接口的两连接件旋紧,通过连接口螺纹的压力密封(与传统的丝扣镀锌钢管密封一样),达到连接效果。 优缺点:1.可拆卸 2.连接口强度达到管体许用强度 3.安装简便,质量稳定可靠 4.管子、管件薄壁化,应用成本低 5.外螺纹接口缠绕聚四氟乙烯生料带时,要稍加力;如采用液态生料带,则接口漏水率可为零

非线性收敛判断

一.何为收敛?在这里我引用一个会员的提问来解释这个问题: Q:结构非线性静力分析经常出现收敛这个词,如:收敛容限,收敛准则,收敛的解,位移收敛检验等,请解释,thanks! A: 个人是这样理解的 谈到收敛总会和稳定性联系在一起, 简单的说,就是在进行求解过程中的一些中间值的误差对于结果的影响的大小,当中间量的误差对于你的数值积分的结果没有产生影响,就说明你的积分方法是稳定的,最终你的 数值积分的结果就会收敛于精确解;当中间量的误差导致数值积分结果与精确解有很大的差别时,就说明你的方法稳定性不好,你的数值积分结果不会收敛于精确解。 我想当你对于稳定性和收敛的概念真正理解后,那些名词对于你来说,并不是问题,力学的问题最终都会和数学联系在一起,建议你看看数值积分方面的教程,学好了数学,力学对于你来说就是a piece of cake。 Q:那么说收不收敛,最终都是因为采用的计算方法和计算参数选取的问题了? A: 就本人所学的专业来说,很大程度上取决于所采用的算法,我学的是结构工程,举个例子吧 :当在进行结构动力时程分析时,采用的几分方法有线性加速度法,威尔逊-theta法,对于线性加速度法,当时间步长大于周期的0.5倍时,计算结果很可能出现不收敛,而当时间步长小于0.1倍的周期时,才有可能获得稳定的计算结果;而威尔逊-theta法,实质上就是线性加速度法的修正形式,很多实例表明当theta值大于1.37时,这种算法是无条件稳定的。 当然影响计算结果是否收敛的原因有很多,比如初始条件,我所指的仅仅是我所学专业的一个问题的很小的一个方面。

A: 说白了,就是数学。 牵涉到实际的计算问题时,才发现数学实在是太有用了,不过可惜数学实在学得不好。 A: 收敛的问题,就好像你往水里扔一块石头激起的波浪,慢慢会平息下来,这就收敛了。计算的时候就是这样,数据在每次迭代的时候在精确解的周围震荡,最后无限趋向于精确解。我想学过级数的人就应该知道,里面就有个无穷级数的和收敛的问题。 数学真的非常重要,特别是研究做的比较深入以后,有些东西别人没做过,要靠自己推导,有些迭代方法也需要自己证明是否收敛,或者方法的可靠性等等,都需要比较扎实的数学基础。有时候想解决一个问题,却苦于没有数学工具,这让我觉得学校教育应该在现代数学的一些方面多做些介绍,至少应该让人大概知道一个问题应该朝哪个方面去想,就算不懂,学起来也有个方向。 A: 首先说明,我对收敛问题没有做过专门研究2,只是在学习中多次遇到,说说我对收敛的理解,当然,也提出点疑问。 1)收敛问题,是不是可以定义为当前解法中解是不是趋近于真实解的问题。 2)我觉得现在有一种,或者说一类方法,就是求问题数值解的问题。这类问题并不要求或难以求出解析解。对这类问题的一个解决思路是:假设初始解,通过目标函数对初始解进行反馈,调整,从而去接近于真实解或最优解。这类解法有一个重要的问题,就是下一步的解要比当前解更趋近于真实解的问题。我认为这就是收敛问题的由来。 希望大家批评指正!

钢衬钢筋混凝土管道

钢衬钢筋混凝土管道 衬钢筋混凝土管道 由于输水管道无论从构造或者是荷载情况都和水电站的压力管道 相似,所以再设计长距离高水头差的输水管道时,一般都参考水电站压力管道的研究成果。事实上输水管道和压力管道还是有一定区别的。有些输水管道对管径的要求往往并不像压力管道那么苛刻。例如本文的张家湾输水管道,虽然水头差有600米,但管直径选1米就足够了。这样从一定程度上,稍微减轻了高水头给设计带来的难度。 水电站的压力管道是其关键性结构物之一。随着水电工程的规模日益巨大,压力管道也日趋巨型乃至超巨型化。常规的形式和设计方法已经难以满足需要,人们需要不断探索新结构、新材料和新方法。对于高水头的大型水电站,常见的压力管道形式一般是钢管和钢衬混凝土管。 钢筋混凝土管耐久、价廉、变形小、节约金属材料、制作简便,并且历史悠久,技术成熟。但由于混凝土抗裂性能较差,所以钢筋混凝土管一般用于小型水电站的压力管道和低水头的输水管道。但对于高水头的输水管道,也有工程在管道前段采用。例如四川的冷竹关水电站压力管道,在1714~1548米水头处,采用了衬砌厚度为40厘米的钢筋混凝土管。

钢管的模型容易建立,计算也简单,但是却有着一些缺陷。为了抵抗高水头,钢管的管壁一般需要消耗大量的钢材。而管壁如果过后,不仅仅是需要更多的钢材,还会大大增加对板材加工和安装的难度。况且,任何的材料不可能完全的均匀,加工、焊接和安装中也难免存在缺陷。所以压力钢管的失事风险,特别是经过长期运行后总是存在的。巨型钢管一旦爆裂,后果不堪设想。 钢衬钢筋混凝土压力管道是近年来我国发展迅猛的新结构形式。我国在80年代中期首先应用于东江和紧水滩水电站,取得了明显的技术经济效益。经过进一步论证,在三峡水电站中,26根直径达12.4米的压力管道均采用了钢衬钢筋混凝土结构,这是一个很大的飞跃。钢筋混凝土管不但经济,而且安全。因为将钢衬和钢筋混凝土两种性能迥异的材料组合在一起受力,而且各取适当的安全度后,要使两者刚巧同时达到破坏而造成毁灭性事故的风险就大大的降低了。这也是三峡工程中采用联合受力方案的主要因素。 但是钢衬钢筋混凝土管也有自己的缺点。要对这种巨型联合体系作精确分析却有相当的难度,而常规的简单计算或线性分析又显然不能满足工程需要。因为在分析中,不仅要考虑两种体系的联合承载,而且必须考虑钢筋混凝土的开裂、开裂后的非线性性质并控制裂缝宽度。为了解决这些问题,专家们引入了有限元的分析方法,而ANSYS 等软件的应用使得这些方法变得很容易实践了。通过有限元的分析和优化,可以得到相对精确的设计方案。

不锈钢管连接方式

薄壁不锈钢管连接技术 简介:任何一种管材的开发与推广,都应以连接技术(管件与连接方式)为基础。建筑给水薄壁不锈钢管(以下简称薄壁不锈管或不锈管),之所以能适应不同档次建筑的需要,就是因为它拥有多种型式的管件和连接方式。本文着重介绍国内外不锈管的各种连接方式、特点及其性能比较。 关键字:不锈钢管连接方式分类特点性能比较 0引言 薄壁不锈钢管具有安全耐用、环保卫生、价格合理、美观豪华等优异的综合性能,已大量应用于建筑给水和直饮水管道。众所皆知,管道的躯干是由管材组成的,而管材是依赖管件连接而成的,因管件型式的多样,才有不同特色的连接方式,因此,研究与探索不锈管的连接技术,具有显见的现实意义。 1 常用管道连接 1.1 管道连接种种 管道连接,由于生产工艺要求、管道材质、施工情况等多种因素的不同,出现了尽可能最佳应对的各种连接方式。目前国内采用的常用管道连接,有螺纹连接、法兰连接、焊接连接、承插连接、粘合连接、机械连接等。 1.2 管道连接浅析 上述螺纹、法兰、焊接、承插这四种连接,属传统的应用面较广泛的连接方式。粘合连接具有一定的局限性。机械连接一般指比较灵活、现场可组装的即安装较简捷的连接方式(此处机械连接属狭义范畴)。 2 国外薄壁不锈管管道连接 2.1 国外不锈管管道连接种种 厚壁不锈管,主要有螺纹连接、法兰连接、焊接连接三种方式,应用以工业管道为主,其管件相对比较简单。在研制薄壁不锈管时,借鉴厚壁管螺纹等三种连接方式,开发了品种各异的管件,也就奠定了更加多样的连接方式。国际上公认的薄壁不锈管管道连接技术,主要指压缩式、压紧式、推进式、焊接式、粘接式管件及其连接方式。 2.2 管件采用的标准 压缩式管件采用的标准有BS 4368:Part3:1974 和DIN 2353:1991;压紧式和推进式管件都列入了WBS(Water Byelaws Scheme,由英国WRC管理);日本JWW A G 116 标准规定的管件主要有压缩式、压紧式、伸缩可挠式和焊接式;粘接式也由WRC批准,但对输送介质的温度、pH值都有限制范围[1].[2]。 3 国内薄壁不锈管管道连接[3] 我国薄壁不锈管管件的开发,在借鉴国外标准同时,结合自身专利,其产品可谓缤纷多彩。据笔者调研,可归结为压缩式、卡压式、伸缩可挠式、焊接式、法兰式、活接式、沟槽式、粘接式等八大类别(尚有派生系列)及其连接方式。 3.1 压缩式

相关文档
相关文档 最新文档