文档库 最新最全的文档下载
当前位置:文档库 › 第四章 基因工程.ppt.Convertor

第四章 基因工程.ppt.Convertor

第四章 基因工程.ppt.Convertor
第四章 基因工程.ppt.Convertor

第四章 基因工程

基因工程(gene engineering):又称为重组DNA 技术,是指将外源基因通过体外重组后导入

受体细胞,并使其能在受体细胞内复制和表达的技术。

分子克隆(molecular cloning):是指在体外将制备的DNA 片段与载体重组,然后导入受体细

胞,并在受体细胞中复制、扩增,以获得该DNA 分子的大量拷贝的技术。

第一节 工具酶(限制性核酸酶内切酶;DNA 聚合酶;DNA 连接酶;碱性磷酸酶;核酸酶S1)

一、限制性核酸内切酶(restriction endonuclease, RE)

限制性核酸内切酶(RE)是一类能识别和切割双链DNA 特定核苷酸序列的核酸水解酶。

限制酶主要来自于细菌,其切割序列明确,目前商品化的限制酶现有100多种。

命名:Hin d Ⅲ Haemophilus influenzae d 株

流感嗜血杆菌d 株的第三种酶

第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;

第四个字母代表株;用罗马数字表示发现的先后次序。

三种限制性核酸内切酶的作用:

Ⅱ类酶识别序列特点---回文结构(palindrome) ---------GGATCC--------- ---------CCTAGG---------

切口 :平端切口、粘端切口 限制性核酸内切酶的主要用途:

①在分子克隆过程中切割DNA 以获取目的基因片段、切割载体形成切口,使目的基因能插入载体。 ②分析限制性片段长度多态性(RFLP),用于遗传病的诊断,法医DNA 指纹分析等。

③用于构建DNA 的物理图谱、基因定位及DNA 同源性分析等。

二、DNA 聚合酶

DNA 聚合酶Ⅰ和Klenow 片段;Taq DNA 聚合酶;逆转录酶;末端脱氧核糖核苷酰转移酶。

⑴DNA 聚合酶Ⅰ和Klenow 片段:

DNA-pol Ⅰ是单一肽链的多功能酶,分子量为103kd ,它具有3种酶活性:①5,→3,聚合酶

活性;②3,→5,核酸外切酶活性;③5,→3,核酸外切酶活性。

用特异的蛋白酶可将DNA-pol Ⅰ水解成小片段和大片段,后者为Klenow 片段。

Klenow 片段的主要功能有:①补齐双链DNA 的3,末端,同时可使3,末端DNA 标记同位

素;②在cDNA 克隆中,合成cDNA 第二链;③DNA 序列分析。

⑵Taq DNA 聚合酶:是一种耐热的DNA 聚合酶,分子量为65 kd ,最佳作用温度是70-80℃,

Taq 酶具有5,→3,聚合酶活性和依赖于聚合作用的5,→3,外切酶活性。

Taq DNA 聚合酶可用于DNA 测序及通过PCR 对DNA 分子的特定序列进行体外扩增。

Zhejiang Provincial Key Lab of Medical Genetics

Bam H ⅠGTC CAG G CCTAG GATCC +GGATCC CCTAGG GTCGAC CAGCTG GAC CTG +平端切口粘端切口工具酶一、限制性核酸内切酶

⑶逆转录酶:是依赖RNA 的DNA 聚合酶,它以RNA 为模板、4种dNTP 为底物,催化合

成DNA ,此过程称为逆转录作用。

逆转录酶的功能:①逆转录作用;②核酸酶H 的水解作用;③依赖DNA 的DNA 聚合酶作用。

⑷末端脱氧核糖核苷酰转移酶:

末端脱氧核糖核苷酰转移酶简称末端转移酶,分子量为60kd ,在二价阳离子存在下,

催化脱氧核糖核苷酸转移到单链或双链DNA 分子的3,末端-OH 上。底物是单链DNA 或有

3,突出末端的双链DNA ,需要Mg 2+参与;底物是平端或3,凹端的双链DNA ,需要Co 2+。

末端转移酶的功能主要有:

①在载体或目的基因3,末端加上互补的同质多聚尾,形成人工粘性末端,便于DNA 重组连接。

②用于DNA 3,末端的同位素探针标记。

三、DNA 连接酶

DNA 连接酶包括大肠杆菌DNA 连接酶和T4 DNA 连接酶两种类型,分子量分别为7500和

6000,两者的辅基不同,前者需NAD +,后者需A TP 。它们催化的反应也不尽相同,大肠杆

菌DNA 连接酶只能连接粘性末端,而T4 DNA 连接酶既能连接粘性末端,又能连接平末端。

四、碱性磷酸酶

碱性磷酸酶的作用是催化去除DNA 、RNA 或dNTP 上的5,-磷酸基团,其主要用途有:

①除去DNA 片段上的5,磷酸,以防自身连接。

②在使用T4多核苷酸激酶和32P 同位素标记前,除去RNA 或DNA 上5,端的磷酸。

五、核酸酶S1

核酸酶S1可水解双链DNA 、RNA 或DNA-RNA 杂交分子中的单链部分,其主要作用是

除去粘性末端以产生平末端、除去cDNA 合成时形成的发夹结构以及分析RNA 的茎环结构

和DNA-RNA 分子的杂交情况。

功能:水解双链DNA 、RNA 或DNA-RNA 杂交体中的单链部分。

核酸酶S1

核酸酶S1 核酸酶S1 第二节 载体

载体指能携带外源DNA 片段导入宿主细胞进行扩增或表达的工具。载体的本质为DNA 。

制备的目的基因或外源性DNA 片段必须与合适的载体连接形成重组体,才能进入受体细胞

并进行复制和表达。载体包括克隆载体和表达载体。

常用的载体有:质粒、噬菌体、粘粒、酵母质粒和病毒等。载体大都经过改造,如质粒改造

后携带某些选择性标记和克隆位点的遗传信息;噬菌体改造后只保留同一种限制酶的单个或

两个切点。在常用的克隆载体中加入一些与表达调控有关的元件(DNA 序列)即为表达载体,

它不仅可携带外源基因片段进入宿主细胞,而且可在宿主细胞中表达外源基因。

载体应具备的特征:

①能自我复制并具较高的拷贝数。分子量一般<10Kb 。

②带有遗传筛选标记。

③有适当的限制酶切位点,便于外源基因的插入和筛选。载体上具有多个限制酶的单一位

点(即在载体其他部位无这些酶的相同位点)称为多克隆位点(multiple cloning sites,MCS)。

+

一、克隆载体:能将载体外源基因在受体细胞中复制扩增并产生足够量目的基因的载体称为克隆载体。

(一)质粒载体

质粒(plasmid)是指细菌染色体以外的小分子环状双链DNA,能自我复制和表达其携带的遗传信息。

质粒的分子量一般为106-108,小型质粒的长度一般为1.5-15Kb。

质粒DNA在细菌中的复制有两种类型:严紧型和松弛型。严紧型质粒的复制需要蛋白

质合成和DNA聚合酶Ⅲ的存在,它的复制与细菌的复制密切相关,每个细胞只有1-5个质

粒。松弛型质粒的复制使用DNA聚合酶Ⅰ,能在没有蛋白质合成的情况下继续复制,每个

细胞内存在10-200个以上质粒(高拷贝),在细胞蛋白质合成及染色体复制停止的情况下,可

继续大量扩增至上千份。

质粒克隆载体的主要用途:①用于保存和扩增< 2Kb目的DNA。②构建cDNA文库。③目

的DNA的测序。④作为核酸杂交时的探针来源。

⑴pBR322质粒载体:

pBR322质粒是由一系列大肠杆菌质粒DNA通过DNA重组技术构建而成的双链克隆载体,长为

4.36Kb。它含有一个能保证高拷贝自我复制的复制起始点(Ori),并装有四环素抗性(Tetr)基因和氨

苄青霉素抗性(Ampr)基因供菌落筛选。在这两个抗性基因中分别含有BamH I和Pst I等限制酶的

单一酶切位点,用于插入外源DNA片段。如有外源基因的插入,会导致这些标志性基因的失活。

⑵pUC18、pUC19质粒载体:

pUC系列载体是由pBR322质粒和M13噬菌体重组构建而成的双链DNA质粒载体。pUC18

和pUC19质粒长约2.69Kb,除多克隆位点互为相反方向排列外,其它序列均相同。PUC质

粒系列还包括pUC8、pUC9和pUC118、pUC119,它们的区别在于MCS的限制酶识别位点

数目不同,而每一对pUC质粒的MCS中限制酶识别位点数目相同、顺序相反。

pUC质粒含Amp r,可供菌落筛选。在载体中装入一个来自大肠杆菌乳糖操纵子的DNA

片段(lacZ'基因),该基因编码β-半乳糖苷酶氨基端的一个片段,IPTG可诱导此片段合成,

而此片段能与宿主细胞所编码的缺陷型β-半乳糖苷酶实现基因内互补(α-互补),形成完整的

β-半乳糖苷酶。

β-半乳糖苷酶能催化指示剂底物5-溴-4-氯-3-吲哚-β-D-半乳糖苷(X-gal)形成蓝色菌落。

pUC载体的lacZ'基因中含有MCS,当外源基因插入MCS,lac α-肽基因阅读框架被破坏,

细菌内将无β-半乳糖苷酶活性,菌落呈白色(即半乳糖苷酶的蓝白斑筛选实验)。

(二)噬菌体载体

噬菌体(bacteriophage, phage):指感染细菌的病毒。

按其生活周期分为两种类型:溶菌性噬菌体和溶原性噬菌体。

溶菌性噬菌体:指噬菌体感染细胞后,连续增殖,直到细菌裂解,释放的噬菌体又可感染其它细菌。

溶原性噬菌体:指噬菌体感染细胞后,可将自身的DNA整合到细菌的染色体中去,和细菌染色体一起复制。

⑴λ噬菌体:

野生型的λ噬菌体是线性双链DNA,全长48.5Kb,其中60%(约30Kb)是溶菌生长所必需,

中间40%的区域为非必需,可被外源DNA片段代替而不影响λ噬菌体的生存。λ噬菌体5'

末端含12核苷酸的互补单链顺序,是天然的粘性末端,称为cos位点,λ噬菌体感染宿主

菌后,其粘端通过碱基配对而结合,形成环状DNA分子。

λ噬菌体的用途主要有:①用作一般的克隆载体;②用于构建基因组或cDNA文库(<22Kb);

③用于抗体库或随机肽库的构建;④核酸的序列分析。

重组噬菌体筛选标记:

外源基因插入型:蓝白斑(LacZ)筛选

外源基因置换型:噬菌斑数目(red和gam基因,转染率高100~100倍)

⑵M13噬菌体:

M13噬菌体含一约6.4Kb的单链(正链)闭环DNA分子。M13噬菌体在细菌内呈溶源状态生

长,成熟的子代噬菌体中只有一条含外源DNA的链(负链)。改造过的M13噬菌体引入了带

有大肠杆菌LacZ的调控序列和N端部分氨基酸的编码信息以及多克隆位点序列,因此也可

用蓝白斑筛选重组体。M13噬菌体载体主要用于目的DNA的测序和单链放射性探针的制备,

克隆的外源DNA一般<1Kb。

M13噬菌体特点:

①野生型M13噬菌体为6.4Kb左右的闭环正链DNA分子。克隆的外源基因片段<1kb。

②M13噬菌体能以单链和双链两种方式存在,可用于感染(经包装的单链DNA)和转化(双链DNA)。

③M13中引入的多克隆位点,正好插入LacZ基因内,可利用蓝白色噬菌斑筛选重组体。

④M13噬菌体只降低宿主细胞的生长速度,而不溶解宿主细胞(呈溶源状态生长,故可从细

菌培养液中获得噬菌体,制备单链DNA)。

⑶黏性质粒(cosmid)

黏性质粒是由质粒和λ噬菌体的cos位点构建而成。它含有①质粒复制的起始位点(ori)、携

带抗药基因、用于插入目的基因的单一酶切位点以及λ噬菌体的cos位点。

黏粒载体的特点:

①粘粒载体大小为4-6Kb,而插入外源基因长达40-50kb。

②加入λ噬菌体头部和尾部蛋白,可将粘粒包装成类似于λ噬菌体的具感染能力的颗粒,

容易进入大肠杆菌。

③粘粒进入细菌后则完全失去噬菌体的功能,而表现质粒的特性。

用途:①克隆大片段DNA;②构建基因组文库。

⑷酵母细胞中克隆基因常用载体

酵母人工染色体(yeast artificial chromosome, YAC)是利用酵母染色体DNA和大肠杆菌

pBR322改造而成,可以插入长达1000 Kb的外源DNA片断。

根据其复制方式不同分为三型:整合型(YIP)、复制型(YRP)和附加体型(YEP)载体,其中YRP

型质粒中插入酵母着丝粒区,构成酵母着丝粒质粒(YCP)载体。

三类载体的共同特点:

①能在大肠杆菌中复制,并具有较高的拷贝数;

②含有在酵母细胞中便于选择的遗传标记;

③含有合适的限制酶切位点,以便插入外源基因。

YIP和YCP载体能稳定遗传但都是单拷贝、转化率低,多用于遗传分析;而YRP和YEP载体对酵母具有很高的转化活性、拷贝数较高但稳定性差,后者较前者稳定,是基因克隆中常用的载体。

⑸动物细胞基因克隆的载体

已构建并经常使用的动物病毒克隆载体有:

猿猴空泡病毒40(SV40)载体;腺病毒载体;逆转录病毒载体。

二、表达载体

表达载体是指能将外源基因在受体细胞中有效转录和正确翻译的载体。

外源目的基因在新宿主细胞中是否克隆成功,是通过鉴定克隆是否表达的方法来证实,

即产生克隆基因所编码的蛋白质,其每个环节都至关重要。真核基因在原核细胞中表达需要

有效转录及一系列调控元件(如强启动子及两侧的调控序列、目的基因表达的正确阅读框架、

终止子等),必须保证外源基因插入方向的正确性,插入的外源基因必须受受原核启动子的

控制,并且外源基因必须能在大肠杆菌中有效转录和有效翻译。基因表达、合成有功能的蛋

白质依赖于基因的有效转录、mRNA正确的翻译和翻译后加工。

为了判断某一待测DNA序列的生物活性,常采用报告基因(reporter gene)方法。

报告基因:是指处于待测基因下游并通过转录和表达水平来反映上游待测基因功能的基因,又称报道基因。(一)原核细胞表达载体

原核细胞的表达载体主要是大肠杆菌表达载体。外源基因在原核细胞中表达需要重要调控元

件。大肠杆菌表达载体是在克隆载体的基础上导入表达系统调控元件:启动子-核糖体结合

位点-克隆位点-转录终止信号。

⑴启动子(promoter):

大肠杆菌表达载体中常用的启动子有乳糖启动子(Lac)、色氨酸启动子(Trp)、人工构建的Tac

启动子(Trp-Lac)以及λ噬菌体P L和P R启动子等。

⑵SD序列:SD序列是核糖体RNA的识别与结合位点。

⑶终止子(terminator):

终止子:一个基因的3,末端有一特定的DNA序列,它具有被RNA聚合酶识别并停止转录

的功能。该序列含有一段富含A/T和富含G/C的回文对称结构,终止子转录后形成的RNA

具有茎环状局部二级结构。

外源基因在原核细胞中的表达载体大致可分为三型:

①非融合型表达载体:如pKK223-3。

②分泌型克隆表达载体:如PINlll系统

③融合型表达载体如pGEX系统

(二)哺乳动物细胞表达载体

真核表达载体的真核表达元件有:启动子/增强子—克隆位点—终止位点和加poly A信号。

(1)原核DNA序列:包括能在大肠杆菌中自身复制的复制子和抗药基因的筛选标记。

(2)启动子:转录起始位点上游25-30bp有富含AT的TATA框,TATA框的上游约100-200bp

处为上游启动子元件。

(3)增强子:是一类显著提高基因转录效率的顺式作用元件。

(4)终止子和加polyA信号

三、穿梭载体

穿梭载体:既能在原核细胞中复制、又能在真核细胞中复制,在原核和真核细胞分子克隆中

均能应用的载体称为穿梭载体(shuttle vector)。

(一)穿梭黏粒载体

穿梭粘粒载体能携带真核DNA片段在细菌内扩增,并通过转染进入哺乳动物细胞进行转录

和表达。这类载体常用于研究目的基因表达调控的组织细胞特性以及它所编码蛋白质的功

能,也可从粘粒基因组文库中筛选出特殊功能基因。

(二)酵母穿梭质粒载体

酵母复制型载体是穿梭质粒载体,它由酵母DNA片段插入到大肠杆菌质粒中构建而成,除

有细菌质粒复制子和抗药性标记外,还有酵母DNA片段提供的选择标记,同时又携带了自

主复制顺序,由于该载体同时含有大肠杆菌和酵母的自主复制基因,故能在两种细胞中存在

和复制。另外,由噬菌体、质粒与SV40病毒DNA元件也可构建成穿梭载体,Pac10重组

病毒-质粒载体也是穿梭载体。

第三节分子克隆的基本步骤

分子克隆技术的基本步骤:①目的基因的获取;②载体的选择;③目的基因和载体的酶切与

连接;④重组DNA导入受体细胞;⑤重组体的筛选和鉴定;即分、切、接、转、筛等过程。

一、目的基因的获取

目的基因:指被研究的某一基因或DNA序列,即需要克隆或表达的基因。

目的基因的制备方法有:从基因文库中获取、逆转录法、人工合成DNA片段以及直接从染

色体DNA中分离目的基因。

(一)从基因文库中获取

基因组文库(genomic library, G-文库)是指含有某种生物全部基因随机片段的重组DNA克隆群。构建基因组文库时,先将原核或真核细胞染色体DNA提纯,通过机械或酶切使之成为

一定大小的片段,将其与适当的载体相连接,经体外包装、转染细菌,得到一组含不同DNA

片段的重组噬菌体颗粒。这个文库中含有基因组内全部基因片段,是一个贮存基因组全部序

列的信息库,故称为G-文库。

真核细胞G-文库DNA中含有较多的重复序列与内含子,一个单拷贝基因只占基因组的10-7

-10-5;而在C-文库中,平均一个目的基因所对应的mRNA占总mRNA的10-4-10-3,相比之

下后者比前者在含量上提高了2-3个数量级,便于提取一个目的基因。

转染(transfection)是指以噬菌体、病毒或以它为载体构建的重组子导入细胞的过程。如以细

胞全部mRNA经逆转录,制备出全套cDNA建库,则称为C-文库。

(二)逆转录法

本法是应用得最多的获取目的基因的方法。但前提是目的基因的序列已知,至少部分已知。选用富含目的基因mRNA的细胞作为实验材料,有利于分离到目的基因。如胰岛素基因的mRNA主要存在于胰腺组织,血红蛋白基因的mRNA占网质红细胞总mRNA的50%-90%。用此法得到的目的基因进行克隆可获得较完整的连续编码顺序,易在宿主细胞中表达及筛选。

(三)人工合成DNA片段

根据已知某种基因的核苷酸序列或某种基因产物的氨基酸序列,可推导出为该多肽编码的核苷酸短序列,再用DNA合成仪人工合成目的基因。此法适用于合成分子量较小的目的基因(100bp以内),如:人生长激素释放因子、血管加压素、干扰素、胸腺素及胰岛素原的基因等。

(四)直接从染色体DNA中分离目基因

根据染色体DNA的限制性内切酶图谱,用适当的限制性内切酶切割染色体DNA、分离目

的基因。本方法较适用于制备原核生物目的基因,其原因为:

①真核细胞染色体DNA有丰富的内含子,它们在原核细胞中转录后不能被剪接。

②真核细胞的基因多数为单拷贝,难以分离到足够量的目的基因。

二、载体的选择

噬菌体和粘性质粒载体常用来构建基因组文库,构建cDNA文库和克隆较小DNA片段常

用pUC系列等质粒,M13噬菌体则用于克隆一些待测的DNA序列。

三、目的基因和载体酶切与连接

⑴黏性末端连接:本法适用于在质粒和目的基因上有相同单或双酶切位点

⑵平末端连接:①质粒和目的基因上没有相同的酶切位点;②人工接头

⑶通过同聚尾连接:

四、重组DNA导入受体细胞

细胞膜结构改变、通透性增加并具有摄取外源DNA能力的细胞称谓感受态细胞(competent cell)。以质粒DNA或以它为载体构建的重组子导入细菌的过程称为转化(transformation)。

五、重组体的筛选和鉴定

(一)遗传标记表型特征筛选

⑴抗生素抗性标记筛选因大多数质粒载体带有抗生素抗性标记的特征(如Ampr、Tetr等),

当带有完整抗性基因的载体转化无抗性细菌后,被转化的阳性菌获得抗生素抗性基因而存

活并形成噬菌斑,未转化菌不能存活,但应排除未重组的空载体。

双抗生素筛选法:某些质粒载体如pBR322质粒中装有Ampr和Tetr抗性基因,在含四环素和氨苄青霉素的平皿上都能够生长的细菌只含有空载体,此筛选方法称为双抗生素对照筛选。

⑵β-半乳糖苷酶基因失活筛选(蓝白斑筛选)

⑶营养标记选择当细胞生物合成途径中某个酶的编码基因失活后,该细胞成为营养缺陷

型,如导入细胞的重组DNA能弥补缺陷的基因,那么,培养基中就不需补充有关的营养

成分,由此可挑选出含重组DNA的阳性细菌。

(二)重组子结构特征的筛选

⑴重组子大小鉴别筛选:从挑选的菌落中分别提取重组载体DNA和原载体DNA,用一种

限制酶切消化后直接进行电泳,重组载体DNA因分子量较大而迁移率较小。

⑵酶切鉴定:根据已知外源基因两端的酶切位点,分别用相应的两种内切酶进行切割,经琼

脂糖凝胶电泳后,可根据DNA mark来分析插入DNA片段的分子量。

⑶PCR筛选法

⑷核酸杂交技术筛选:将DNA的克隆片段或转化细菌平板转移至硝酸纤维素薄膜上,应用

特异性的核酸探针对其进行原位杂交,可筛选出阳性克隆。另外,还可通过斑点杂交和Southern blot杂交技术筛选。

第四节基因工程的应用

一、生命科学基础理论研究中的应用

·在分子生物学领域,利用基因工程技术,大肠杆菌体内的基因50%以上已被定位,其DNA

序列已被测出,基因表达调控关系也基本搞清。

·在真核生物中,利用基因工程的理论和技术已发现上百种癌基因和209余种抗癌基因,它

们分别是细胞增殖调控的正负信号。

·在发育生物学中精细胞的分化及受精过程所发生的变化,基因表达的发育调控的研究与基

因工程技术的应用是密不可分的。

基因工程的理论和技术对人类基因组计划的实现具有重大作用,将对人类基因组作图和

测序,对于了解人类的全部基因构成,提供可资查的一个完美的基因信息库,也为认识人类

遗传疾病和癌发病机理提供有价值的信息。

二、动植物基因工程

⑴转基因动物与蛋白制药的生产

转基因动物可以用来代替发酵罐生产一些珍贵的蛋白质。它的原理是使外来基因在动物乳腺中表达,从乳液中提取所要的蛋白质。

英国的药用蛋白公司用这种方法将转基因绵羊来试行生产人类抗胰蛋白酶因子,在每升羊奶中可取得35克这种蛋白质。

⑵转基因动物与动物改良

⑶转基因动物与人类疾病治疗:裸鼠身上的人造耳朵

⑷转基因动物与基础生物学研究

在佛罗里达州杰克逊维尔的MAYO诊所研究员成功的繁殖出了大脑患有神经纤维缠结,具有人类老年性痴呆症病理特征的小鼠。这只小鼠模拟了人类神经纤维缠结的形成过程,为研究者希望攻克预防、治疗老年性痴呆和其他痴呆症提供了重要的基础。

英国伦敦的一个研究小组把一个来自Y染色体的Sry基因注入基因型为雌性的鼠的胚胎内,结果令人吃惊。这些本来应该发育成雌鼠的胚胎最后竟都长成了雄性鼠。这个结果表明,Sry基因是决定雄性性别的基因。科学家猜测,这个基因很可能在人类中也起着同样的作用。

⑸转基因植物

三、微生物基因工程和发酵工业

·我国已有人干扰素、人白介素2、人集落刺激因子、重组人乙型肝炎疫苗、基因工程幼畜腹泻疫苗等多种基因工程药物和疫苗进入生产或临床试用

·世界上还有几百种基因工程药物及其它基因工程产品在研制中,成为当今农业和医药业发展的重要方向,将对医学和工农业发展作出新贡献

基因工程的现状及发展

基因工程的现状及发展 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

基因工程的现状及发展 研究背景: 迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。 目的意义: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型。 内容摘要: 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA 链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。 成果展示:

基因工程简答题总结

基因工程原理复习题思考题 5、简单叙述同尾酶和同裂酶的差别。 同尾酶:来源不同,识别的序列不同,但能切出相同的粘性末端,连接后不能被相关的酶同时切割。 同裂酶:识别序列相同,切割位点有些相同,有些不同。分完全同裂酶和不完全同裂酶(PS:完全同裂酶:识别位点和切点完全相同。 不完全同裂酶:识别位点相同,但切点不同。) 6、连接酶主要有哪些类型?有何异同点?影响连接酶连接效果的因素主要有哪些? 类型:DNA连接酶和RNA连接酶 异同点: 相同点:都能以DNA为模板,从5'向3'进行核苷酸或脱氧核苷酸的聚合反应。 不同点:DNA聚合酶识别脱氧核糖核苷酸,在DNA复制中起作用;而RNA聚合酶聚合的是核糖核苷酸,在转录中起作用。 7、试分析提高平端DNA连接效率的可能方法。(传说中的网上答案) 1、低温下长时间的连接效率比室温下短时间连接的好。 2、在体系中加一点切载体的酶,只要连接后原来的酶切位点消失。这样可避免载体自连,应该可以大大提高平端连接的效率。 3、足够多的载体和插入片段是最重要的。 4、平端的连接对于离子浓度很敏感 5、尽可能缩小连接反应的体积 6、建议放在四度冰箱连接两天效率更高比14度好 8、基因工程中常用的DNA聚合酶主要有哪些? 1)大肠杆菌DNA聚合酶 2)Klenow fragment 3)T7 DNA聚合酶 4)T4 DNA聚合酶 5)修饰过的T7 DNA聚合酶 6)逆转录酶 7)Taq DNA聚合酶 第四章基因克隆的载体系统 1、作为基因工程载体,其应具备哪些条件? 具有针对受体细胞的亲缘性或亲和性(可转移性); 具有合适的筛选标记; 具有较高的外源DNA的载装能力; 具有多克隆位点(MCS); 具有与特定受体细胞相适应的复制位点或整合位点。 3、载体的类型主要有哪些?在基因工程操作中如何选择载体? 基因工程中常用的载体(vector)主要包括质粒(plasmid)、噬菌体(phage)和病毒(virus)三大类。这些载体均需经人工构建,除去致病基因,并赋予一些新的功能,如有利于进行筛选的标志基因、单一的限制酶切点等。 4、质粒转化原理,影响转化率的因素有哪些?

最新生物制药复习题

第一章绪论 1、生物药物广泛应用于医学各领域,按功能用途可分为三类,分别是()、()、() 2、生物技术制药发展历程经历了飞速发展的四个十年,分别是()、()、()、()。 3、生物技术所含的主要技术范畴有()、()、()、()、()、()、()、()和()。 4、下列哪个产品不是用生物技术生产的() A 青霉素 B 淀粉酶 C 乙醇 D 氯化钠 5、我国科学家承担了人类基因组计划()的测序工作 A 10% B 5% C 1% D 7% 6、生物技术 7、生物技术药物 8、生物技术制药 第二章基因工程制药 1、基因工程药物制造的主要步骤是:()、()、()、()、()、()。 2、目的基因获得的主要方法是()、()、()、()。 3、基因表达的微生物宿主细胞分为2大类。第一类为(),目前常用的主要有();第二类 为(),常用的主要有()。 4、基因工程药物的分离纯化一般不应超过5个步骤,包括()、()、()、()和()。 5、在基因工程药物分离纯化过程中,基因重组蛋白的分离比较困难,可用()、()、()、 ()的方法,达到初步分离的目的。 6、人工化学合成DNA新形成的核苷酸链的合成方向是(),合成的DNA 5’末端是(),3’ 末端是()。 7、凝胶过滤法是依赖()来分离蛋白组分 A、分子大小 B、带电状态 C、分子质量 D、解离状态 8、可用于医药目的的蛋白质和多肽药物都是由相应的()合成的 A RNA B 基因 C 氨基酸 D 激素 9、用反转录法获得目的基因,首先必须获得() P13cDNA文库法 A tRNA B cDNA C rRNA D mRNA 10、那一类细菌不属于原核细胞() A 大肠杆菌 B 枯草芽孢杆菌 C 酵母 D 链霉菌 11、基因工程菌的生长代谢与()无关 A 碳源 B RNA聚合酶 C 核糖体 D产物的分子量 12、基因工程菌的高密度发酵过程中,目前普遍采用()作为发酵培养基的碳源 A 葡萄糖 B 蔗糖 C 甘油 D甘露醇 13、下列那种色谱方法是依据分子筛作用来纯化基因工程药物() A 离子交换色谱 B 亲和色谱 C 凝胶色谱 D气相色谱 简答: 1、基因工程制药的概念? 2、什么是载体?载体主要有哪几种? 3、质粒载体的三种构型是什么?质粒载体的性质?用于克隆表达质粒载体的三个要素是 什么? 4、目的基因常用的制备方法有哪四种?这四种方法的基本步骤是什么?

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

基因工程的现状与发展趋势

题目:基因工程的现状与发展趋势专业:13食品科学与工程 学号:132701105 姓名:盛英奇 日期:2015/7/1

【摘要】从20世纪70 年代初发展起来的基因工程技术,经过40多年来的进步与发展,已成为生物技术的核心内容。生物学成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 【关键词】基因工程技术;应用;前景;现状 一、墓因工程的原理及研究内容 基因工程是人们在揭示生命之谜的过程中建立起来的。早在300多年前,人们就发现,世界上生物尽管种类繁多,千姿百态,但都是细胞(如肉眼看不见的细菌等微生物)或者是由细胞构成的(如现存的200多万种多细胞动植物)。人们还发现,生物有遗传和变异的特征,遗传保证了生物种类的延续不断,变异则赋予生物种的进化,保证生物种类对环境的适应。而生物的所有特性及遗传变异都是由生物体细胞内的遗传物质所决定的,这种遗传物质就是被科学家称之为脱氧核糖核酸(简称DNA)的大分子物质,一般位于生物的细胞核内。DNA是由许多核昔酸连接而成的高分子化合物,如把DNA比喻成长链条,核昔酸就是组成这链条的一个个环节。生物细胞核内的DNA分子是由两条成对的多核昔酸长链互相缠人类开始学会干预生物的变异,即通过杂交、筛选等方式改变生物物种的某些特性,使之有利于人类,如水稻、小麦等作物的育种,家禽家畜优良品系的培育等,它是通过动植物父、母本交配繁殖时,生殖细胞内DNA上相应性状基因互相间可能出现的交换来实现的,这种交换的概率是人们不能控制的,所以选种的过程较为缓慢,需几年乃至几十年的时间,而且亲缘关系相差较远的生物种之间很难杂交。而本世纪}o年代初诞生的基因工程,则是按照人类的需要,从某种生物体的基因组中,分离出带有目的基因(即所需基因)的DNA片段,运用重组DNA技术,对这些DNA片段进行体外操作,把不同来源的基因按照设计的蓝图,重新构成新的基因组(即重组体),再将重组DNA分子插入到原先没有这类DNA 片段的受体细胞(亦称宿主细胞)的DNA上,并使其不仅能“安家落户”,而且能“传种接代”,即能准确地把该外源基因的遗传特性在新的细胞(宿主细胞)里增殖和表达出来。就像一台机器上的零部件拆下来安装到另一台机器上。在生物体中,这种生命零件就是基因。因为用的是工程技术的方法原理,故称基因工程,亦叫遗传工程。用这种方法所形成的杂种DNA分子与神话中的那种狮首、羊身、

基因工程原理练习题及答案

基因工程原理练习题及其答案 一、填空题 1.基因工程是_________年代发展起来的遗传学的一个分支学科。 2.基因工程的两个基本特点是:(1)____________,(2)___________。 3.基因克隆中三个基本要点是:___________;_________和__________。 4.通过比较用不同组合的限制性内切核酸酶处理某一特定基因区域所得到的不同大小的片段,可以构建显示该区域各限制性内切核酸酶切点相互位置的___________。 5.限制性内切核酸酶是按属名和种名相结合的原则命名的,第一个大写字母取自_______,第二、三两个字母取自_________,第四个字母则用___________表示。 6.部分酶切可采取的措施有:(1)____________(2)___________ (3)___________等。 7.第一个分离的限制性内切核酸酶是___________;而第一个用于构建重组体的限制性内切核酸酶是_____________。8.限制性内切核酸酶BsuRI和HaeⅢ的来源不同,但识别的序列都是_________,它们属于_____________。 9.DNA聚合酶I的Klenow大片段是用_____________切割DNA聚合酶I得到的分子量为76kDa的大片段,具有两种酶活性:(1)____________;(2)________________的活性。 10.为了防止DNA的自身环化,可用_____________去双链DNA__________________。 11.EDTA是____________离子螯合剂。 12.测序酶是修饰了的T7 DNA聚合酶,它只有_____________酶的活性,而没有_______酶的活性。 13.切口移位(nick translation)法标记DNA的基本原理在于利用_________的_______和______的作用。 14.欲将某一具有突出单链末端的双链DNA分子转变成平末端的双链形式,通常可采用_________或_______________。15.反转录酶除了催化DNA的合成外,还具有____________的作用,可以将DNA- RNA杂种双链中的___________水解掉。 16.基因工程中有3种主要类型的载体:_______________、_____________、______________。 17.就克隆一个基因(DNA片段)来说,最简单的质粒载体也必需包括三个部分:_______________、_____________、______________。另外,一个理想的质粒载体必须具有低分子量。 18.一个带有质粒的细菌在有EB的培养液中培养一段时间后,一部分细胞中已测 不出质粒,这种现象叫。 19.pBR322是一种改造型的质粒,它的复制子来源于,它的四环素抗性基因来自于,它的氨苄青霉素抗性基因来自于。 20.Y AC的最大容载能力是,BAC载体的最大容载能力是。 21.pSCl01是一种复制的质粒。 22.pUCl8质粒是目前使用较为广泛的载体。pUC系列的载体是通过 和两种质粒改造而来。它的复制子来自,Amp 抗性基因则是来自。 23.噬菌体之所以被选为基因工程载体,主要有两方面的原因:一是;二是。 24.野生型的M13不适合用作基因工程载体,主要原因是 和。 25.黏粒(cosmid)是质粒—噬菌体杂合载体,它的复制子来自、COS位点序列来自,最大的克隆片段达到kb。 26.野生型的λ噬菌体DNA不宜作为基因工程载体,原因是:(1) (2) (3) 。 27.噬菌粒是由质粒和噬菌体DNA共同构成的,其中来自质粒的主要结构是,而来自噬菌体的主要结构是。 28.λ噬菌体载体由于受到包装的限制,插入外源DNA片段后,总的长度应在噬菌体基 因组的的范围内。 29.在分离DNA时要使用金属离子螯合剂,如EDTA和柠檬酸钠等,其目的是 。 30.用乙醇沉淀DNA时,通常要在DNA溶液中加人单价的阳离子,如NaCl和NaAc, 其目的是。 31.引物在基因工程中至少有4个方面的用途:(1) (2) (3) (4) 。 32.Clark发现用Taq DNA聚合酶得到的PCR反应产物不是平末端,而是有一个突出 碱基末端的双链DNA分子。根据这一发现设计了克隆PCR产物的。 33.在cDNA的合成中要用到S1核酸酶,其作用是切除在 。 34.乙醇沉淀DNA的原理是。 35.假定克隆一个编码某种蛋白质的基因,必须考虑其表达的三个基本条件:

生物技术制药考试复习资料整理版

第一章、绪论 1. 生物技术制药:采用现代生物技术,借助某些微生物、植物或动物来生产所需的医药品,称为生物技术制药。 2. 生物技术药物:采用DNA重组技术或其他生物新技术研制的蛋白质或核酸类药物,称为生物技术药物。 3. 生物药物:指运用生物学、医学、生物化学等的研究成果,综合利用物理学、化学、生物化学、生物技术和药学等学科的原理和方法,利用生物体、生物组织、细胞、体液等制造的一类用于预防、治疗和诊断的制品。 4. 现代生物药物四大类型:⑴应用重组DNA技术制造的基因重组多肽,蛋白质类治疗剂; ⑵基因药物 ⑶来自动物、植物和微生物的天然药物; ⑷合成与部分合成的生物药物。 5. 生物药物功能用途分类:⑴治疗药物,⑵预防药物⑶诊断药物。 6. 生物技术制药的特征:⑴高技术⑵高投入⑶长周期⑷高风险⑸高收益 7. 生物技术在制药中的应用:⑴基因工程制药:①基因工程药物品种的开发、②基因工程疫苗、③基因工程抗体、④基因诊断与基因治疗、⑤应用基因工程技术建立新药的筛选模型、⑥应用基因工程技术改良菌种,产生新的微生物药物、⑦基因工程技术在改进药物生产工艺中的应用、⑧利用转基因动、⑨植物生产蛋白质类药物 ⑵细胞工程制药:①单克隆抗体技术、②动物细胞培养 ⑶酶工程制药 ⑷发酵工程制药 8. 我国生物技术制药现状和发展前景(自己阐述观点)

第二章基因工程制药 1.基因工程生产哪些药:⑴免疫性蛋白,如各种抗原和单克隆抗体。⑵细胞因子,如各种干扰素、白细胞介素、集落刺激生长因子、表皮生长因子及凝血因子。⑶激素,如胰岛素、生长激素、心钠素⑷酶类,如尿激酶、链激酶、葡激酶、组织型纤维蛋白溶酶原激活剂及超氧化物歧化酶等。 2. 利用基因工程技术生产药品的优点在于: ⑴利用基因工程技术可大量生产过去难以获得的生理活性蛋白和多肽(如胰岛素、干扰素、细胞因子等),为临床使用建立有效的保障。 ⑵可以提供足够数量的生理活性物质,以便对其生理、生化和结构进行深入的研究,从而扩大这些物质的应用范围。 ⑶利用基因工程可以发现挖掘更多的内源性生理活性物质。 ⑷内源生理活性物质在作为药物使用时,存在不足之处,可以通过基因工程和蛋白质工程读起进行改造。 ⑸利用基因工程技术可以获得新型化合物,扩大药物筛选来源。 3. 上游阶段:是研究开发比不可少的基础,主要是分离目的基因、构建工程菌(细胞)。上游阶段的工作主要咋实验室内完成。 4. 下游阶段:是从工程菌(细胞)的大规模培养直到产品的分离纯化、质量控制等。下游阶段是将实验室成果产业化、商品化。 5. 制备基因工程药物的基本过程:获得目的基因→组建重组质粒→构建基因工程菌(或细胞)→培养工程菌→产物分离纯化→除菌过滤→半成品检定→成品检定→包装 6. 宿主菌应该满足以下要求:⑴具有高浓度、高产量、高产率;⑵能利用易得廉价原料; ⑶不致病、不产生内毒素;⑷发热量低,需氧低,适当的发酵温度和细胞形态;⑸容易进行代谢调控;⑹容易进行重组DNA技术;⑺产物容易提取纯化 7. 宿主细胞分为两大类:⑴原核细胞:大肠杆菌、枯草杆菌、芽孢杆菌、链霉菌等;⑵真核细胞:酵母、丝状真菌 8. 表达载体必须具备以下条件(特点): ⑴载体能够独立地复制 ⑵应具有灵活的克隆位点和方便的筛选标记,以利于外源基因的克隆、鉴定和筛选。而且克隆位点应位于启动子序列后,以使克隆的外源基因得以表达。 ⑶应具有很强的启动子,能为大肠杆菌的RNA聚合酶所识别。 ⑷应具有阻遏子,使启动子收到控制,只有当诱导时候才能进行转录。 ⑸应具有很强的终止子,以便使RNA聚合酶集中力量转录克隆的外源基因,而不转录其他无关的基因,同时很强的终止子所产生的mRNA较为稳定。 ⑹所产生的mRNA必须具有反义的起始信号,即起始密码AUG和SD序列,以便转录后能顺利翻译。 ⒐密码子的偏爱性:在基因组中把使用频率高的同义密码子称为主密码子或偏爱密码子。此现象被称为密码子偏爱性 ⒑融合蛋白:由一条短的原核多肽和真核蛋白结合在一起的,称为融合蛋白。 ⒒酵母的复制序列的几种不同载体:⑴YEp类(酵母附加体质粒) ⑵YRp类(酵母复制型质粒) ⑶YCp类(酵母着丝粒质粒) ⑷Yip类(酵母整合型质粒) ⒓基因工程菌的不稳定性:基因工程菌在传代过程中经常出现质粒不稳定的现象,质粒不稳定分为分裂不稳定和结构不稳定。

基因工程制药复习提纲

名词解释 1.基因工程基因工程是值在体外合成或重组特定的DNA,再与载体连接,最后导入到宿 主细胞内表达、扩增出人们需要的蛋白质,而且使这种性状可遗传给后代的技术。包括上游技术和下游技术。 2.基因工程制药基因工程制药是通过基因工程的方法生产药物,具体包括获得目的基因、 构建重组质粒、构建基因工程菌、培养工程菌、产物分离纯化、产品加工检验等步骤。 3.逆转录逆转录(reverse transcription)是某些RNA病毒由逆转录酶直接利用RNA为模 板合成DNA的过程。 4.CDNA以生物细胞的mRNA为模板,在逆转录酶的作用下合成cDNA的第一条链,然后 在合成双链DNA,并将合成的cDNA双链重组到质粒载体或噬菌体载体上,倒入宿主细胞进行增殖。在这个过程中合成的双链DNA叫做cDNA。 5.引物引物是人工合成的单链DNA小片段,碱基顺序分别与所要扩增的模板DNA双链的 5’端相同。是PCR的起始点。 6.表达载体所谓表达载体(expression vector)是指具有宿主细胞基因表达所需的调节控制 序列,能使外源基因在宿主细胞内转录和翻译的载体。 7.克隆载体克隆载体(cloning vector)是把一个有用的制药DNA片段通过重组DNA技术, 送进受体细胞中进行繁殖的工具。 8.载体载体(vector),指在基因工程重组DNA技术中将DNA片段(目的基因)转移至 受体细胞的一种能自我复制的DNA分子。 9.报告基因载体分子上有一种特殊意义的基因序列,它们表达的目的是为了证明载体已经 进入宿主细胞,并将含有外源基因的宿主细胞从其他细胞中区分并挑选出来。这种基因就是报告基因。 10.启动子启动子是位于结构基因5'端上游的DNA序列,能被RNA聚合酶识别并结合,具 有转录起始的特异性 11.PCR聚合酶链式反应是一种体外放大扩增特定DNA片段的分子生物学技术,它主要包括 变性、退火、延伸三个过程,并且多次循环。 12.包涵体包涵体(inclusion body)是存在于细胞质中的一种不可溶的蛋白质聚集折叠而 形成的晶体结构物。通常包涵体虽然具有正确的氨基酸序列,但是空间结构却是错误的。 13.蛋白表达系统蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过 这个体系实现外源基因在宿主细胞中表达的目的。 14.单克隆抗体由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体,称为 单克隆抗体。 15.基因工程抗体基因工程抗体就是按不同的目的和需求,对抗体基因进行加工、改造和 重新装配,然后导入适当的受体细胞中表达得到的抗体分子。 16.改形抗体改性抗体(reshaped antibody,RAb)是指利用基因工程技术,将人抗体可变区 (V)中互补决定簇序列改换成鼠源单抗互补决定簇。重构成既具有鼠源性单抗的特异性又保持抗体亲和力的人源化抗体。 17.嵌合抗体在基因水平上将鼠源单克隆抗体可变区和人抗体恒定区连接起来并在合适的 宿主细胞中表达,这种抗体叫做嵌合抗体(chimeric antibody)。 18.镶面抗体将鼠源单抗可变区中氨基酸残基改造成人源的,消除了异源性且不影响可变区 的整体空间构象。 19.单链抗体单链抗体(single chain antibody fragment,scFv),是由抗体重链可变区和轻链 可变区通过15~20个氨基酸的短肽(linker)连接而成。scFv能较好地保留其对抗原的亲

《基因工程原理》期末复习思考题教案资料

《医用基因工程》复习思考题 第一章基因和基因组及基因工程的概念 一、名词概念 ①移动基因(插入序列;转位子);②断裂基因;③RNA剪辑; ④内含子(间隔序列)与表达子;⑤重叠基因;⑥重复序列;⑦假基因;⑧启动子与终止子;⑨起始位点、终止位点。 二、讨论题 1.什么叫基因?何谓基因的新概念?基因的主要功能是什么? 2.一种基因一种酶的提法妥否? 3.基因密码子三联体间是否存在着逗号? 4.基因表达的产物中,氨基酸序列相同时,基因密码子是否一定相同?为什么? 5.何谓转位子和转位作用?转位的后果如何? 6.基因中最小的突变单位和重组单位是什么? 7.基因工程应包括哪些内容?何谓基因工程的四大里程碑和三大技术发明? 8.真核细胞基因组中常有内含子存在,能否在原核细胞获得表达?能,为什么?不能,为什么? 第二章基因工程中常用的工具酶 1.什么是限制性核酸内切酶? 2.什么是R/M现象?如何解释? 3.II型核酸内切酶的基本特点有哪些? 4.影响II型核酸内切酶活性的因素有哪些?如何克服和避免这

些不利因素? 5.DNA连接酶有哪两类?有何不同? 6.甲基化酶有哪两类?有何应用价值? 7.什么叫同尾酶、同裂酶?在基因工程中有何应用价值? 8.平末端连接的方法有哪些?(图示) 9.Klenow酶的特性和用途有哪些?举例说明。 10.反转录酶的特性有哪些?有何应用价值? 11.列举碱性磷酸酶BAP/CAP的应用之一。 12.列举末端核苷酸序列转移酶的应用之一。 13.质粒单酶切点的基因连接如何降低本底和防止自我环化和提高连接效率? 14.基因片段与载体的平末端连接的方法有哪些? 15.用寡核苷酸和衔接物DNA的短片段连接时为使基因内部的切点保护,常用何种办法解决? 第三章基因克隆载体 1.基因工程常用的载体有哪5种?其共同特性如何? 2.什么是质粒?质粒分哪几种?有哪两种复制类型,质粒的分子生物学特性有哪些? 3.质粒存在的三种形式是什么? 4.分离质粒的基本步骤有哪些? 5.分离纯化质粒的方法有哪几种?简述CsCl密度梯度(浮密度)分离法、碱变性法的原理,如何选择合适的分离方法? 6.作为理想质粒载体的基本条件有哪些? 7.什么叫插入失活,举例说明之。 8.构建pBR322质粒载体的亲本质粒有哪些? 9.什么叫插入型和替换型噬菌体载体?插入型和替换型入噬菌体

基因工程技术的发展给人类带来的影响

基因工程技术的发展给人类带来的影响 摘要20世纪70年代末至80年代初借助于受精卵原核显微注射和早期胚胎细胞的逆转录病毒感染等手段人们已可将单一的功能基因或基因簇引入高等动物染色体DNA上实现了种系内和种系间细胞的基因转移并由此构建成各种转基因动物。转基因技术在人体中的应用目前仍局限于体细胞的基因治疗方面具有遗传特征修饰的转基因人研究因受到伦理学和法学的束缚而未能跨出第一步但并不意味着在技术上有不可逾越的障碍。事实上多莉绵羊克隆的成功表明人们不仅可以将任何基因转入包括人体在内的任何动物细胞中进行表达而且还能使转基因动物像重组微生物那样无性繁殖。关键词基因工程技术基因治疗实际应用安全隐患人类基因组研究是一项生命科学的基础性研究。有科学家吧基因组图谱看成是指路图或化学中的元素周期表也有科学家把基因谱比作字典但不论是从哪一个角度去阐释破译人类自身基因密码以促进人类健康、预防疾病、延长寿命其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后破译人类和动植物的基因密码为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。最新基因工程技术一反义技术根据目前研究的内容反义技术antisense technology是指根据碱基互补原理用人工合成或生物体合

成的特定互补RNA或DNA片段或其化学修饰产物抑制或封闭基因表达的技术。反义技术理论的形成和发展是以原核生物中天然存在的反义RNA及其调控机理的研究为基础的。在真核生物中一直尚未找到天然存在的反义RNA调控系统但检测出了许多具有互补碱基序列的小分子RNA推测其中一部分可能参与基因表达调控起着类似于反义RNA的作用。反义技术的操作和突变不同能在不破坏目的基因的前提下调控基 因的表达因此它既是阐明基因功能的一种新手段又拓宽了 通过基因工程改良动、植物品质和治疗疾病的途径。反义技术的建立扩展了机体抵御外来微生物的经典免疫学概念 这就是用反义RNA通过核酸分子之间的相互作用可以抑制外源病毒等的侵袭。如用反义RNA已成功地抑制了流感病毒、疱疹病毒和人类免疫缺陷综合症病毒等对所培养的组织细 胞的侵袭。针对植物病毒的反义RNA可使植株产生保护和抗害作用。在癌症及遗传病治疗方面反义技术也同样展现了令人鼓舞的前景。如将携带反义RNA的骨髓白血病MYC基因及编码大肠杆菌黄嘌呤鸟嘌呤磷酸核糖转移酶基因的质粒通 过原生质体融合并引入到前骨髓白血病细胞系获得高水平 表达反义MYC RNA的细胞系其MYC蛋白质比对照组下降70。结果还表明反义RNA不仅能在转录水平而且还能在翻译水平抑制癌基因的表达。反义RNA对细胞内原癌基因的阻抑不仅使细胞增殖力下降还启动了单细胞分化进而使癌变得以缓

基因工程制药复习提纲

名词解释 1. 基因工程基因工程是值在体外合成或重组特定的DNA,再与载体连接,最后导入到宿 主细胞内表达、扩增出人们需要的蛋白质,而且使这种性状可遗传给后代的技术。包括上游技术和下游技术。 2. 基因工程制药基因工程制药是通过基因工程的方法生产药物,具体包括获得目的基因、构建重 组质粒、构建基因工程菌、培养工程菌、产物分离纯化、产品加工检验等步骤。 3. 逆转录逆转录(reverse transcription )是某些RNA病毒由逆转录酶直接利用RNA为模 板合成DNA的过程。 4. CDNA以生物细胞的mRNA为模板,在逆转录酶的作用下合成cDNA的第一条链,然后 在合成双链DNA,并将合成的cDNA双链重组到质粒载体或噬菌体载体上,倒入宿主细胞进行增殖。在这个过程中合成的双链DNA叫做cDNA。 5. 引物引物是人工合成的单链DNA小片段,碱基顺序分别与所要扩增的模板DNA双链的 5'端相同。是PCR的起始点。 6. 表达载体所谓表达载体(expression vector)是指具有宿主细胞基因表达所需的调节控制序列,能 使外源基因在宿主细胞内转录和翻译的载体。 7. 克隆载体克隆载体(cloning vector)是把一个有用的制药DNA片段通过重组DNA技术,送进受 体细胞中进行繁殖的工具。 8. 载体载体(vector),指在基因工程重组DNA技术中将DNA片段(目的基因)转移至 受体细胞的一种能自我复制的DNA分子。 9. 报告基因载体分子上有一种特殊意义的基因序列,它们表达的目的是为了证明载体已经进入宿 主细胞,并将含有外源基因的宿主细胞从其他细胞中区分并挑选出来。这种基因就是报告基因。 10. 启动子启动子是位于结构基因5'端上游的DNA序列,能被RNA聚合酶识别并结合,具 有转录起始的特异性 11. PCR聚合酶链式反应是一种体外放大扩增特定DNA片段的分子生物学技术,它主要包括 变性、退火、延伸三个过程,并且多次循环。 12. 包涵体包涵体(inclusion body)是存在于细胞质中的一种不可溶的蛋白质聚集折叠而形成的晶体 结构物。通常包涵体虽然具有正确的氨基酸序列,但是空间结构却是错误的。 13. 蛋白表达系统蛋白表达系统是指由宿主、外源基因、载体和辅助成分组成的体系,通过这个体系 实现外源基因在宿主细胞中表达的目的。 14. 单克隆抗体由单一B细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体,称为单克隆抗 体。 15. 基因工程抗体基因工程抗体就是按不同的目的和需求,对抗体基因进行加工、改造和重新装配, 然后导入适当的受体细胞中表达得到的抗体分子。 16. 改形抗体改性抗体(reshaped antibody,RAb )是指利用基因工程技术,将人抗体可变区 (V)中互补决定簇序列改换成鼠源单抗互补决定簇。重构成既具有鼠源性单抗的特异性又保持抗体亲和力的人源化抗体。 17. 嵌合抗体在基因水平上将鼠源单克隆抗体可变区和人抗体恒定区连接起来并在合适的宿主细胞中 表达,这种抗体叫做嵌合抗体( chimeric antibody )。 18. 镶面抗体将鼠源单抗可变区中氨基酸残基改造成人源的,消除了异源性且不影响可变区的整体 空间构象。 19. 单链抗体单链抗体(single chain antibody fragment,scFv),是由抗体重链可变区和轻链可变区 通过15?20个氨基酸的短肽(linker)连接而成。scFv能较好地保留其对抗原的亲 和活性,并具有分子量小、穿透力强和抗原性弱等特点。

基因工程技术的发展历史-现状及前景

学号 1234567 基因工程课程论文 ( 2013 届本科) 题目:基因工程技术发展历史、现状及前景 学院:农业与生物技术学院 班级:生物科学 091 班 作者姓名: X X X 指导教师: XXX 职称:教授 完成日期: 2013 年 3 月 16 日 二○一三年三月

基因工程技术发展历史、现状及前景 摘要:生物学已是现代最重要学科之一,而从20世纪70年代初发展起来的基因工程技术,经过30多年来的发展与进步,已成为生物技术的核心。基因工程技术现应用范围涉及农业、工业、医药、能源、环保等诸多领域。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程技术及相关领域将成为21世纪的主导产业之一。 关键词:基因工程技术、发展历史、现状、前景 引言 基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞-DNA 的技术称为“基因系治疗”,通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。 一、基因工程技术的发展历史 (一)基因工程发展简述 人类与动物的许多病害都是由单细胞原核生物——细菌引起的。在一段时间,细菌成为人类的第一大杀手,成千上万的生命被其感染吞噬。虽然青霉素以及磺胺类等搞菌药物的出现拯救了无数的生命,但是,好景不长,青霉素使用不到期10年,即在世界上20世纪50年代中期,就发现了严重的细菌抗药性,并且这种抗药性还具有“传染性”,也就是说,一种细菌的抗药性可以传给另一种细菌。

生物制药 (完整版)

第一章绪论 1、生物技术药物:一般来说,采用DNA重组技术或其他生物技术研制的蛋白质或核酸类 药物。 2、生物药物按其功能用途可以分为三类:(1)治疗药物;(2)预防药物;(3)诊断药物。 3、生物技术药物的特性:(1)分子结构复杂;(2)具有种属特异性;(3)治疗针对性强, 疗效高;(4)稳定性差;(5)基因稳定性;(6)免疫原性;(7)体内的半衰期短;(8)受体效应;(9)多效性和网络效应;(10)检的特异性 4、生物技术制药的特性:高技术;高投入;长周期;高风险;高收益。 第二章基因工程制药 1、基因工程制药的药物都是用传统方法很难生产的珍贵稀有的药品,主要是医用活性蛋白 和多肽类,包括:(1)免疫性蛋白,各种抗原和单克隆抗体。(2)细胞因子,如各种干扰素,白细胞介素,集落刺激生长因子,表皮生长因子及凝血因子。(3)激素,如胰岛素,生长激素,心钠素。(4)酶类,如尿激酶,链激酶,葡激酶,组织型纤维蛋白溶酶原激活剂及超氧化物歧化酶等。 2、我国科学家经过8年刻苦攻关,成功地研制出世界上第一个采用中国健康人白细胞中克 隆的A1B型干扰素基因,组建杂交质粒,传染大肠杆菌使之高效表达的人A1B干扰素。 3、基因工程技术是将所要重组对象的目的基因插入载体,拼接,转入新的宿主细胞,构建 成工程菌,实现遗传物质的重新组合,并使目的基因在工程菌内进行复制和表达的技术。 4、基因工程药物制造的主要步骤:获得目的基因—组建重组质粒—构建基因工程菌—培养 工程菌—产物分离纯化—除菌过滤—半成品检定—成品检定—包装。 5、简单叙事反转录法克隆基因的主要步骤:mRNA的纯化;CDNA第一链的合成;CDNA 第二链的合成;CDNA克隆;将重组体导入宿主细胞;CDNA文库的鉴定;目的CDNA 的分离和鉴定。 6、目前克隆真核基因常用的方法:化学合成和反转录法。 7、基因表达的微生物宿主细胞分为两类:原核生物,目前常用的有大肠杆菌,枯草芽孢杆 菌,链霉菌。真核生物,常用的有酵母,丝状真菌。 8、目前使用最广泛的宿主菌是大肠杆菌和酿酒酵母。 9、影响目的基因在大肠杆菌中表达的因素:(1)外源基因的剂量;(2)外源基因的表达效 率:启动子的强弱;核糖体结合位点的有效性;SD序列和起始密码的间距;密码子组成。(3)表达产物的稳定性;(4)细胞的代谢负荷;(5)工程菌的培养条件。 10、融合蛋白:融合蛋白的氨基端是原核序列,羧基端是真核序列,这样的蛋白质是由 一条短的原核多肽和真核蛋白结合在一起的。 11、非融合蛋白:是指在大肠杆菌中表达的蛋白以真核的mRNA的AUG为起始,在 其氨基端不含任何细菌多肽序列。 12、质粒的不稳定分为分裂不稳定和结构不稳定。 13、质粒的分裂不稳定:是指工程菌分裂时出现一定比例不含质粒的子代菌的现象,它 主要与两个因素有关,一是含质粒菌产生不含质粒子代菌的频率,质粒丢失率与宿主菌,质粒特性和培养条件有关;二是这两种菌比生长速率差异的大小。 14、提高质粒稳定性的方法:选择合适的宿主菌;选择合适的载体;选择压力;分阶段 控制培养;控制培养条件;固定化。 15、接种量:是指移入的种子液体积和培养液的体积的比例。 16、基因工程药物的分裂纯化特点:(1)目的产物在初始物料中含量低;(2)含目的产 物的初始物料组成复杂;(3)目的产物的稳定性差;(4)种类繁多;(5)应用面广。17、分离纯化的基本过程的5个步骤:包括细胞破碎,固液分离,浓缩与初步纯化,高

试述基因及基因工程技术与人类生存与发展之间的关系

试述基因及基因工程技术与人类生存与发展之间的关系 学院:物理科学与工程技术学院姓名:学号: 摘要: 科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。这对我们人类社会一切生物的生存与发展将会带来巨大的影响。 关键字:基因工程,转基因,安全性,人类健康。 1 基因工程 1.1 定义 基因工程(genetic engineering;gene engineering)又名重组脱氧核糖核酸技术(recombinant DNA technique) ,狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因;广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。 1.2 发展 1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。 2 基因工程应用 2.1 农牧业、食品工业 运用基因工程技术,不但可以培养优质、高产、抗性好的农作物及畜、禽新品种,还可以培养出具有特殊用途的动、植物。 2.1.1转基因鱼 生长快、耐不良环境、肉质好的转基因鱼(中国)。 2.1.2.转基因牛 乳汁中含有人生长激素的转基因牛(阿根廷)。 2.1.3转黄瓜抗青枯病基因的甜椒 2.1.4转鱼抗寒基因的番茄 2.1.5转黄瓜抗青枯病基因的马铃薯

基因工程在医学上的发展

基因工程在医学上的发展 【摘要】 基因治疗是目前最具革命性的一项医疗技术。随着人类基因组计划的顺利实施,基因治疗有望成为治疗遗传病、肿瘤、心血管病、病毒感染及其它难治性疾病的有效手段。本文从基因治疗(基因治疗的现状、肿瘤的基因治疗)、基因预防、基因治疗技术、基因治疗存在的问题和未来发展等进行综述。 【关键词】基因治疗基因预防基因治疗技术现状、问题和未来发展 人类的疾病是由于其本身的基因的核苷酸发生变化有关。近年来,基因治疗作为一种安全的、新的疾病治疗手段,在一定程度上取得了重大进展。 基因治疗 基因疗法,就是利用健康的基因来填补或替代基因疾病中某些缺失或病变的基因,目前的基因疗法是先从患者身上取出一些细胞,然后利用对人体无害的逆转录病毒当载体,把正常的基因嫁接到病毒上,再用这些病毒去感染取出的人体细胞,让它们把正常基因插进细胞的染色体中,使人体细胞就可以“获得”正常的基因,以取代原有的异常基因。 一、基因治疗的现状 生物医学的深入研究表明,人类的各种疾病都直接或间接与基因有关。因此,可认为人类的一切疾病都是“基因病”。故人类疾病可分为三大类:一类是单基因病。这类疾病只需一个基因缺陷即可发生,如腺苷脱氨基酶(ADA)缺陷症。二是多基因病。此类疾病的病因大多比较复杂,不但涉及各个基因,往往还与环境因素有关,基因缺陷和疾病表型都具有明显的多样性。Ⅰ型糖尿病、肿瘤、心血管疾病等皆属此类。三是获得性基因病。此乃病原微生物入侵所致,如艾滋病、乙型肝炎等。因此,理论上,人类所有的疾病都可采用基因治疗。 二、肿瘤的基因治疗 目前治疗癌症的基因疗法种类颇多,主要集中在免疫基因治疗、药物敏感性基因治疗、肿瘤抑制基因治疗治疗三个方面。 1免疫基因治疗 常用方法有:①细胞因子基因治疗:将某些细胞因子基因如IL拟2、IL拟4、IL拟6、B7拟1,GM拟CSF等转染肿瘤细胞后,增强机体对肿瘤细胞的免疫反应。②肿瘤抗原基因免疫治疗:将某些肿瘤抗原基因如MHC基因等转染肿瘤细胞,增强肿瘤细胞免疫原性。③反义基因治疗:应用反义核酸在转录和翻译水平,

相关文档
相关文档 最新文档