文档库 最新最全的文档下载
当前位置:文档库 › “水泥黏土粉煤灰生石灰”固化浆液性能试验

“水泥黏土粉煤灰生石灰”固化浆液性能试验

“水泥黏土粉煤灰生石灰”固化浆液性能试验
“水泥黏土粉煤灰生石灰”固化浆液性能试验

粉煤灰水泥

粉煤灰水泥 粉煤灰水泥,全称粉煤灰硅酸盐水泥。凡由硅酸盐水泥熟料、粉煤灰(粉煤灰的掺量为20~40%)、适量石膏共同磨细而制成的水硬性胶凝材料称为粉煤灰水泥。按现行国家标准,粉煤灰水泥的强度等级有:32.5、32.5R;42.5、42.5R;52.5、52.5R。 我国大多数粉煤灰的化学成分如下:40~60%SiO2;0.5~2.5%MgO;15~40%Al2O3;< 2%SO3;3~10%Fe2O3; >60%SiO2+Al2O3; 25%CaO;1~20%烧失量;1~6%未燃物(属于有害部分)。 粉煤灰中含玻璃相约50~80%,也有少量的晶体矿物及未燃尽的碳粒。玻璃体是粉煤灰具有活性的主要组成部分,可以认为,在其它条件相同时,玻璃体含量越多,活性越高。即,粉煤灰的活性决定于活性Al2O3 、SiO2的含量。但CaO对粉煤灰的活性极为有利。所以说粉煤灰是高度玻璃化并含少量晶质组分的硅铝质产品。生产原理 粉煤灰是发电厂燃烧煤粉时得到的一种灰渣,也称飞灰属于火山灰质混合材。由于目前世界上的粉煤灰产量很大,约达到数十亿吨,而利用率还不够高,所以它是一种令人日益关心的工业副产品。特别是当电厂可使用的油、气燃料日益减少时,粉煤灰的产量还会增加。 粉煤灰水泥的水化和硬化过程,与火山灰水泥的水化硬化过程极为相似,主要是熟料的水化反应,以及粉煤灰与Ca(OH)2之间相互交错的两级反应。即,硅酸盐水泥熟料水化生成的C-S-H和Ca(OH)2,被吸附在粉煤灰颗粒的表面,由于粉煤灰中高度分散的活性氧化物吸收Ca(OH)2,进而相互反应而形成以水化硅酸钙为主体的水化产物,水化硅酸钙凝胶和水化铝酸钙凝胶,这就是所谓的Ca(OH)2和粉煤灰进行的二次反应(也可称为火山灰反应)。 在粉煤灰颗粒表面上产生的大量的水化物结晶体,它们相互交叉连接,形成了很高的粘结强度,以致在劈裂时,即使粉煤灰颗粒被劈开,但粘结区还能保持完好,因而能达到相当高的力学强度。 此外,在粉煤灰水泥中除了火山灰反应以外,还有同其它矿物细粉一样的作用,那就是也可以进入水泥颗粒构成的絮凝结构中,使水化物析出的有效空间增大,从而加速了水泥的水化,这也叫做“微分效应”。 性能及用途 性能特点 粉煤灰水泥实质上也是一种火山灰水泥,虽然,它们之间有很多相似的性能,如比重小、水化热较低、抗腐蚀性较强等。但是由于粉煤灰的化学组成和物理结构特征与其它火山灰质混合材料有一定的差异,比如,从矿物内部结构上分析,粉煤灰是一种密实的玻璃质球,结构比较致密且稳定,内比表面积小,对水的吸附能力小,不易水化。所以,粉煤灰水泥就具有了一系列的性能特点。 由上可知,粉煤灰水泥具有一般火山灰水泥的共性,但与表面粗糙、多孔的火山灰质混合材的水泥相比,在性质上确有更为显著的特点。它不仅结构比较致密,内比表面积较小,而且对水的吸附能力小得多,同时水泥水化的需水量又小,所以粉煤灰水泥的干缩性就小,抗裂性也好。此外,与一般掺活性混合材的水泥相似,水化热低,抗腐蚀能力较强等,抗冻性也好于其它火山灰水泥。 材料应用 长期以来,粉煤灰水泥广泛用于工业与民用建筑,尤其适用于大体积水工混凝土、水工建筑、海港工程等。但应注意,粉煤灰水泥混凝土泌水较快,容易引起失水裂缝。施工过程中,要适当增加抹面次数,在硬化早期宜加强养护,以保证粉煤灰水泥混凝土强度的正常发展。

粉煤灰游离氧化钙含量测定

1、仪器设备及试剂: (1)、水泥游离子氧化钙测定仪; (2)、高温电阻炉(加热温度0-1200℃) (3)、1000ml容量瓶、250ml抽滤瓶、锥形瓶、50ml 量筒、1000ml量杯2支、50ml酸式滴定管、玻璃棒、移液管、带胶塞玻璃瓶等; (4)、苯甲酸分析纯; (5)、乙二醇(HOCH2CH2OH,体积分数99%); (6)、无水乙醇(C2H5OH,体积分数不低于99.5%); (7)、酚酞指示剂; (8)、氢氧化钠分析纯; (9)、碳酸钙(基准试剂)。 2、试验前准备: (1)、乙二醇-无水乙醇溶液(2+1): 将1000ml乙二醇(HOCH2CH2OH,体积分数99%)与500ml无水乙醇(C2H5OH,体积分数不低于99.5%)混合,加入0.2g酚酞,混均。用氢氧化钠-无水乙醇溶液(0.1mol/L,将0.4g氢氧化钠溶于100ml无水乙醇中)中和至微红色。存存于干燥密封的瓶中,防止吸潮。 (2)、苯甲酸-无水乙醇标准滴定溶液[c(C6H5COOH)=0.1mol/L]:

称取12.2g已在干燥器(变色硅胶)中干燥24h 后的苯甲酸溶于1000ml无水乙醇中,储存于带胶塞的玻璃瓶内。 (3)、苯甲酸-无水乙醇标准滴定溶液的配置: 取一定量(0.09g)的碳酸钙(基准试剂)置于铂(或瓷)坩埚中,在(950±25)℃下灼烧至恒量,从中称取0.04g氧化钙,精确至0.0001g,置于250ml干燥的锥形瓶中,加入30ml乙二醇-乙醇溶液,放入一根搅拌子,装上冷凝管,置于游离氧化钙测定仪上,以适当的速度搅拌溶液,同时升温并加热煮沸,当冷凝下的乙醇开始连续滴下时,继续在搅拌下加热微沸4min,取下锥形瓶,用预先用无水乙醇润湿过的快速滤纸抽气过滤或预先用无水乙醇洗涤过的玻 璃砂芯漏斗抽气过滤,用无水乙醇洗涤锥形瓶和沉淀3次,过滤时等上次洗涤液过滤完后再洗涤下次。滤液及洗液收集于250ml干燥的抽滤瓶中,立即用苯甲酸-无水乙醇标准滴定溶液滴定至微红色消失。 苯甲酸-无水乙醇标准滴定溶液对氧化钙的滴定度计算: T=m*1000/V T----(mg/ml) m----氧化钙质量(g) V----消耗苯甲酸-无水乙醇标准溶液体积( ml) 3、试验步骤:

开题报告:年产500万吨粉煤灰硅酸盐水泥生产线的工艺设计

科技学院 毕业设计(论文)开题报告 题目年产500万吨粉煤灰硅酸盐水泥生产线的工艺设计学院冶金学院 专业班级无机非金属材料工程2011-01 学生姓名学号 20114 指导教师 2014 年 12 月 20 日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作开始后2周内完成,经指导教师签署意见及系主任审查后生效。 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.学生查阅资料的参考文献理工类不得少于10篇,其它不少于12篇(不包括辞典、手册)。 4.“本课题的目的及意义,国内外研究现状分析”至少2000字,其余内容至少1000字。

毕业设计(论文)开题报告 1.本课题的目的及意义,国内外研究现状分析 1.1本设计的目的和意义 据我国目前的电力系统来看,我国目前火力发电仍是占主要的地位,粉煤灰是其发展过程中不可避免的排放量大的工业废料。不仅是火力发电厂,各种依靠煤粉燃烧获得热源等的企业都是粉煤灰的主要产源。粉煤灰不仅需要占大量的土地来存放,而且对环境的污染也很大,因此对粉煤灰加以利用是解决当前问题的首选。 我国目前正处于高速发展阶段,各行各业的发展都离不开建筑,因此对水泥的需求仍处于上升阶段。虽然我国是水泥生产大国,但是由于水泥行业的高二氧化碳排放量以及粉尘、有害气体等的排放,致使水泥行业的发展受到了限制。要降低这些废气等的排放,就要减少水泥生产中熟料的使用。早在1990年,美国就提出了绿色混凝土的概念。绿色高性能混凝土的特征有:更多地节约熟料水泥,降低能耗与环境污染;更多地掺加工业废料为主的细掺料;更大的发挥混凝土的高性能优势,减少水泥与混凝土的用量[1]。粉煤灰在水泥熟料矿物水化产物氢氧化钙的激发下具有水化活性而形成一定的强度组分,能与水泥浆硬化体晶格坚固地结合起来,进而提高了混凝土的长龄期强度和混凝土的耐久性[2]。因此,用粉煤灰部分替代水泥熟料具有重要的意义。 但是,根据前人的研究,粉煤灰能与水泥水化产生的Ca(OH) 发生二次水 2 化反应在常温下反应过程非常缓慢,使水泥早期强度过低,造成其利用率一直很低[3]。按照GB1344-92规定,粉煤灰硅酸盐水泥中粉煤灰掺入量按重量百分比计为20%~40%,而目前我国大多水泥窑生产的粉煤灰水泥掺入量只有不到30%,且达不到应有的强度等级[4-5]。 究其根本原因,是因为粉煤灰的活性在前期并不理想,致使粉煤灰水泥没有具有应有的早期强度。因此想要提高粉煤灰的掺入量,提高粉煤灰水泥的性能,就应该从改善粉煤灰的活性着手。粉煤灰活性影响因素可分为:化学成分、晶体组成和玻璃相含量与结构[6]。万雪峰[7]等人对激发粉煤灰活性的措施物理法、物理化学法以及化学法做出了对比研究,认为化学法的活化程度高,且不限粉煤灰的掺入量,是一种可行的简单的方法。化学法主要是通过添加各种早强剂、诱导剂、激发剂等,使粉煤灰水泥的水化反应速度缩短,从而改善粉煤灰水泥的早期强度不足和初凝时间过长的缺陷,提高粉煤灰的掺入量[8-10]。物理法可以通过在研磨粉煤灰时填入助磨剂,改善粉煤灰的粒度,从而提高粉煤灰水泥的水化速度。焦晓飞[11]通过对粉煤灰掺入粒径的研究得到粉煤灰颗粒,粒度集中在10μm~20μm的粉煤灰活性最佳,水化速度最快,

水泥粉煤灰碎石桩完整版

水泥粉煤灰碎石桩 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

水泥粉煤灰碎石桩(CFG 桩)施工工艺 工艺概述 水泥粉煤灰碎石桩(CFG 桩)桩体原材料采用碎石、石屑、粉煤灰、水泥、外加剂混合而 成,按设计文件提供的混合料强度进行配比设计。常用长螺旋钻机取土、管内泵压混合料灌注成桩或振动沉管灌注成桩两种施工工法。 水泥粉煤灰碎石桩(CFG 桩)适用黏性土、粉土、砂性土、杂填土及湿性黄土等地基地基加固。 作业内容 1.原地面处理; 2.测量放样; 3.钻机就位; 4.钻孔或沉管; 5.泵压灌注混合料或投料拔管; 6.成桩检测及验收。 质量标准及验收方法 桩质量标准、检验数量及检验方法见表。

CFG 桩施工工艺流程见图。

(a) 振动沉管法(b) 长螺旋钻管内泵 压法 图CFG 桩施工工艺流程图 工艺步骤及质量控制说明 一、原地面处理 1.对原地面进行清理和整平,将路基范围内原地面上淤泥、树根、草皮、腐植土等全部挖除,为旋喷桩施工做好场地平整。 2.做好临时排水设施,疏干场内积水,使周边水不再进人场内,雨水、渗水 随时排出。 3.做好临时储备材料及设备场地。 4.完成现场便道及临时用水、用电工程。二、测量放样根据设计提供的控 制点,采用全站仪放出高压旋喷桩区域的控制桩,然后使用钢卷尺根 据桩距传递放出桩位位置,用小竹签做好标记,并撒白灰标识,确保桩机准确就位。

三、钻机就位钻机就位必须平整、稳固,确保在施工中不会发生倾斜、移 动。钻杆应垂直对准桩位中 心,桩位偏差应控制在 5cm 以内;钻杆垂直度控制采用在钻架上两个相互垂直方向上挂垂球的方法测量。每根桩施工前均要由旁站人员进行桩位对中及垂直度检查,确保 CFG 桩垂直度偏差不大于 1%,检查合格后方可开钻,并记录好桩位偏差和垂直度。 四、钻孔 1.沉管法钻孔:根据设计桩长、沉管入土深度确定机架高度和沉管长度,并进行设备组装。桩机就位,保持桩管垂直,垂直度偏差不大于 l%;若采用预制钢筋混合料桩尖,需埋入地表以下 300mm 左右。开始沉管,为避免对邻桩的影响,沉管时间应尽量短;记录激振电流变化情况,应 1m 记录一次,对土层变化处应予以说明。 2.长螺旋钻机钻孔:桩机就位,保持桩管垂直,垂直度偏差不大于 l%;钻孔开始时,关闭钻头阀门,向下移动钻杆至钻头触地时启动马达钻进。先慢后快,同时检查钻孔的偏差并及时纠正。在成孔过程中发现钻杆摇晃或难钻时,应放慢进尺,防止桩孔偏斜、位移和钻具损坏。记录好开钻时间、钻进速度、不同地质条件下的电流值、成桩瞬间电流,以进行地质复核。 3.验孔 钻至设计标高后,对于使用沉管法施工时,要清底、夯实孔底,沉渣不得大于 100mm,并用不小于 35kg 的重锤将孔底夯实。若孔底出现少量地下水,可投入拌合料,并将其夯实。 成孔经自检合格后,必需报监理工程师确认后才能终孔。若地质与设计不符,应及时做好变更设计。 五、混合料拌制混合料搅拌采用搅拌站集中拌和,按照配合比进行配料, 每盘料搅拌时间控制在 60 秒 以上,混合料坍落度控制在 160mm~200mm。运输采用砼罐车运输到施工现场。在运输过程中及现场等待过程中,混合料运输车必须慢速旋转,严禁停转。在每次卸料前必须采用运输车强制搅拌 30s,防止混合料发生离析。 六、灌注混合料及拔管 1.采用沉管法成桩,待沉管至设计标高且停机后须尽快用料斗完成空中投料(可边沉管边投料),直至管内混合料顶面与钢管料口平齐,首次投料留振5~10s 再开始拔管,拔管速率按工艺性试验参数进行控制,一般宜为~/min。如果灌注拌合料不足,可以在拔管过程中,空中向管内投料补给。成桩后桩顶标高应高出设计桩长,且浮浆厚度不超过 20cm。 2.采用长螺旋钻机管内泵压混合料灌注成桩,钻孔至设计标高后,停止钻进,钻杆芯管充满混合料后开始拔管,并保证连续匀速拔管,混合料的泵送量与拔管速度相匹配,混合料灌注过程中应保持混合料面始终高于钻头面 15~25cm,拔管速率按工艺性试验参数进行控制,一般宜控制在 2~3m/min。每根桩的投料量不小于设计灌注量。施工桩顶高程一般应高出设计高程 50cm,灌注成桩后桩顶盖土封顶进行养护。在灌注过程中记录好灌注时间、拔管提升速度、砼坍落度、砼实际灌注量等相应的记录。 七、质量控制 桩施工有间隔跳打法连打法,具体的施工方法由现场试验来确定。在软土中,桩距较大可采用隔桩跳打,但施工新桩与已打桩时间间隔不小于 7d;在饱和的松散粉土中,如桩距较小,不宜采用隔桩跳打;全长布桩时,应遵循由“由一边向另一边”的原则。

水泥粉煤灰碎石桩

水泥粉煤灰碎石桩(CFG桩)施工工艺 2.1 3.1工艺概述 水泥粉煤灰碎石桩(CFG桩)桩体原材料采用碎石、石屑、粉煤灰、水泥、外加剂混合而 成,按设计文件提供的混合料强度进行配比设计。常用长螺旋钻机取土、管内泵压混合料灌注成桩或振动沉管灌注成桩两种施工工法。 水泥粉煤灰碎石桩(CFG桩)适用黏性土、粉土、砂性土、杂填土及湿性黄土等地基地基加固。 2.1 3.2作业内容 1.原地面处理; 2.测量放样; 3.钻机就位; 4.钻孔或沉管; 5.泵压灌注混合料或投料拔管; 6.成桩检测及验收。 2.1 3.3质量标准及验收方法 1.CFG桩质量标准、检验数量及检验方法见表 2.1 3.3-1。

除,为旋喷桩施工做好场地平整。 2.做好临时排水设施,疏干场内积水,使周边水不再进人场内,雨水、渗水随时排出。 3.做好临时储备材料及设备场地。 4.完成现场便道及临时用水、用电工程。二、测量放样根据设计提供的控制点,采用全站仪放出高压旋喷桩区域的控制桩,然后使用钢卷尺根 据桩距传递放出桩位位置,用小竹签做好标记,并撒白灰标识,确保桩机准确就位。

三、钻机就位钻机就位必须平整、稳固,确保在施工中不会发生倾斜、移动。钻杆应垂直 对准桩位中 心,桩位偏差应控制在5cm以内;钻杆垂直度控制采用在钻架上两个相互垂直方向上挂垂球的方法测量。每根桩施工前均要由旁站人员进行桩位对中及垂直度检查,确保CFG桩垂直度偏差不大于1%,检查合格后方可开钻,并记录好桩位偏差和垂直度。 四、钻孔 1.沉管法钻孔:根据设计桩长、沉管入土深度确定机架高度和沉管长度,并进行设备组装。桩机就位,保持桩管垂直,垂直度偏差不大于l%;若采用预制钢筋混合料桩尖,需埋入地表以下300mm左右。开始沉管,为避免对邻桩的影响,沉管时间应尽量短;记录激振电流变化情况,应1m记录一次,对土层变化处应予以说明。 2.长螺旋钻机钻孔:桩机就位,保持桩管垂直,垂直度偏差不大于l%;钻孔开始时,关 。 1.CFG桩施工有间隔跳打法连打法,具体的施工方法由现场试验来确定。在软土中,桩距较大可采用隔桩跳打,但施工新桩与已打桩时间间隔不小于7d;在饱和的松散粉土中,如桩距较小,不宜采用隔桩跳打;全长布桩时,应遵循由“由一边向另一边”的原则。 2.在砼灌注前检查混合料运输车中的数量,不能满足要求的不能进行混合料灌注作业,避免出现灌注过程中停工待料的现象。 3.提钻前需开动混合料输送泵,将管道内的混合料填充满,特别是地下水比较丰富的地段;提钻的过程中严禁旋转钻头,避免泥土掉入桩中形成断桩。

粉煤灰八项常规项目检测操作细则

粉煤灰操作细则 一、含水量的试验方法 1、操作步骤 称取粉煤灰试样50g,准确至0.01g,倒入蒸发皿中;将烘干箱温度调整并控制在105℃~110℃;将粉煤灰试样放入烘干箱内烘至恒重,取出放在干燥器中冷却至室温后称量,准确至0.01g。 2、计算公式 W = [(W1-W0)/ W1] × 100 式中:W ——含水量,%; W1——烘干前试样的质量,g; W0——烘干后试样的质量,g; 计算至0.1%。 二、细度的试验方法 1、操作步骤 将粉煤灰样品置于温度为105℃~110℃烘干箱内烘至恒重,取出放在干燥器中冷却至室温。 称取试样50 g,准确至0.01 g,倒入45μm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。接通电源,将定时开关固定在3,开始筛析;开始工作后,观察负压表,使负压稳定在4000Pa~6000Pa,若负压小于4000Pa则应停机,清理收尘器中的积灰后再进行筛析。在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。

3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛可有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1min~3min直至筛分彻底为止,将筛网内的筛余物收集并称量,准确至0.01 g。 2、计算公式 F = (G1/G)×100 式中:F ——45μm方孔筛筛余,%; G1——筛余物的质量,g; G ——称取试样的质量,g。 计算至0.1%。 三、烧失量的试验方法 1、操作步骤 准确称取试样约1 g,放入已灼烧至恒量的瓷坩埚中,在950℃~1000℃的高温下灼烧30min,取出,稍冷后置于干燥器中,冷却至室温后进行称量。 2、计算公式 Loss =(m -m1)/ m×100 式中:Loss ——烧失量的百分含量,%; m ——灼烧前试样的质量,; m1——灼烧后试样的质量,。 四、需水量比的试验方法 1、操作步骤 (1)胶砂配比按下表

最新对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究外文翻译

对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究外文 翻译

2015届外文翻译 Study on the physical and mechanical property of ordinary Portland cement and fly ash paste 对普通硅酸盐水泥和粉煤灰的物理性能和 力学性能的研究 院、部:材料与化学工程学院 完成时间: 2015年5月 对普通硅酸盐水泥和粉煤灰的物理性能和力学性能的研究 摘要 对高掺量粉煤灰硅酸盐水泥做了一个实验,来对它的物理和力学性能进行研究。普通硅酸盐水泥分以0,20、30、40、50、60、70%几个等级分别被粉煤灰取代(按重量计算)。在所有的混合物中,水胶比恒定为0.3。试块在振动台上被振实。预期的体积密度会随着粉煤灰掺量的增加而减少。气孔率和吸水率会随着水泥被粉煤灰取代而增大。添加了粉煤灰试块的3d、7d,28d的抗压

强度降低了,这一点在假设粉煤灰掺量在30%以上的实验中更加明显。超声波脉冲速度测试结果表明,浆体的性能会随着混合物中粉煤灰掺量的增加而降低。 关键词:粉煤灰,抗压强度,超声波脉冲检测技术,水泥 1介绍 每年印度的火力发电产能生产超过1.6亿吨的粉煤灰。对于火力发电厂来说,处理粉煤灰是一个很重要的问题。通常的,现在大量的飞灰和底灰在土地里会被用来阻塞和填充,以最小化的成本处理。在1985年,加拿大的自然资源部首先调查发现:大量的粉煤灰具有许多优异的性能,各种标准规范规定在水泥行业粉煤灰的掺量不能超多35%。在印度,水泥和混凝土行业每年消耗4000

万吨粉煤灰。另一个方面,水泥需求的不断上升可以进一步解决高掺量粉煤灰(超过50%)在混凝土上面的应用。这个过程显然可以经济化,以及减少温室气体(GHG)的排放,减少废物处置和减少健康的危害。因此在混凝土中使用高掺量粉煤灰开始兴起,对普通硅酸盐水泥(OPC)混凝土应用程序,是一个资源节约型、耐用、成本效益的、可持续的选择 (克劳奇,l·K理论研究。2007)。这项工作的目的是研究一些物理和机械属性,如容重、孔隙率、吸水率和超声波脉冲速度和抗压强度的粉煤灰硅酸盐水泥。 2 材料和方法 2.1 材料 普通硅酸盐水泥(OPC)28天抗压强度使用54 MPa。普通硅酸盐水泥的主要性质见表1。粉煤灰来自西孟加拉、印度的火力发电厂。水泥和粉煤灰的化学成分见表2. 粉煤灰包含非常少碳含量,正如所指出的那样,低价值的损失在点

水泥粉煤灰碎石桩的设计

引言 CFG桩是水泥粉煤灰碎石桩的简称,它是由水泥、粉煤灰、碎石石屑或砂加适量的水拌合形成具有一点粘结强度和一定压缩性的半刚性桩体。CFG桩、桩间土和褥垫层一起组成CFG桩复合地基,CFG桩复合地基处理技术应用广泛,实用性强,涉及的工程类型有普通工业与民用建筑、高耸构筑物、多高层建筑等。就基础形式而言,CFG桩适用于条形基础、独立基础、筏基和箱型基础。就土性而言,CFG桩适用于处理粘性土、软土、粉土、砂土、淤泥质土等地基。由于CFG桩复合地基优于其他复合地基的特点,所以CFG桩复合地基广泛应用。 1工程概况 拟建工程位于邯郸市新兴大街与北仓库路交叉口东南角。拟建建筑基本概况如表1.1。 表出自《远洋·香格里拉丨新兴公馆岩土工程详细勘察报告》 2 场地工程地质条件 根据《远洋·香格里拉丨新兴公馆岩土工程详细勘察报告》(中佳勘察设计有限公司),各土层工程地质特征分述如下: (1)杂填土(Q42ml):杂色,稍湿,松散~稍密,主要由碎砖块、混凝土块及粉土组成,场地局部含黑色污染土。本层分布整个场地,层厚0.70~5.90m,层低高程49.06~54.11m。 (2)粉土(Q42(al+pl)):黄褐色,湿~很湿,稍密~中密,局部密实,含云母,无光泽,干强度及韧性低,摇振反应中等,夹多层粉质粘土薄层。本层分布整个场地,层厚0.90~6.40m,层低高程46.82~49.02m。 (3)粉土(Q42(al+pl)):灰褐色,湿~很湿,稍密-中密,局部密实,含少量青瓦片,无光泽,干强度及韧性低,摇振反应迅速,场地局部含量约20%卵石,夹薄层粉质粘土。本层场地东北部缺失,层厚0.90~4.00m,43.99~47.90m。 (4)粉土(Q42(al+pl)):褐黄色,湿~很湿,稍密~中密,局部密实,无光泽,干强度及韧性低,摇振反应迅速,夹粉质粘土薄层。本层场地中西部缺失,层厚0.60~4.70m,层低高程层低高程41.66~46.44m。 (5) 粉质粘土(Q42(al+pl)):灰褐色~灰黑色,可塑~硬塑,稍有光泽,干强度及韧性中等,局部粘性较强,夹粘土及粉土薄层。本层分布整个场地,层厚0.80~3.60m,层低高程38.06~43.61m。

(冶金行业)粉煤灰试验

(冶金行业)粉煤灰试验

壹、引用有关标准、规范、规程、规定。 《粉煤灰在混凝土和砂浆中应用技术规程》(JGJ28-86) 《用于水泥和混凝土中的粉煤灰》(GB1596-91) 《水泥胶砂流动度检验方法》(GB/T2419-94) 《粉煤灰混凝土应用技术规程》(GBJ146-90) 二、粉煤灰试验的必试项目: (1)、细度 (2)、烧失量 (3)、需水量比 三、粉煤灰试验取样方法及数量 以连续供应的200t相同等级的粉煤灰为壹批,不足200t亦按壹批论,粉煤灰的数量按干灰(含水率小于1%)的重量计算。 散装灰取样——从不同部位取15份试样,每份试样1~3kg,混合均匀,按四分法缩取比试验所需量大壹倍的试样(称为平均试样)。 袋装灰取样——从每批中抽10袋,且从每袋中各取试样不少于1kg,混合均匀,按四分法缩取比试验所需量大壹倍的试样(称为平均试样)。 四、试验方法 (1)、细度 1、称取试样50g,精确至0.1g。倒入0.045mm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。 2、接通电源,将定时开关开到3min,开始筛析。 3、开始工作后,观察负压表,负压大于2000Pa时,表示工作正常,若负压小于2000Pa,则应停机,清理吸尘器中的积灰后在进行筛析。 4、在筛析过程中,可用轻质量木棒或硬橡胶棒轻轻敲打筛盖以防吸附。 5、3min后筛析自动停止,停机后将筛网内的筛余物收集且称量,准确到0.1%。 (2)、烧失量

1、准确称取1g试样,置于已灼烧恒重的瓷坩埚中,将盖斜置和坩埚上,防在高温炉内从低温开始逐渐升高温度,在950~1000℃以灼烧15~20min,取出坩埚,置于干燥器中冷至室温。称量,如此反复灼烧,直至恒重。 (3)、需水量比 1、样品:试验样品:90g粉煤灰,210g硅酸盐水泥和750g标准砂。 对比样品:300g硅酸盐水泥、750g标准砂。 2、试验方法:依据《水泥胶砂流动度测定方法》(GB/T2419-94)进行。分别测定试样样品的流动度得到125~135mm时的需水量W1(ml)和对比样品达到同壹流动度时的需水量W2(ml)。 五、数据处理方法 (1)、粉煤灰细度试验结果处理: X=G×2 式中X——筛余百分数 G——筛余物重量 (2)、粉煤灰烧失量试验结果处理 式中G——灼烧前试样重量 G1——灼烧后试样重量 (3)、需水量比试验结果处理 计算结果取整数 六、粉煤灰必试项目试验结果评定标准 (1)、评定依据《用于水泥和混凝土中的粉煤灰》(GB1596-91),其品质指标应符合下表规定: 粉煤灰品质指标和分类: 注:代替细集料或用于改善和易性的粉煤灰不受此规定的限制。

粉煤灰试验

一、引用有关标准、规范、规程、规定。 《粉煤灰在混凝土和砂浆中应用技术规程》(JGJ28-86) 《用于水泥和混凝土中的粉煤灰》(GB1596-91) 《水泥胶砂流动度检验方法》(GB/T2419-94) 《粉煤灰混凝土应用技术规程》(GBJ146-90) 二、粉煤灰试验的必试项目: (1)、细度 (2)、烧失量 (3)、需水量比 三、粉煤灰试验取样方法及数量 以连续供应的200t相同等级的粉煤灰为一批,不足200t亦按一批论,粉煤灰的数量按干灰(含水率小于1%)的重量计算。 散装灰取样——从不同部位取15份试样,每份试样1~3kg,混合均匀,按四分法缩取比试验所需量大一倍的试样(称为平均试样)。 袋装灰取样——从每批中抽10袋,并从每袋中各取试样不少于1kg,混合均匀,按四分法缩取比试验所需量大一倍的试样(称为平均试样)。 四、试验方法 (1)、细度 1、称取试样50g,精确至0.1g。倒入0.045mm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。 2、接通电源,将定时开关开到3min,开始筛析。 3、开始工作后,观察负压表,负压大于2000Pa时,表示工作正常,若负压小于2000 Pa,则应停机,清理吸尘器中的积灰后在进行筛析。 4、在筛析过程中,可用轻质量木棒或硬橡胶棒轻轻敲打筛盖以防吸附。 5、3min后筛析自动停止,停机后将筛网内的筛余物收集并称量,准确到0.1%。 (2)、烧失量 1、准确称取1g试样,置于已灼烧恒重的瓷坩埚中,将盖斜置与坩埚上,防在高温炉内从低温开始逐渐升高温度,在950~1000℃以灼烧15~20min,取出坩埚,置于干燥器中冷至室温。称量,如此反复灼烧,直至恒重。

水泥粉煤灰稳定碎石底基层施工方案

水泥粉煤灰稳定碎石底基层施工方案 水泥粉煤灰稳定碎石底基层试验段的施工是为全线底基层施工探索一套标准的施工方法,确定适合基层施工的组织方式、验证机械设备的工作效率、优化施工参数,用以指导基层的全面施工。 现水泥粉煤灰稳定碎石底基层的技术及施工准备工作已全部结束,施工人员及机械设备全部到位,我部已具备水泥稳定碎石基层施工条件,现根据相关技术规范及和业主、监理程序要求,我部特编制水泥稳定碎石基层试验段施工方案如下: 一、试验目的: 1、验证用于正式施工的混和料配合比; 2、确定水泥粉煤灰稳定碎石底基层的松铺系数; 3、确定基层标准的施工方法; (1)、混合料配比的控制方法、拌和方法和拌和产量; (2)、混合料的摊铺方法和适用的机械; (3)、混合料含水量增减控制方法; (4)、确定合理的碾压机械、碾压遍数及碾压工艺与组合; (5)、拌和、运输、摊铺和碾压机械的协调配合; 4、确定每一作业面的合适长度; 5、确定施工组织及管理、质量控制体系、人员等;质量检测的内容、检测频率及检测方法。 二、施工准备: 1、试验地点:K284+900~K285+100左幅,长200米; 2、原材料试验及指标 混和料试验报告单:见试验资料

1、原材料试验 1)粗集料试验结果 2)细集料试验结果 3)水泥试验结果 4)粉煤灰实验结果 (1)水泥:巨野山水牌水泥 (2)粉煤灰:荷泽热电厂 (3)碎石:巨野嘉祥石料厂 (4)石屑: 巨野嘉祥石料厂 3、混和料组成配合比:设计配合比为水泥:碎石=5.5:94.5, 最大干密度2.30g/cm3,最佳含水量4.8%;

2、机械配备 试验段配备机械设备表 3、主要施工人员

水泥粉煤灰稳定碎石基层的施工方案

郑州市惠济区中央西路建设工程 (纪元路—新苑路) 水泥粉煤灰稳定碎石 施工方案 编制: 审核: 批准: 郑州市惠济区中央西路建设工程 (纪元路—新苑路)项目经理部 日期:年月日 目录 一、工程概况 (3) 二、工程特点 (6) 三、管理目标 (7) 四、安全目标 (7) 五、基层的施工方案及施工方法 (8) 六、水泥粉煤灰稳定碎石基层施工组织 (15) 七、其它注意事项及安全措施 (17) 附表:水泥粉煤灰稳定碎石基层施工工艺框图 (18) 一、工程概况

中央西路(纪元路——新苑路)位于郑州市惠济区,无现状道路。规为南北向城市支路,红线为25M,路段全长300.284M。 沿线与纪元路和新苑路相交,其中纪元路和新苑路均为规划道路。 沿线周边部分为拆迁场地,局部建筑垃圾未清理。 本标段桩号为:K0+023.043-----K0+287.772。 二、工程特点 1、本工程工期紧,质量要求高,我公司将合理安排各种资源,科学 配置各生产要素,组建功能匹配、良性运作的施工程序,采用先进、成熟的施工工艺。 2、测量是控制路线、结构物平面位置、施工质量控制和工程防护效 果检测最重要的环节之一,因此要求队伍素质精干、测量设备精良先进,严格按照《工程测量技术规范》要求执行。 3、本工程属于升级改建工程,不同于新建道路,因此在保证施工进 度的情况下,还要确保和沿线各村施工用地的协调,这也将成为本工程的重点。 4、施工期间应做好环境保护工作。 三、管理目标 “诚守信用,信誉至上”是我方的一贯宗旨:坚持质量第一,严格过程 控制,提供优质工程,赢得业主信任,认真贯彻“质量第一,百年大计”和“安全第一、预防为主”的方针,坚持“管施工必须管质量”和“谁主管谁负责”的原则,运用全面质量管理手段,实行全员管理、全过程管理的质量保证体系。项目经理部成立以项目经理为组长的安全生产领导小组。我方承诺本工程的质量目标是:确保全部工程达到郑州市现行的工程质量验收标准,工程一次验收合格率达到100﹪。 四、安全目标 为安全地完成本水稳段的施工任务,创安全无事故工程,特制定

水泥粉煤灰稳定碎石施工方案

渭北工业区临潼高陵组团公路连接工程(国道310西安过境公路)第二标段 水泥粉煤灰稳定碎石 施 工 方 案

日期:2014年7月19日 水泥粉煤灰稳定碎石基层、底基层施工方案 一、设计概况 本工程为渭北工业区临潼高陵组团公路连接工程(国道310西安过境公路)第二标段,设计起点K27+330,设计终点K29+720全长2.39公里。本标段设水泥粉煤灰稳定碎石基层两层(18cm+18cm),水泥粉煤灰稳定碎石底基层一层(18cm),采用稳定土拌合站集中拌合,自卸汽车运输,摊铺机摊铺,压路机压实的方法施工。水泥粉煤灰稳定碎石基层、底基层采取单层半幅双机摊铺。二、材料选择 (1)水泥:根据设计强度要求,拟采用西京32.5号普通硅酸盐水泥,备料前对其终凝时间进行测验。 (2)碎石:采用泾阳碎石,碎石由坚硬、耐久的石灰岩轧制而成,具有足够的强度和耐磨性能,其颗粒形状具有梭角,近似立方体,无软质石料和其他杂物。 碎石技术要求:水泥粉煤灰稳定碎石基层最大粒径≤31.5mm,碎石压碎值≤35%;水泥粉煤灰稳定碎石底基层最大粒径≤37.5mm,碎石压碎值≤35%。 (3)水:采用当地饮用水,并经监理工程师批准后使用。 (4)粉煤灰:SiO2、Al2O3、Fe2O3、总含量应大于70%,烧失量不应超过20%,比表面积应大于2500c㎡/g,(或90%通过0.3mm筛孔,70%通过0.075mm 筛孔),湿粉煤含水量不宜超过35%。 二、混合料试配 (1)在水泥稳定碎石基层施工28天前,将拟用的原材料样品,按规定要求进行原材料试验和混合料的试配以确定施工合比设计。 (2)混合料按照JTG E51—2009规定的标准方法进行试验。

水泥粉煤灰碎石桩施工工艺标准

水泥粉煤灰碎石桩施工工艺标准 1适用范围 本工艺标准适用于多层和高层建筑工程地基等采用水泥粉煤灰碎石桩进行地基处理的工程。 2 施工准备 2.1 材料要求和配合比 2.1.1 材料要求 2.1.1.1 碎石:粒径为20~50mm,松散密度1.39t/m3,杂质含量小于5% 2.1.1.2 石屑:粒径为2.5~10mm,松散密度1.47t/m3,杂质含量小于5%。 2.1.1.3 粉煤灰:利用III级粉煤灰。 2.1.1.4 水泥:用425#普通硅酸盐水泥,新鲜无结块。 2.1.2 混合料配合比 根据拟加固场地的土层情况及加固后要求达到的承载力而定。水泥、粉煤灰、碎石混合料按抗压强度相当于C7-C1,2低强度等级混凝土,密度大于2000Kg/m3,掺加最佳石屑率(石屑量与碎石和石屑总重之比)约为25%的情况,当w/c(水与水泥用量之比)为1.01~ 1.47,F/c(粉煤灰与水泥重量之比)为1.02~1.65,混凝土抗压强度约为8.8~14.2Mpa。 2.2 主要工机具 桩成孔,灌注一般采用振动式沉管打桩机架,配DZJ90型变距式振动锤,亦可采用履带式起重机,走管式或轨道式打桩机,配有挺杆,桩管。桩管外径分φ325mm,φ377mm;螺旋钻孔机,分为履带式L2型,汽车式Q2-4型,配备混凝土搅拌机及电动气焊设备及机动翻斗车,手推车,吊车等机具。 2.3 作业条件 2.3.1 岩土勘察报告,基础施工图纸,施工组织设计齐全。 2.3.2 地面上的建筑物,地下管线,电缆,旧基础等已全部拆除,沉管振动对邻近建筑物及厂房内仪器设备有影响时,已采取有效保护措施。 2.3.3施工场地已平整,对桩机运行的松软场地已进行预压处理,周围已做好有效的排水措施。 2.3.4 轴线控制桩及水准基点桩已设置并编号,且经复核,桩位置已经放线并标识。 2.3.5 已进行成桩,夯填工艺和挤密效果检验,确定有关施工工艺参数,并对试桩进行了测试,承载力挤密效果符合设计要求。 2.3.6供水、供电、运输道路、现场小型临施设施已设置就绪。 2.4 作业人员 2.4.1 主要作业人员:机械操作人员、壮工。 2.4.2 施工机具应由专人负责使用和维护,大、中型机械特殊机具需执证上岗,操作者须经培训后,执有效的合格证书可操作。主要作业人员已经过安全培训,并接受了施工技术交

粉煤灰检测实施细则

粉煤灰检测实施细则 1. 适用范围、检测参数及技术标准 1.1适用范围 适用于拌制混凝土和砂浆时作为掺合料的粉煤灰及水泥生产中作为活性混合材料的粉煤灰。 1.2检测参数 细度(45μm方孔筛筛余)、含水量、安定性、烧失量、需水量比、活性指数、三氧化硫、游离氧化钙。 1.3技术标准 1.3.1产品标准(判定标准)及其需引用标准 GB/T 1596-2005 用于水泥和混凝土中的粉煤灰 1.3.2试验方法标准及其需引用标准 a.GB/T 176-2008 水泥化学分析方法 b.GB/T 1346-2001 水泥标准稠度用水量、凝结时间、安定性检验方法c.GB/T 2419-2005 水泥胶砂流动度试验方法 d.GB 12573-2008 水泥取样方法 e.GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) 2. 检测环境 普通混凝土、砂浆用粉煤灰的设施环境应能满足下列要求: 2.1试件成型试验室的温度应保持在20℃±2℃、相对湿度不低于50%。 2.2试件养护池水温应保持在20℃±1℃范围内。 3. 检测设备与标准物质 3.1检测设备 见表3.1

3.2 标准物质 3.2.1 GSB14-1511水泥细度和比表面积标准粉。 表3.1 3.2.2 GSB14-1510强度检验用水泥标准样。 4. 取样方法及试样数量 4.1对于同一产家、同一等级、同一品种、连续进场且不超过10d的掺合料为

一验收批,但一批的总量不宜超过200t。不足200t者应按一验收批进行验收。 4.2每一编号为一取样单位,当散装粉煤灰运输工具的容量超过该厂规定的出厂编号吨数时,允许该编号的数量超过取样规定吨数。 4.3取样方法按GB 12573-2008进行。取样应有代表性,可连续取,也可从10个以上不同部位取等量样品,总量至少6kg。 5. 检测方法 5.1 细度(45μ方孔筛筛余) 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时作记录; 检查核对产品标准和试验方法标准,并记录; 检查核对环境温度,并记录。 5.1.2试样核对检查 核对和检查试样是否符合要求,并记录。 5.1.3检测与计算 5.1.3.1检测 检测方法依据标准:GB/T 1596-2005。 操作步骤、细节,注意事项: a.将测试用粉煤灰样品置于温度为105℃~110℃烘干箱内烘至恒重,取出放在干燥器中冷却至室温。 b.称取试样约10g,准确至0.01g,倒入45μm方孔筛筛网上,将筛子置于筛座上,盖上筛盖。 c.接通电源,将定时开关固定在3min,开始筛析。 d.开始工作后,观察负压表,使负压稳定在4000Pa~6000Pa。若负压小于4000 Pa,则应停机,清理收尘器中的积灰后再进行筛析。 e.在筛析过程中,可用轻质木棒或硬橡胶棒轻轻敲打筛盖,以防吸附。 f. 3min后筛析自动停止,停机后观察筛余物,如出现颗粒成球、粘筛或有细颗粒沉积在筛框边缘,用毛刷将细颗粒轻轻刷开,将定时开关固定在手动位置,再筛析1min~3min直至筛分彻底为止。将筛网内的筛余物收集并称量,准确至0.01g。

粉煤灰水泥技术指标分析

What, where, feature why, how, now, problem 粉煤灰硅酸盐水泥技术指标: 熟料+石膏的含量:≥60且<80 粉煤灰含量:>20且≤40d 粉煤灰硅酸盐水泥、等级分为32.5、32.5R、42.5、42.5R、52.5、52.5R六个等级。 硅酸盐水泥强度等级分为:42.5、42.5R、52.5、52.5R、62.5、62.5R六个等级 (从中上述两个等级划分可以知道:粉煤灰硅酸盐水泥的硬化慢,早期强度较低) 三氧化硫(质量分数):≤3.5 氧化镁(质量分数):≤6.0b 氯离子(质量分数):≤0.06c 粉煤灰硅酸盐水泥初凝不小于45min,终凝不大于600min。 普通硅酸盐水泥初凝时间不小于45min,终凝不大于390min。(粉煤灰水泥凝结硬化较慢) 粉煤灰水泥强度指标要求 水泥活性混合材料用粉煤灰技术要求 欧洲粉煤灰水泥技术指标:粉煤灰水泥划归为CEMII型混合硅酸盐水泥

粉煤灰水泥机械要求及物理要求 粉煤灰水泥化学指标要求 CEM II/B- T类型的水泥能含有最多4,5%的三氧化硫 区别:在粉煤灰硅酸盐水泥技术指标上:国内将粉煤灰含量作为一个总体的指标进行各技术指标等级确定,欧洲根据熟料的含量和粉煤灰组成将粉煤灰水泥分成四种(CEMII/A(B)-V(W))并分别给定相应的技术标准,这样划分更具体,更细化。(就粉煤灰分类,国内对粉煤灰根据不同原材料煅烧划分为F类和C类,欧洲根据粉煤灰组成含量情况划分为硅质和钙质粉煤灰) 化学指标:国内主要测定三氧化硫、氯化镁、氯离子质量分数。欧洲测定的是三氧化硫和整体的氯化物含量(整体氯化物质量分数测定更全面) 物理强度等指标上:国内测定抗折,抗压强度,对粉煤灰水泥的初凝、终凝时间都作出了相应的要求。欧洲测定的抗压强度,体积安定性,对抗折强度没有特定指标值,只测定了初凝时间,没有规定终凝时间指标(这是为什么??)。在测定抗压强度时,我国测定早强是3d 抗压强度值,欧洲将早期强度测定时间分为2d和7d。(那么问题来了:1、欧洲技术指标早期强度只有32.5N才测量7d强度指标而不测定2d强度指标是否是考虑到32.5N等级在2d 时抗压强度达不到要求,不能作为指标值来确定。2、我国在划分早强指标时是否应该借鉴欧洲划分标准。) 部分技术指标对粉煤灰水泥的影响: 1.熟石灰和石膏对粉煤灰水泥强度的影响:为使粉煤灰大部分或全部起化学反应生成了 C-S-H凝胶和钙矾石,除了硅酸盐矿物水化所释放的C a ( O H ) 2 外, 必须外掺相当数

粉煤灰硅酸盐水泥(实操分享)

粉煤灰水泥,全称粉煤灰硅酸盐水泥。凡由硅酸盐水泥熟料、粉煤灰(粉煤灰的掺量为20~40%)、适量石膏共同磨细而制成的水硬性胶凝材料称为粉煤灰水泥。按现行国家标准,粉煤灰水泥的强度等级有:32.5、32.5R;42.5、42.5R; 52.5、52.5R。 粉煤灰是发电厂燃烧煤粉时得到的一种灰渣,也称飞灰属于火山灰质混合材。由于目前世界上的粉煤灰产量很大,约达到数十亿吨,而利用率还不够高,所以它是一种令人日益关心的工业副产品。特别是当电厂可使用的油、气燃料日益减少时,粉煤灰的产量还会增加。 我国大多数粉煤灰的化学成分如下:40~60%SiO2;0.5~2.5%MgO;15~40%Al2O3;< 2%SO3;3~10%Fe2O3; >60%SiO2+Al2O3; 25%CaO;1~20%烧失量;1~6%未燃物(属于有害部分)。 粉煤灰中含玻璃相约50~80%,也有少量的晶体矿物及未燃尽的碳粒。玻璃体是粉煤灰具有活性的主要组成部分,可以认为,在其它条件相同时,玻璃体含量越多,活性越高。即,粉煤灰的活性决定于活性Al2O3 、SiO2的含量。但CaO对粉煤灰的活性极为有利。所以说粉煤灰是高度玻璃化并含少量晶质组分的硅铝质产品。 一、粉煤灰水泥的水化硬化 粉煤灰水泥的水化和硬化过程,与火山灰水泥的水化硬化过程极为相似,主要是熟料的水化反应,以及粉煤灰与Ca(OH)2之间相互交错的两级反应。即,硅酸盐水泥熟料水化生成的C-S-H和Ca(OH)2,被吸附在粉煤灰颗粒的表面,由于粉煤灰中高度分散的活性氧化物吸收Ca(OH)2,进而相互反应而形成以水化硅酸钙为主体的水化产物,水化硅酸钙凝胶和水化铝酸钙凝胶,这就是所谓的Ca(OH)2和粉煤灰进行的二次反应(也可称为火山灰反应)。 在粉煤灰颗粒表面上产生的大量的水化物结晶体,它们相互交叉连接,形成了很高的粘结强度,以致在劈裂时,即使粉煤灰颗粒被劈开,但粘结区还能保持完好,因而能达到相当高的力学强度。 此外,在粉煤灰水泥中除了火山灰反应以外,还有同其它矿物细粉一样的作用,那就是也可以进入水泥颗粒构成的絮凝结构中,使水化物析出的有效空间增大,从而加速了水泥的水化,这也叫做“微分效应”。 三、粉煤灰水泥的性能及用途 粉煤灰水泥实质上也是一种火山灰水泥,虽然,它们之间有很多相似的性能,如比重小、水化热较低、抗腐蚀性较强等。但是由于粉煤灰的化学组成和物理结构特征与其它火山灰质混合材料有一定的差异,比如,从矿物内部结构上分析,粉煤灰是一种密实的玻璃质球,结构比较致密且稳定,内比表面积小,对水的吸附能力小,不易水化。所以,粉煤灰水泥就具有了一系列的性能特点。 由上可知,粉煤灰水泥具有一般火山灰水泥的共性,但与表面粗糙、多孔的火山灰质混合材的水泥相比,在性质上确有更为显著的特点。它不仅结构比较致密,内比表面积较小,而且对水的吸附能力小得多,同时水泥水化的需水量又小,所以粉煤灰水泥的干缩性就小,抗裂性也好。此外,与一般掺活性混合材的水泥相似,水化热低,抗腐蚀能力较强等,抗冻性也好于其它火山灰水泥。

相关文档
相关文档 最新文档