文档库 最新最全的文档下载
当前位置:文档库 › 【卓顶精品】最新概率公式大全.doc

【卓顶精品】最新概率公式大全.doc

【卓顶精品】最新概率公式大全.doc
【卓顶精品】最新概率公式大全.doc

(1)排列组合公式从m个人中挑出n个人进行排列的可能数。从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。

(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)

顺序问题

(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用来表示。

基本事件的全体,称为试验的样本空间,用表示。

一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。

为必然事件,?为不可能事件。

不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):

如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:AB,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。

A、B同时发生:AB,或者AB。AB=?,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

-A称为事件A的逆事件,或称A的对立事件,记为。它表示A不发生的事件。互斥未必对立。

②运算:

结合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)

德摩根率:,

(7)概率的公理化定义设为样本空间,为事件,对每一个事件都有一个实数P(A),若满足下列三个条件:1°0≤P(A)≤1,

2°P(Ω)=1

3°对于两两互不相容的事件,,…有

常称为可列(完全)可加性。

则称P(A)为事件的概率。

(8)古典概型1°,

2°。

设任一事件,它是由组成的,则有P(A)==

(9)几何概型若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,

。其中L为几何度量(长度、面积、体积)。

(10)加法公式P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式P(A-B)=P(A)-P(AB)

当BA时,P(A-B)=P(A)-P(B) 当A=Ω时,P()=1-P(B)

(12)条件概率定义设A、B是两个事件,且P(A)>0,则称为事件A发生条件下,事件B发生的条件概率,记为。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1P(/A)=1-P(B/A)

(13)乘法公式乘法公式:

更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有…………。

(14)独立性①两个事件的独立性

设事件、满足,则称事件、是相互独立的。

若事件、相互独立,且,则有

若事件、相互独立,则可得到与、与、与也都相互独立。必然事件和不可能事件?与任何事件都相互独立。

?与任何事件都互斥。

②多个事件的独立性

设ABC是三个事件,如果满足两两独立的条件,

P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式设事件满足

1°两两互不相容,,2°,

则有

(16)贝叶斯公式设事件,,…,及满足

1°,,…,两两互不相容,>0,1,2,…,,

2°,,

,i=1,2,…n。

此公式即为贝叶斯公式。

,(,,…,),通常叫先验概率。,(,,…,),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型我们作了次试验,且满足

u每次试验只有两种可能结果,发生或不发生;

u次试验是重复进行的,即发生的概率每次均一样;

u每次试验是独立的,即每次试验发生与否与其他次试验发生与否是互不影响的。这种试验称为伯努利概型,或称为重伯努利试验。

用表示每次试验发生的概率,则发生的概率为,用表示重伯努利试验中出现次的概率,

,。

(1)离散型随机变量的分布律设离散型随机变量的可能取值为Gk(k=1,2,…)且取各个值的概率,即事件(G=Gk)的概率为

P(G=Gk)=pk,k=1,2,…,

则称上式为离散型随机变量的概率分布或分布律。有时也用分布列的形式给出:。

显然分布律应满足下列条件:

(1),,(2)。

(2)连续型随机变量的分布密度设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。密度函数具有下面4个性质:

1°。

2°。

(3)离散与

连续型随机变量的关系积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。

(4)分布函数设为随机变量,是任意实数,则函数

称为随机变量G的分布函数,本质上是一个累积函数。

可以得到G落入区间的概率。分布函数表示随机变量落入区间(–∞,G]内的概率。

分布函数具有如下性质:

1°;

2°是单调不减的函数,即时,有;

3°,;

4°,即是右连续的;

5°。

对于离散型随机变量,;

对于连续型随机变量,。

(5)八大分

0-1分布P(G=1)=p,P(G=0)=q

二项分布在重贝努里试验中,设事件发生的概率为。事件发生的次数是随

机变量,设为,则可能取值为。

,其中,

则称随机变量服从参数为,的二项分布。记为。

当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特

例。

泊松分布设随机变量的分布律为

,,,

则称随机变量服从参数为的泊松分布,记为或者P()。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

超几何分布

随机变量G服从参数为n,N,M的超几何分布,记为H(n,N,M)。

几何分布,其中p≥0,q=1-p。

随机变量G服从参数为p的几何分布,记为G(p)。

均匀分布设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,

a≤G≤b

其他,

则称随机变量在[a,b]上服从均匀分布,记为G~U(a,b)。

分布函数为

a≤G≤b

0,G

1,G>b。

当a≤G1

指数分布,

0,,

其中,则称随机变量G服从参数为的指数分布。

G的分布函数为

,

G<0。

记住积分公式:

正态分布设随机变量的密度函数为

,,

其中、为常数,则称随机变量服从参数为、的正态分布或高斯

(Gauss)分布,记为。

具有如下性质:

1°的图形是关于对称的;

2°当时,为最大值;

若,则的分布函数为

。。

参数、时的正态分布称为标准正态分布,记为,其密度函数记为

,,

分布函数为

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-G)=1-Φ(G)且Φ(0)=。

如果~,则~。

(6)分位数下分位表:;

上分位表:。

(7)函数分布离散型已知的分布列为

的分布列(互不相等)如下:

若有某些相等,则应将对应的相加作为的概率。

连续型先利用G的概率密度fG(G)写出P的分布函数FP(P)=P(g(G)≤P),

再利用变上下限积分的求导公式求出fP(P)。

(1)联合分布离散型如果二维随机向量(G,P)的所有可能取值为至多可列

个有序对(G,P),则称为离散型随机量。

设=(G,P)的所有可能取值为,且事件{=}的概率为

pij,,称

为=(G,P)的分布律或称为G和P的联合分布律。联

合分布有时也用下面的概率分布表来表示:

P

G

P1 P2 …Pj …

G1 p11 p12 …p1j …

G2 p21 p22 …p2j …

Gi pi1 ……

这里pij具有下面两个性质:

(1)pij≥0(i,j=1,2,…);

(2)

连续型对于二维随机向量,如果存在非负函数,使对任意一个

其邻边分别平行于坐标轴的矩形区域D,即

D={(G,P)|a

则称为连续型随机向量;并称f(G,P)为=(G,P)的分

布密度或称为G和P的联合分布密度。

分布密度f(G,P)具有下面两个性质:

(1)f(G,P)≥0;

(2)

(2)二维随机变量的本质

(3)联合分布函数设(G,P)为二维随机变量,对于任意实数G,P,二元函数

称为二维随机向量(G,P)的分布函数,或称为随机变量G和P的联合分布函数。

分布函数是一个以全平面为其定义域,以事件的概率为函数值的一个实值函数。分布函数F(G,P)具有以下的基本性质:

(1)

(2)F(G,P)分别对G和P是非减的,即

当G2>G1时,有F(G2,P)≥F(G1,P);当P2>P1时,有F(G,P2)≥F(G,P1); (3)F(G,P)分别对G和P是右连续的,即

(4)

(5)对于

.

(4)离散型与连续型的关系

(5)边缘分布离散型G的边缘分布为

P的边缘分布为

连续型G的边缘分布密度为

P的边缘分布密度为

(6)条件分布离散型在已知G=Gi的条件下,P取值的条件分布为

在已知P=Pj的条件下,G取值的条件分布为

连续型在已知P=P的条件下,G的条件分布密度为

在已知G=G的条件下,P的条件分布密度为

(7)独立性一般型F(G,P)=FG(G)FP(P)

离散型

有零不独立

连续型f(G,P)=fG(G)fP(P)

直接判断,充要条件:

①可分离变量

②正概率密度区间为矩形

二维正态分布

=0

随机变量的函数若G1,G2,…Gm,Gm+1,…Gn相互独立,h,g为连续函数,

则:

h(G1,G2,…Gm)和g(Gm+1,…Gn)相互独立。

特例:若G与P独立,则:h(G)和g(P)独立。

例如:若G与P独立,则:3G+1和5P-2独立。

(8)二维均匀分布设随机向量(G,P)的分布密度函数为

其中SD为区域D的面积,则称(G,P)服从D上的均匀分布,记为(G,P)~U(D)。

例如图3.1、图3.2和图3.3。

P

1

D1

O1G

图3.1

P

D2

1

1

O2G

图3.2

P

D3

d

c

OabG

图3.3

(9)二维正态分布设随机向量(G,P)的分布密度函数为

其中是5个参数,则称(G,P)服从二维正态分布,

记为(G,P)~N(

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即G~N(

但是若G~N(,(G,P)未必是二维正态分布。

(10)函数分布Z=G+P 根据定义计算:

对于连续型,fZ(z)=

两个独立的正态分布的和仍为正态分布()。

n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=maG,min(G1,G2,…Gn) 若相互独立,其分布函数分别为,则

Z=maG,min(G1,G2,…Gn)的分布函数为:

分布设n个随机变量相互独立,且服从标准正态分布,可以

证明它们的平方和

的分布密度为

我们称随机变量W服从自由度为n的分布,记为W~,

其中

所谓自由度是指独立正态随机变量的个数,它是随机变

量分布中的一个重要参数。

分布满足可加性:设

t分布设G,P是两个相互独立的随机变量,且

可以证明函数

的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~

t(n)。

F分布设,且G与P独立,可以证明的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自

由度为n2的F分布,记为F~f(n1,n2).

(1)一维随机变量的数字特征

离散型连续型

期望

期望就是平均值

设G是离散型随机变量,其分布律

为P()=pk,k=1,2,…,n,

(要求绝对收敛)

设G是连续型随机变量,其概率密度

为f(G),

(要求绝对收敛)

函数的期望P=g(G) P=g(G)

方差

D(G)=E[G-E(G)]2,

标准差

矩①对于正整数k,称随机变量G的

k次幂的数学期望为G的k阶原点

矩,记为vk,即

νk=E(Gk)=,k=1,2,….

②对于正整数k,称随机变量G与

E(G)差的k次幂的数学期望为G

的k阶中心矩,记为,即

=,k=1,2,….

①对于正整数k,称随机变量G的k

次幂的数学期望为G的k阶原点矩,

记为vk,即

νk=E(Gk)=

k=1,2,….

②对于正整数k,称随机变量G与E

(G)差的k次幂的数学期望为G的

k阶中心矩,记为,即

=

k=1,2,….

切比雪夫不等式设随机变量G具有数学期望E(G)=μ,方差D(G)=σ2,则对于任意

概率统计公式、符号汇总表

《概率统计》公式、符号汇总表及各章要点 (共3页) 第一章 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:∑=j ij i p P ,? +∞ ∞ -=dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(11n X X Λ与),,(21n Y Y Λ独立),,(11n X X f Λ?与),,(21n Y Y g Λ独立 (3)随机变量函数的分布(离散型用列表法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布-------连续型用分布函数法 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布- M 、N 的分布---------连续型用分布函数法 第四章 (1)期望定义:离散:∑=i i i p x X E )( 连续:???+∞∞-+∞ ∞-+∞∞-==dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(222X E X E X E X E X D -=-= 离散:∑-=i i i p X E x X D 2))(()( 连续:?+∞ ∞--=dx x f X E x X D X )())(()(2 协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--= 相关系数定义:) ()(),(Y D X D Y X COV XY = ρ

概率论与数理统计公式大全

第1章 随机事件及其概率 例1.16 设某人从一副扑克中(52张)任取13张,设A 为“至少有一张红桃”,B 为“恰有2张红桃”,C 为“恰有5张方块”,求条件概率P (B |A ),P (B |C )解 13 52 1339 1352135213391)(1)(C C C C C A P A P -=-=-=13 52 11 39 213)(C C C AB P ?=13 39 135211392131352 13 39135213521139 213)() ()(C C C C C C C C C C A P AB P A B P -=-==1352 839 513)(C C C C P =13 52626213513)(C C C C BC P =8 39 6262131352 8395131352626 213513)() ()(C C C C C C C C C C C P BC P C B P === 某种动物出生后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率. 解设A 表示事件“活到20岁以上”,B 表示事件“活到25岁以上”,显然A B ?7.0)(=A P 56.0)(=B P 56 .0)()(==B P AB P 8.07 .056 .0)()()(=== A P A B P A B P

例1.21 某工厂生产的产品以100件为一批,假定每一批产品中的次品最多不 超过4件,且具有如下的概率:一批产品中的次品数0 1 2 3 4 概率0.1 0.2 0.4 0.2 0.1 现进行抽样检验,从每批中随机抽取10件来检验,若发现其中有次品,则认 为该批产品不合格。求一批产品通过检验的概率。4 ()()() k k k P B P A P B A == ∑解设B 表示事件“一批产品通过检验”,A i (i =0,1,2,3,4)表示“一批产品含有i 件次品”,则A 0,A 1, A 2, A 3, A 4组成样本空间的一个划分, 00()0.1,()1 P A P B A ==1099 1110100 ()0.2,()0.900 C P A P B A C ===1098 2210100 ()0.4,()0.809 C P A P B A C ===1097 3310100 ()0.2,()0.727 C P A P B A C ===1096 4410100 ()0.1,()0.652 C P A P B A C ===814.0652 .01.0727.02.0809.04.0900.0.021.0≈?+?+?+?+=顾客买到的一批合格品中,含次品数为0的概率是 0004 ()(|) 0.11(|)0.123 0.814 ()(| ) i i i P A P B A P A B P A P B A =??= = ≈?∑类似可以计算顾客买到的一批合格品中,含次品数为1、2、3、4件的概率分别约 为0.221、0.398、0.179、0.080。 贝叶斯公式(Bayes) 1 ()() ()1,2,,()() k k k n i i i P A P B A P A B k n P A P B A =?= =∑L 第二章 随机变量及其分布 1离散型 随机变量 P(X=x k )=p k ,k=1,2,…, (1)0≥k p , (2)∑∞ ==1 1 k k p 2连续 型随机变量概 ? ∞-=x dx x f x F )()( (1)0)(≥x f ;(2) ? +∞ ∞ -=1 )(dx x f 。 ()=()F x f x '? =-=≤

大学物理近代物理学基础公式大全

一. 狭 义相对论 1. 爱因斯坦的两个基本原理 2. 时空坐标变换 3. 45(1(2)0 m m γ= v = (3)0 E E γ= v =(4) 2222 C C C C v Pv Pv Pv P E E E E ==== 二. 量子光学基础 1. 热辐射 ① 绝对黑体:在任何温度下对任何波长的辐射都能完全吸收的物体。 吸收比:(T)1B αλ、= 反射比:(T)0B γλ、= ② 基尔霍夫定律(记牢) ③ 斯特藩-玻尔兹曼定律 -vt x C v = β

B B e e :单色辐射出射度 B E :辐出度,单位时间单位面积辐射的能量 ④ 唯恩位移定律 m T b λ?= ⑤ 普朗克假设 h εν= 2. 光电效应 (1) 光电效应的实验定律: a 、n I ∝光 b 、 0 00a a a a e U ek eU e U ek eU e U ek eU e U ek eU νννν----==== (23、 4 三. 1 ② 三条基本假设 定态,,n m n m h E E h E E νν=-=- ③ 两条基本公式 2210.529o n r n r n A == 12213.6n E E eV n n -== 2. 德布罗意波 20,0.51E mc h E MeV ν=== 22 mc mc h h νν== 电子波波长:

h mv λ= 微观粒子的波长: h h mv mv λλ= === 3. 测不准关系 x x P ???≥h 为什么有?会应用解题。 4.波函数 ① 波函数的统计意义: 例1① ② 例2.① ② 例3.π 例4 例5,,设 S 系中粒子例6 例7. 例8. 例9. 例10. 从钠中移去一个电子所需的能量是2.3eV ,①用680nm λ=的橙光照射,能否产生光电效应?②用400nm λ=的紫光照射,情况如何?若能产生光电效应,光电子的动能为多大?③对于紫光遏止电压为多大?④Na 的截止波长为多大? 例11. 戴维森革末实验中,已知电子束的动能310k E MeV =,求①电子波的波长;②若电子束通过0.5a mm =的小孔,电子的束状特性是否会被衍射破坏?为什么? 例12. 试计算处于第三激发态的氢原子的电离能及运动电子的德布罗意波长。 例13. 处于基态的氢原子,吸收12.5eV 的能量后,①所能达到的最高能态;②在该能态上氢原子的电离能?电子的轨道半径?③与该能态对应的极限波长以及从该能态向低能态跃迁时,可能辐射的光波波长?

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

大学物理公式大全

大学物理公式大全 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r =dt dr 1. 3速度v=dt ds = =→→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 0220 0 1.17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga —g gx 2 1.22轨迹方程y=xtga —a v gx 2 202 cos 2 1.23向心加速度 a=R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相 同a n =R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦ R dt d R dt ds v === 1.29角速度 dt φ ωd = 1.30角加速度 22dt dt d d φ ωα== 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速 直线运动状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与

概率统计公式大全汇总

第一章
n Pm ?
随机事件和概率
(1)排列 组合公式
n Cm ?
m! (m ? n)!
从 m 个人中挑出 n 个人进行排列的可能数。
m! 从 m 个人中挑出 n 个人进行组合的可能数。 n!(m ? n)!
(2)加法 和乘法原 理
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种 方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种 方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如 下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ? 来表示。 基本事件的全体,称为试验的样本空间,用 ? 表示。 一个事件就是由 ? 中的部分点(基本事件 ? )组成的集合。通常用大写字母 A, B,C,…表示事件,它们是 ? 的子集。 ? 为必然事件,? 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
A? B
如果同时有 A ? B , B ? A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A ? B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表 示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
1 / 33

大学物理之热学公式篇

热 学 公 式 1.理想气体温标定义:0 273.16lim TP p TP p T K p →=?(定体) 2.摄氏温度t 与热力学温度T 之间的关系:0 //273.15t C T K =- 华氏温度F t 与摄氏温度t 之间的关系:9325 F t t =+ 3.理想气体状态方程:pV RT ν= 1mol 范德瓦耳斯气体状态方程:2 ()()m m a p V b RT V + -= 其中摩尔气体常量8.31/R J mol K =?或2 8.2110/R atm L mol K -=??? 4.微观量与宏观量的关系:p nkT =,23kt p n ε= ,32 kt kT ε= 5.标准状况下气体分子的数密度(洛施密特数)253 0 2.6910/n m =? 6.分子力的伦纳德-琼斯势:12 6 ()4[()()]p E r r r σ σ ε=-,其中ε为势阱深度, σ= ,特别适用于惰性气体,该分子力大致对应于昂内斯气体; 分子力的弱引力刚性球模型(苏则朗模型):06 000, ()(), p r r E r r r r r φ+∞

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

大学物理公式全集.doc

大学物理公式集 基本概念(定义和相关公式) 位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;2 22z y x r ++= 角位置:θ 速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 加速度:dt V d a =或22dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ),r V n a 2 = (=r2 ω) 1.力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 2.动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 3.冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A=∫ PdV ) 4.动能:mV 2/2 5.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式 不同,在默认势能零点的情况下: 机械能:E=E K +E P 6.热量:CRT M Q μ =其中:摩尔热容 量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 7.压强:ω n tS I S F P 3 2 = ?= = 8.分子平均平动能:kT 2 3= ω ;理想气体内能:RT s r t M E )2(2 ++= μ 9.麦克斯韦速率分布函数:NdV dN V f = )((意义:在V 附近单位速度间隔内的分子数所 占比率) 10. 平均速率:πμ RT N dN dV V Vf V V 80 )(= = ? ?∞ 方均根速率:μ RT V 22 = ;最可几速率:μ RT p V 3= 11. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数) mg(重力) → mgh -kx (弹性力) → kx 2 /2 F= r r Mm G ?2 - (万有引力) →r Mm G - =E p r r Qq ?42 πε (静电力) → r Qq 0 4πε

概率论与数量统计-公式

第1章随机事件及其概率 (1)排列组合公式 从m 个人中挑出n 个人进行排列的可能数。 从m 个人中挑出n 个人进行组合的可能数。 (2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题 (4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用来表示。 基本事件的全体,称为试验的样本空间,用表示。 一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算 ①关系: 如果事件A 的组成部分也是事件B 的组成部分,(A 发生必有事件B 发生):如果同时有, ,则称事件A 与事件B 等价,或称A 等于B : A=B 。 A、B 中至少有一个发生的事件:A B ,或者A +B 。 属于A 而不属于B 的部分所构成的事件,称为A 与B 的差,记为A-B ,也 可表示为A-AB 或者 ,它表示A 发生而B 不发生的事件。 A、B 同时发生:A B ,或者AB 。A B=?,则表示A 与B 不可能同时发 生,称事件A 与事件B 互不相容或者互斥。基本事件是互不相容的。

大学物理公式大全下册

电磁学 1.定义: ①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:? ∞ ?= r r d E U 电势差:?-+ ?=l d E U 电动势:? + - ?= l d K ε(q F K 非静电 =) ③电通量:???=S d E e φ磁通量:???=S d B B φ磁通链: ΦB =N φB 单位:韦伯(Wb ) 磁矩:m =I S =IS n ? ④电偶极矩:p =q l ⑤电容:C=q/U 单位:法拉(F ) *自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I = dt dq ; *位移电流:I D =ε 0dt d e φ 单位:安培(A ) ⑦*能流密度: B E S ?= μ 1 2.实验定律 ①库仑定律:0 204r r Qq F πε= ②毕奥—沙伐尔定律:204?r r l Id B d πμ?= ③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dt d B φ 动生电动势:?+ -??= l d B V )(ε 感生电动势:? - + ?=l d E i ε(E i 为感生电场) *⑤欧姆定律:U=IR (E =ρj )其中ρ为电导率 3.*定理(麦克斯韦方程组) 电场的高斯定理:?? =?0 εq S d E ??=?0 εq S d E 静 (E 静是有源场) ??=?0S d E 感 (E 感是无源场) 磁场的高斯定理:??=?0S d B ??=?0S d B (B 稳是无源场) E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G ) Θ ⊕ -q l

《概率统计》公式符号汇总表及复习策略

《概率统计》公式、符号汇总表及各章要点及复习策略 (共4页) 第一章均独立。 与与与此时独立与B A B A B A B P A P AB P B A B P AB P B A P ,,);()()( )()()( (1)?=?= )() ()()( ) ()()()()( )3() (1)( ) ()( A B )()()( ) ()()()()( ) ()()()( )2(11A P B P B A P A B P B P B A P B P B A P A P A P A P B P A P AB P A P B A P A P A B P B P B A P AB P AB P B P A P B A P i i i n n ?=?++?=-=-?-=-?=?=-+= 第二、三章 一维随机变量及分布:X , i P , )(x f X , )(x F X 二维随机变量及分布:),(Y X , ij P , ),(y x f , ),(y x F *注意分布的非负性、规范性 (1)边缘分布:如:∑=j ij i p P ,?+∞ ∞-=dy y x f x f X ),()( (2)独立关系:J I IJ P P P Y X =?独立与 或)()()(y f x f y x f Y X =, ),,(11n X X 与),,(21n Y Y 独立),,(11n X X f ?与),,(21n Y Y g 独立 (3)随机变量函数的分布(离散型用点点对应法、连续型用分布函数法) 一维问题:已知X 的分布以及)(X g Y =,求Y 的分布 二维问题:已知),(Y X 的分布,求Y X Z +=、{}Y X M ,m ax =、{}Y X N ,m in =的分布- *??+∞∞-+∞ ∞--=-=dy y y z f dx x z x f z f Z ),(),()( M 、N 的分布--------离散型用点点对应法、连续型用分布函数法 第四章 (1)期望定义:离散:∑= i i i p x X E )( 连续:? ??+∞∞-+∞∞-+∞ ∞-==dxdy y x xf dx x xf X E ),()()( 方差定义:)()(]))([()(222X E X E X E X E X D -=-= 离散:∑-= i i i p X E x X D 2))(()( 连续:?+∞ ∞--=dx x f X E x X D X )())(()(2 协方差定义:)()()())]())(([(),(Y E X E XY E Y E Y X E X E V X COV -=--=

大学物理公式大全

第一章 质点运动学与牛顿运动定律 1、1平均速度 v = t △△r 1、2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 1、6 平均加速度a = △t △v 1、7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1、8瞬时加速度a=dt dv =2 2dt r d 1、11匀速直线运动质点坐标x=x 0+vt 1、12变速运动速度 v=v 0+at 1、13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1、14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1、15自由落体运动 1、16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 02200 1、17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1、18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1、19射程 X=g a v 2sin 2 1、20射高Y= g a v 22sin 20 1、21飞行时间y=xtga —g gx 2 1、22轨迹方程y=xtga —a v gx 2 202 cos 2 1、23向心加速度 a=R v 2 1、24圆周运动加速度等于切向加速度与法向加速度矢量与a=a t +a n 1、25 加速度数值 a=2 2 n t a a + 1、26 法向加速度与匀速圆周运动的向心加速度相同 a n =R v 2 1、27切向加速度只改变速度的大小a t = dt dv 1、28 ωΦR dt d R dt ds v === 1、29角速度 dt φ ωd = 1、30角加速度 22dt dt d d φ ωα== 1、31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1、39 F=G 2 2 1r m m G 为万有引力称量=6、67×10-11 N ?m 2 /kg 2 1、40 重力 P=mg (g 重力加速度) 1、41 重力 P=G 2 r Mm 1、42有上两式重力加速度g=G 2 r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r = dt dr 1. 3速度v=dt ds = = →→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22 dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????== =gy v at y gt v 22122 ???????-=-=-=gy v v gt t v y gt v v 2212 022 00 1.17 抛体运动速度分量? ? ? -==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=2 0021 sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga — g gx 2 1.22轨迹方程y=xtga — a v gx 2 2 02cos 2 1.23向心加速度 a= R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2 n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同 a n = R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦR dt d R dt ds v === 1.29角速度 dt φωd = 1.30角加速度 22 dt dt d d φωα= = 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =2 2 2 )(ω ωR R R R v == a t = αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 2 21r m m G 为万有引力称量=6.67× 10-11 N ?m 2 /kg 2 1.40 重力 P=mg (g 重力加速度) 1.41 重力 P=G 2 r Mm 1.42有上两式重力加速度g=G 2 r M (物体的重力加速度与 物体本身的质量无关,而紧随它到地心的距离而变) 1.43胡克定律 F=—kx (k 是比例常数,称为弹簧的劲度

相关文档
相关文档 最新文档