文档库 最新最全的文档下载
当前位置:文档库 › 铝合金霉变的原因是什么

铝合金霉变的原因是什么

铝合金霉变的原因是什么
铝合金霉变的原因是什么

铝合金霉变的原因是什么?铝合金铸件霉变应该怎么样防治方法?

霉变原因:

铝合金产品保存的环境,温度和湿度适合霉菌生长

铝合金产品表面混有超姐物质,自动向空气吸收水分形成原电池腐蚀反应,营造霉菌适合生长的环境

铝合金由于原电池腐蚀反应,表面析出碱性化合物质,潮解后温度湿度适宜,霉菌生长迅速

铝合金产品表面,有油脂、植物纤维等适合霉菌生长的土壤,一旦湿度温度适宜,霉菌生长迅速

应该怎么防治呢?

不采用含钠盐或镁盐的精炼变质打渣剂,采用NaF成分的精炼变质剂,或N2气精炼

不使用含植物纤维的脱模剂,不使用含植物纤维机加工切削液,更换油基防锈切削液

产品不能长期露天存放,纺织产品表面飞尘堆积

堆放在盏板上的产品包装纸箱要用缠绕膜6面包裹好防水,产品沾过水后需要放置于通风吹吹干。

按照你说的,真的成功了,好开心,谢谢你!

铝合金 常见的质量通病和原因分析及防治措施

附件四: 铝合金模板常见的质量通病和原因分析及防治措施 1轴线位移 现象:在混凝土浇筑完成并拆除墙柱模板以后,出现了墙柱的实际位置与建筑物的轴线位置有偏移。 原因分析:由于铝模板是组装模板,可能是放线时有偏移或者模板拼装时未能按规定到位。再则是墙柱模板根部定位钢筋不牢或者漏焊,发生偏移又未及时纠正而造成累计误差。混凝土浇筑时未均匀对称下料或高度过高造成侧压力大而挤偏模板。对拉螺栓、顶撑使用不当或松动造成轴线偏位。 防治措施:对木工及定位钢筋安装工人进行技术交底。对模板轴线测放后进行技术复核验收,确认无误后才能支模。墙柱根部设可靠的限位措施并保证其位置精确。支模时拉水平、竖向通线,并设控制线。混凝土浇筑前对模板进行全面的检查并及时处理问题。 2 标高偏差 现象:在检查模板板顶标高时出现了偏差,混凝土浇筑完成以后结构层标高出现误差。 原因分析:楼层标高控制点偏少,浇筑混凝土时未按标高施工,标高控制线转测次数过多产生了累计误差。 防治措施:每层设置足够多的标高控制点,浇筑混凝土时按标高施工。剪力墙模板根部必须找平,模板板顶用1m标高控制并严格按

标高施工。建筑楼层标高由首层标高控制,严禁逐层向上引测,以防止累计误差,每一层的标高引测点控制在三个左右。 3 模板和结构变形 现象:经过多次用后模板出现了变形,拆模后发现混凝土出现变形。 原因分析:在模板加固时销钉漏用,背楞未用拉杆拉紧,模板刚度差,梁柱模板卡具间距过大或未夹紧。在上述情况下由于在浇筑混凝土时未能够承受振捣时产生的压力而导致了局部爆模。浇筑墙柱混凝土速度过快或一次浇灌过高也会发生模板的变形。 防治措施:首先要确保模板的承载能力和刚度,梁底和板底的的支撑要足够,剪力墙的背楞要车紧,销钉和销片要足够和加紧。浇筑混凝土时要均匀下料并且严格控制浇灌高度,特别是门窗洞口既要保证混凝土振捣密实,又要防止过分振捣引起模板变形。 4、接缝不严 现象:由于模板间接缝不严有间隙,混凝土浇筑时产生漏浆,混凝土表面出现蜂窝。 原因分析:模板制作时的马虎造成了拼缝过大,模板安装周期长引起的局部变形为及时修整造成裂缝,模板接缝措施不当,梁柱交接部位接头尺寸不准、错位。 防治措施:仔细做好交底,强化工人的意识。模板间嵌缝措施要控制,不能用油毡、塑料布去堵缝。梁柱交接部位支撑要牢靠,拼缝要严密,发生错位要及时校正好。

木箱发霉原因

木箱发霉原因

首先要考虑到季节的原因,因为出口木箱在海运中受到季节影响,不同季节中空气的含水量都是不同的。 其次要考虑到在包装使用的材料是不一样的,通常对于大一点或者重一点的货一般都是使用出口木箱运输,上海钢带木箱提示货物的发霉程度跟木料对于吸水强度的差异也有一定的关系。 最后一个原因可能是集装箱密封条件不达标造成的。在航海运输中,海上空气湿度大,货柜内部在交换的过程中会吸收大量的潮湿空气,内部充满了水蒸气,加之昼夜温差较大。货柜内部的水蒸气发生物理变化,受冷凝结成水珠依附在出口木箱箱板上。且正好此时空气温度、湿度以及木箱板的含水量都在适宜霉菌生长的范围内,所以特别容易发霉。 木卡板在使用过程中,经历过风吹雨淋的,很容易会发发霉,下面小编介绍木卡板发生变及虫害的主要原因有以下3种: 1:梅雨季节已来临,气温上升,持续阴雨,空气湿度大,木卡板等木制品有极高

的风险滋生害虫和害虫繁殖。 2:木卡板或木质包装未经深度杀虫处理、未经熏蒸除害处理或者处理方法比较原始、简单,导致虫害发生。 3:木卡板生产企业成品库容量不够大,成品存放在加工车间内,条件相对简陋,堆放场所没有达到成品库的条件,处理好的成品易被交叉感染害虫。 解决办法:将木料进行烘干或风干处理,再制作木托、木卡板,这样可以有效防止产品霉变。 熏蒸处理:主要杀灭虫害,一般在货物出口前21天内进行。 使用防霉剂使用防霉剂使用防霉剂使用防霉剂:国内比较常用防霉剂为五氯酚钠(NaPCP),用于木材保护已有50多年的历史,而且抑制木材霉变和腐朽非常有效。但是,自从发现氯代酚类化合物中含有致癌物后,氯代酚类化合物就逐步被越来越多的国家禁止使用了(如日本、美国)。 木卡板的广泛应用可以大大提高整个物流系统作业效率和有效降低物流成本。木卡板应尽量防止阳光暴晒,避免导致老化,缩短运用寿数。可是,跟着木卡板质料的不断创新,新式的共聚聚丙烯木卡板逐步适用于各种室外环境下运用。长时间的室外运用也不易老化、变形。

墙体产生“发霉”的原因

墙体霉菌介绍: 墙体霉菌又称为墙体霉斑、墙癌等,是建筑、防水、清洗服务行业多年以来始终没有得到彻底解决的一大难题,墙体霉菌在室内和室外均能生长,孢子粉随空气流动,遇有相应潮湿、温暖的环境就会粘附物体表面并迅速繁殖蔓延,它不但破坏居室美观,更重要的是直接危害着人们的身心健康和居室的生活环境。但在我国,这个问题一直没有得到应有的重视,使许多人因此患病久治不愈却找不到真正的病因。 墙体霉菌严重危害: 长期接触和吸入霉菌,可引发呼吸道疾病和过敏症状等,例如支气管炎、扁桃体炎、花粉热、哮喘病等;免疫力低的人还可能因此引起头疼、发烧、皮肤或黏膜发炎等。并且霉菌还可隐藏大量肝炎病毒以及流感病毒等,所以专家提醒公众“要经常注意居室除霉”。前不久,报纸一篇纪实报道《墙上生霉菌,全家人中毒,七龄童睡梦中窒息昏迷》百度搜索可见)引起人们对墙体霉菌的充分重视。为了您与家人的健康,清除墙体霉菌是当务之急! 墙体霉菌产生原因: 房屋质量方面: (1)施工质量和工艺较差,导致门窗在安装时与墙体间出现缝隙,墙体砌筑时抹灰不饱满等,形成冷(热)桥; (2)外墙体本身的保温没有做好,造成墙体透寒,导致墙体冰冷,室内水蒸气就会在墙体上结晶成水滴,墙体潮湿了就会发霉长毛; (3)墙体防水没做好或管线有渗漏点,导致潮湿长毛。 住户方面: (1)在房屋使用过程中,不注意通风,导致室内湿度过大,潮湿的墙体极易粘附室内空气中含营养成分的漂浮物,生成霉菌; (2)未等墙体干透即行装修,将湿气封闭在墙体当中,也会导致墙体发霉长毛; (3)使用了劣质室内装饰材料,在一定的温度湿度下易产生霉菌。 墙体霉菌去除方法: 一般意义的防止方法一是加强室内通风;二是降低室内湿度。 很多人认为墙壁起了霉菌,用抹布把霉菌抹去或者把墙壁重新粉刷一遍就可以解决,其实这是个非常错误的想法,这样做只能临时起到消除或覆盖作用,不能彻底消除,肉眼看不见并不等于根除,过一段时间霉菌会再次显现出来,并且越来越严重。因为墙体霉菌是一种生命力极强的菌群,不彻底消除其生长环境或杀灭其菌群,遇有相应环境就会迅速繁殖蔓延。因此,要想彻底清除墙体霉菌可以采取如下方法: 选用优质建材重新做彻底的墙体改造,做好外墙体外保温(注意,是外保温,外墙体外保温和外墙体内保温是完全不同的),阻断墙体对热的传导,只做外墙体内保温是不能根本性解决问题的,见过太多太多只做了外墙体内保温层,而墙体霉菌依然不断滋生的案例。(这种方法相当于重新装修)

铝合金压铸件的标准

铝合金压铸件的标准公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

铝合金压铸件 1 范围 本标准规定了铝合金压铸件(以下简称压铸件)的材质、尺寸公差、角度公差、形位公差、工艺性要求和表面质量。 本标准适用于照相机、光学仪器等产品的铝合金压铸件。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 6414—1999 铸件尺寸公差与机械加工余量 GB/T 11334—1989 圆锥公差 JIS H 5302—1990 压铸铝合金 3 压铸铝合金 压铸铝合金选用JIS H 5302—1990中的ADC10。 ADC10的化学成分表1给出。其中铜的含量控制在不大于 %。 :245 MPa; a ) 抗拉强度σ b b ) 伸长率δ5 :2 %; c ) 布氏硬度HBS(5/250/30):80。 4 铸件尺寸公差 压铸件尺寸公差的代号、等级及数值 压铸件尺寸公差的代号为CT。尺寸公差等级选用GB/T 6414—1999中的CT3 ~ CT8。一般(未注)公差尺寸的公差等级基本规定为:照相机零件按CT6,其他产品零件按CT7。尺寸公差数值表2给出。 壁厚尺寸公差 壁厚尺寸公差一般比该压铸件的一般公差粗一级。例如:一般公差规定为CT7,壁厚公差则为CT8。当平均壁厚不大于 mm时,壁厚尺寸公差则与一般公差同级,必要时,壁厚尺寸公差比一般公差精一级。 公差带的位置 尺寸公差带应相对于基本尺寸对称分布,即尺寸公差的一半为正值,另一半取负值。当有特殊要求时,也可采用非对称设置,此时应在图样上注明或在技术文件中规定。 对于有斜度要求的部位,其尺寸公差应沿斜面对称分布。

不同变质处理对铝合金组织性能的影响

不同变质处理对铝合金组织性能的影响 摘要:在铸造Al-15%Si合金熔炼过程中分别加入变质剂P盐、P盐+Al-Sr中间合金对其进行变质处理,分析不同变质剂及它们的复合形式对合金力学性能和显微组织的影响。实验结果表明,P盐和Al-Sr 中间合金都对合金组织有一定的细化作用,其中P盐主要细化初晶硅,P盐+Al-Sr中间合金的复合变质剂能同时细化初晶硅和共晶硅。实验证明加入复合变质剂后合金的显微组织细化程度最高,力学性能最为优越。 关键词:铸造Al-Si合金、变质处理、显微组织、性能 引言 铝合金是目前采用最多的轻金属合金材料,而铸造Al-Si系列合金是铝合金系中应用最早、最广泛的铝合金,它是重要的合金之一,具有优异的铸造性能,良好的力学性能与物理化学性能。它是目前研究和应用最为广泛的铸造铝合金,其产量占铸铝总产量的80%~90%,适用于各种铸造方法。因此,研究Al-Si系列合金的组织性能特点,进一步探寻在普通生产工艺中强化铝硅合金性能的方法,具有重要的理论意义和工程应用价值。 铸造Al-Si合金具有良好的力学性能、铸造性能和切削性能,广泛应用于航空航天和你汽车工业。Al-Si未变质处理时,共晶Si以粗大的针、片状存在,严重割裂了合金基体,降低了合金的强度和塑性。Sr对共晶硅起到很好的变质作用,同时却促进了粗大的柱状和树枝状

Al晶粒的形核生长,这说明对铸造Al-Si合金仅变质处理是不够的,还有必要对枝晶进行等轴化和细化,消除这种组织对合金力学性能的不利影响。 本文采用了不同的变质剂对Al-15%Si合金进行变质处理,研究了变质处理对合金组织的影响规律,同时初步探讨变质剂对Al-Si合金的细化变质机理。 1、实验方案设计 1.1材料的选择 本实验的目的在于研究不同变质剂对于铝合金组织及其性能的影响,为了实验的顺利进行以及实验过程之中出现较少的干扰因素,选择二元Al-Si合金作为本次实验的研究对象,由于变质处理作用的主要机制在于改变铸态下的Si的形态、数量及其分布,再加之合金液体要具有相对较好的流动性,最终确定Al-15Si作为实验材料。 1.2实验设备 1)锭模的选择 由于实验的需要和操作过程的顺利进行,选择金属型模具。 2)熔炼设备 坩埚电阻炉、温度控制器、其它工具、石墨坩埚、石墨搅拌棒、配套的热电偶、天平、钟罩、撇渣勺、浇勺、夹钳等。 3)金像显微设备 金相显微镜,型号:ZEISS-Imager

玻璃发霉的原因及处理方法 ()

玻璃发霉的原因及处理方法 一、概述 用传统的熔融法制备玻璃产品工艺过程中,为了降低成本,选用了纯碱为助熔剂,随之而带来的是玻璃制品在一定条件下易风化(俗称发霉)。 玻璃发霉是储运过程中出现的问题,发霉后的玻璃制品表面会失去光泽,失去透明,呈现彩虹、白斑或贴片现象(不易分离)等。 玻璃发霉通常发生在浮法玻璃的空气面(上面),这是因为浮法玻璃下表面与锡液接触,表面渗入一层薄锡,对玻璃起了保护作用。 二、玻璃发霉可分为下列几个阶段: 1.最初,水或潮气吸附在玻璃表面。 2.随后,水或潮气向玻璃内扩散。 3.表面层中的可溶性硅酸盐被水解和破坏。首先是硅酸钠和硅酸钾等被水解和破坏。 形成的苛性钠(NaOH)并分离出SiO2。 4.分离出来的SiO2生成硅氧凝胶,在玻璃表面形成保护性薄膜,它阻止了进一步的侵蚀作用。 5.水解形成的苛性钠,与空气中的二氧化碳作用生成碳酸钠,聚集在玻璃表面,构成表面膜中的可溶性盐。由于它的强吸湿性,吸收水分而潮解,最后形成碱液小滴。当周围的温度、湿度改变时,这些小滴的浓度也随之变化。如果浓缩的碱液小滴和玻璃长期接触时,凝胶状硅氧薄膜可在其中部分地被溶解,而使玻璃表面发生严重的局部侵蚀,形成斑点。这是钠离子从玻璃本体中迁移出去,与空气反应生成的白色富碱离子群。扫描电镜可观察到白色粒子群。 三、玻璃发霉与哪些因素有关 四、发霉的识别和检查方法

目测外观形貌法是最简洁可行的方法。既在集中的强光下,将试样放置在反射光和透射光中观察玻璃表面有无斑点和雾状物。这些斑点和雾状物用布或水擦不掉。出现上述现象的玻璃,表示试样已经发霉。如果在集中的强光下,肉眼观察到少数斑点和薄雾状物属轻微发霉。如果在集中的强光下,肉眼观察到很多斑点和轻雾状物属中等发霉。如果在没有集中的光束照射下,肉眼观察到一些斑点和雾状物属严重发霉。 发霉也可在自然光下,通过喷雾湿润法观察到。 五、轻微的发霉的处理 六、发霉的防止

铝合金霉变的原因分析

一、铝合金压铸件,存放过程中,外观出现原先没有的斑点,主要有下面2种原因引起: 1、铸造铝合金的腐蚀 2、铸造铝合金的霉变 二、什么是铝合金的腐蚀铝合金和环境间发生化学或电化学相互作用而导致合金成分变化、性能受损的现象。铝合金的腐蚀主要分为两种:1、铝合金与酸、碱溶液产生化学反应,形成含铝离子的溶液; 2、铝合金在电解质溶液中发生“原电池腐蚀”; 三、什么是铝合金的霉变霉变是由微生物引起的,在一定的温度和湿度下(10~40℃,25~40℃为最活跃温度,湿度>65%),微生物在铝合金表面繁殖生长,造成局部呈现可以擦除的灰白色斑块。 四、铝合金霉变的原因1、铝合金产品保存的环境,温度和湿度适合霉菌生长; 2、铝合金产品表面,混有潮解物质,自动向空气吸收水分,形成"原电池腐蚀反应",营造霉菌适合生长的环境; 3、铝合金由于"原电池腐蚀反应",表面析出碱性化合物质,潮解后,湿度温度适宜,霉菌生长迅速; 4、铝合金产品表面,有油脂、植物纤维等适合霉菌生长的"土壤",一旦湿度温度适宜,霉菌生长迅速; 五、铝合金铸件霉变的防止方法1、不采用含Na盐或Mg盐的精练变质打渣剂,采用C2Cl6、Na2SiF6和NaF成分的精练变质剂,或N2气精练; 2、不使用含植物纤维的脱模剂,更换质量较好的脱模剂; 3、不使用含植物纤维机加工切削液,更换油基防锈切削液; 4、产品不能长期露天存放,防止产品表面飞尘堆积; 5、堆放在盏板上的产品包装纸箱,需要用缠绕膜6面包裹好,防水; 6、产品沾过水后,需要放置于通风处吹干。 铝合金压铸件发霉的原因分析: 其一,外部环境因素。铝是活泼金属,在一定的温度和湿度条件下极易氧化,或发霉,这是铝本身特性决定的。 其二,自身的内部因素。当然,除了外部环境因素,压铸铝件自身的内部因素也不能忽视,比如很多厂家压铸、机加工工序之后,不做任何清洁处理,或者简单的用水冲冲,无法做到彻底清洗干净,压铸铝表面残留有脱模剂、切削液、皂化液等腐蚀性物质,以及其他污渍,这些又加快铝合金压铸件长霉点; 其三,工艺设计不合理。铝合金压铸件在清洗或压检后处理不当,为铝合金压铸件发霉创造了条件,加速霉变的生成; 其四,选用清洗剂不得当。清洗具有强腐蚀性,造成压铸铝腐蚀氧化。 其五,仓储管理不到位。存放仓库不同的高度时,发霉的状况也不同。 采取对策: 从压铸铝发霉的原因分析,我们不难得出这样的结论:防氧化问题非单一因素造成的,他涉及内外部、工艺、仓储等多个方面。同时清洗、压检、存放、运输等各个过程都需要考虑防氧化,哪个环节出现问题,都会长霉点给你看。故这是一个综合问题,需制定整体解决方案。宁波安科纳润滑科技有限公司从清洗剂、防氧化剂、工艺、存放环境、存放方式等角度出发,解决了铝合金压铸件发霉的难题,并可提供压铸铝清洗、存放各个过程的防氧化解决方案。宁波安科纳润滑科技最新环保清洗剂具有以下特点: 1、综合成本低,超浓缩、稀释后使用;铝合金除霉清洗剂1:9兑水,防锈水1:100兑水

铝合金压铸技术要求

1、范围 本标准规定了铝合金压铸件的技术要求、试验方法、检验规则、交货条件等。本标准适用于汽车发电机铝合金端盖压铸件。 2、引用标准 GB6414铸件尺寸公差 GB6987.1-GB6987.16铝及铝合金化学分析方法 GB288-87金属拉力试验法 GB/T13822-92 压铸有色合金试样 GB6060.5 表面粗造度比较样块抛(喷)丸、喷吵加工表面 3、技术要求 3.1 压铸铝合金的牌号 压铸铝合金采用UNS-A03800(美国A380.0,日本ADC10) 可选用材料UNS-A03830 (美国383.0,日本ADC12) 化学成份见表1 表1

供应商可选择上述四种牌号的任何一种,如在生产过程中更换其它牌号,需重新进行样件鉴定。 3.1.1回炉料使用规定 3.1.1.1回炉料分类 一级回炉料:浇道、化学成份合格的废铸件,后加工次品等不含水分和油污。 二级回炉料:集渣包、坩埚底部剩料、退货废品、存放时间长(超过10天)的一级回炉料。 三级回炉料:飞边、溅屑、细小的碎料、带有油污的渣料、因化学成份报废的铸件、从铝渣中捡出的铝粒。 3.1.1.2回炉料使用比例 使用单一某级回炉料: 一级回炉料最大使用量50%,二级回炉料最大使用量40%。 一级、二级回炉料混合使用: 回炉料总量不超过40%,其中二级回炉料最大使用量20%。 三级回炉料: 不能直接使用,必须经过重熔、精炼且化学成份分析合格后才能使用,其最大使用量10%,仅与铝锭混合使用。 3.1.1.3加料循序 小颗粒回炉料大块回炉料铝锭,如此循环。 3.2 力学性能 采用单铸拉力试样检验,其力学性能应满足抗拉强度≥240Mpa,伸长率≥1%,

铝合金压铸件的标准

铝合金压铸件 1 范围 本标准规定了铝合金压铸件(以下简称压铸件)的材质、尺寸公差、角度公差、形位公差、工艺性要求和表面质量。 本标准适用于照相机、光学仪器等产品的铝合金压铸件。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 6414—1999 铸件尺寸公差与机械加工余量 GB/T 11334—1989 圆锥公差 JIS H 5302—1990 压铸铝合金 3 压铸铝合金 3.1 压铸铝合金选用JIS H 5302—1990中的ADC10。 3.2 ADC10的化学成分表1给出。其中铜的含量控制在不大于2.8 %。 a ) 抗拉强度σ b :245 MPa; b ) 伸长率δ5 :2 %; c ) 布氏硬度HBS(5/250/30):80。 4 铸件尺寸公差 4.1 压铸件尺寸公差的代号、等级及数值 压铸件尺寸公差的代号为CT。尺寸公差等级选用GB/T 6414—1999中的CT3 ~CT8。一般(未注)公差尺寸的公差等级基本规定为:照相机零件按CT6,其他产品零件按CT7。尺寸公差数值表2给出。 4.2 壁厚尺寸公差 壁厚尺寸公差一般比该压铸件的一般公差粗一级。例如:一般公差规定为CT7,壁厚公差则为CT8。

当平均壁厚不大于1.2 mm时,壁厚尺寸公差则与一般公差同级,必要时,壁厚尺寸公差比一般公差精一级。 4.3 公差带的位置 尺寸公差带应相对于基本尺寸对称分布,即尺寸公差的一半为正值,另一半取负值。当有特殊要求时,也可采用非对称设置,此时应在图样上注明或在技术文件中规定。 对于有斜度要求的部位,其尺寸公差应沿斜面对称分布。 单位为毫米 4.4 公差增量和错型值 受分型面及型芯的影响而引起的固定增量和错型值,已包含在尺寸公差数值之内。当需进一步限制错型值时,则应在图样上注明其允许的最大错型值。 4.5 尺寸公差标注 4.5.1 标注公差尺寸采用极限偏差标注尺寸公差(见示例1)。 10+。 示例1: 10±0.18 ,26.010.0 10+-, 36.00 4.5.2 未注公差尺寸采用公差代号标注尺寸公差(见示例2)。当按未注公差基本规定的等级时,允许不作说明。 示例2: 一般公差按GB/T 6414 – CT7 。 4.5.3 当需进一步限制错型值时,应注明其允许的最大错型值(见示例3)。

饲料霉变的主要原因以及防霉措施

江苏农牧科技职业学院毕业设计(论文) 题目:饲料霉变的主要原因以及防霉措施 姓名:宋达 学号:201211060 二级院系部:动物科技学院 班级: 牧医125 专业:畜牧兽医 指导教师:尤明珍职称:教授 指导教师:彭继伟职称:讲师 二〇一五年六月

江苏农牧科技职业学院毕业论文(设计)饲料霉变的主要原因以及防霉措施 宋达 【摘要】饲料霉变已经成为当今养殖业一大忧患,霉变饲料不能继续使用造成浪费和经济损失,如果继续给畜禽食用,会导致畜禽采食量下降,饲料利用率低,畜禽生长发育缓慢。另外霉变饲料产生的霉菌毒素还会侵害畜禽的肝脏和免疫系统,导致肝硬化坏死和畜禽免疫力下降,继而诱发多种疾病,对养殖业和人类健康带来严重危害。因此饲料霉变饲料防霉已成为养殖业必须重视和关注的问题。所以就饲料霉变的原因、危害、措施进行探讨。 【关键词】饲料;霉菌毒素;霉变;防霉

饲料霉变的主要原因以及防霉措施 The Main Reason of Moldy Feed and the Measures of Mold Proof 【Abstract】Moldy feed has become a major worry in today's aquaculture industry, moldy feed can not be used will result in waste and economic loss, and If you continue to offer the moldy feed to livestock, it will reduce their feed intake and the feed’s utilization rate, the most important, it will slow down the growth and the development of livestock. In addition, the moldy toxin produced by the moldy feed will hurt animal’s liver and immune system, lead to cirrhosis, liver necrosis and the reduction of animal’s immune function, thus induce a variety of diseases which bring serious harm to aquaculture industry and human health. Therefore, moldy feed and mold proof has become a serious problem to which aquaculture industry must pay more attention. So I want to discuss this problem, that is, moldy feed’s reasons, harms and solutions. 【Key words】Feed, Moldy toxin, Mildew, Mold proof

铝合金压铸件的标准

铝合金压铸件的标准 2010-01-25 10:08 铝合金压铸件 GB/T 15114-94 1.主题内容与适用范围 本标准规定了铝合金压铸件的技术要求,质量保证,试验方法及检验规则和交货条件等. 本标准适用于铝合金压铸件. 2.引用标准 GB1182 形状和位置公差代号及其标准 GB2828 逐批检查计数抽样程序及抽样表(适用于连续的检查) GB2829 周期检查计数抽样程序及抽样表(适用于生产过程稳定性的检查) GB6060.1 表面粗糙度比较样块铸造表面 GB6060.4 表面粗糙度比较样块抛光加工表面 GB6060.5 表面粗糙度比较样块抛(喷)丸,喷砂加工表面 GB6414 铸件尺寸公差 GB/T11350 铸件机械加工余量 GB/T15115 压铸铝合金 3.技术要求 3.1化学成分 合金的化学成分应符合GB/T15115的规定. 3.2力学性能 3.2.1当采用压铸试样检验时,其力学性能应符合GB/T15115的规定 3.2.2当采用压铸件本体试验时,其指定部位切取度样的力学性能不得低于单铸试样的75%,若有特殊要求,可由供需双方商定. 3.3压铸件尺寸

3.3.1压铸件的几何形状和尺寸应符合铸件图样的规定 3.3.2压铸件尺寸公差应按GB6414的规定执行,有特殊规定和要求时,须在图样上注明. 3.3.3压铸件有形位公差要求时,其标注方法按GB1182的规定. 3.3.4压铸件的尺寸公差不包括铸造斜度,其不加工表面:包容面以小端为基准,有特殊规定和要求时,须在图样上注明. 3.4压铸件需要机械加工时,其加工余量按GB/T11350的规定执行.若有特殊规定和要求时,其加工作量须在图样上注明. 3.5表面质量 3.5.1铸件表面粗糙度应符合GB6060.1的规定 3.5.2铸件不允许有裂纹,欠铸,疏松,气泡和任何穿透性缺陷. 3.5.3铸件不允许有擦伤,凹陷,缺肉和网状毛刺等腰三角形缺陷,但其缺陷的程度和数量应该与供需双方同意的标准相一致. 3.5.4铸件的浇口,飞边,溢流口,隔皮,顶杆痕迹等腰三角形应清理干净,但允许留有痕迹. 3.5.5若图样无特别规定,有关压铸工艺部分的设置,如顶杆位置,分型线的位置,浇口和溢流口的位置等由生产厂自行规定;否则图样上应注明或由供需双方商定. 3.5.6压铸件需要特殊加工的表面,如抛光,喷丸,镀铬,涂覆,阳极氧化,化学氧化等须在图样上注明或由供需双方商定. 3.6内部质量 3.6.1压铸件若能满足其使用要求,则压铸件本质缺陷不作为报废的依据. 3.6.2对压铸件的气压密封性,液压密封性,热处理,高温涂覆,内部缺陷(气孔,疏孔,冷隔,夹杂)及本标准未列项目有要求时,可由供需双方商定. 3.6.3在不影响压铸件使用的条件下,当征得需方同意,供方可以对压铸件进行浸渗和修补(如焊补,变形校整等)处理. 4质量保证 4.1当供需双方合同或协议中有规定时,供方对合同中规定的所有试验或检验负责.合同或协议中无规定时,经需方同意,供方可以用自已适宜的手段执

饲料霉变的原因分析

饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析: 一、原料的验收入库和仓储: 原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作: 1、原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。 水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺陷等原因常造成局部水分超标产生结块进而霉变。 可以通过霉菌检测了解原料中的霉菌总数是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异味;用手或温度计测定原料是否有发热现象等措施来判断原料是否发生霉变。 在夏季仓虫不仅是某些储存原料损耗加大的直接原因,而且它们在生长发育、繁殖和迁移过程中所产生的代谢物会严重污染粮食。更为严重的是,仓虫的活动会导致原料发热,招致微生物的滋生与发展,引发或加速霉变。在仓虫中以螨虫对霉变的影响最大。螨虫属蜱螨目,粉螨科;不完全变态类型,体躯微小人们肉眼难以发现。在潮湿温暖的环境下,螨虫通常在谷物、饲料中以及在运输、加工设备中大量繁殖,极易引发霉变。饲料中生长螨虫也已成为客户对加工厂饲料投诉的理由之一,所以要监测和控制仓虫的数量特别是螨虫的情况。拒收被螨虫污染的原料。 2. 加强原料入库后的储存管理 水分、温度和空气相对湿度是影响霉菌和仓虫繁殖的主要因素。原料入库时,应按不同品种、批次分开码堆,粮垛码堆不宜过高过大,堆与墙、堆与堆之间留有20~50cm左右的距离,以利通风散热。长期储存的季节性原料或吸湿性强的

颗粒饲料霉变的原因分析和相应措施精品文档5页

颗粒饲料霉变的原因分析和相应措施 饲料行业竞争日益激烈,使饲料储存周期延长,饲料霉变问题成为夏季困绕饲料生产的主要问题之一。霉变降低了饲料的营养价值,影响了适口性更为严重的是造成饲料产品霉菌毒素超标,危害动物健康从而危害人类食品安全。为了防止饲料霉变,各厂家采取了很多措施,收到了一定的效果。但是由于霉变原因受很多方面因素的影响;从原料验收入库到饲料成品到达养殖现场整个物流过程中只要任何一个环节防霉措施不力都有可能发生霉变。下面就每一个环节可能引起霉变的因素和需要采取的措施分别加以分析: 一、原料的验收入库和仓储: 原料是产品质量的基础,严重的饲料质量问题几乎都与原料有关。饲料原料中允许一定量的水分、霉菌和仓虫存在,但是数量超过国家标准规定的允许数量后,原料的价值迅速下降,更为严重的是会造成原料霉变。变质的原料被生产成饲料后容易诱发霉变,即使饲料不发生霉变也会影响饲料的卫生指标和适口性。因此在原料的验收入库和仓储环节需要作好以下工作: 1、原料在采购前,除检测其营养指标之外,还应控制原料的水分、微生物指标和仓虫的种类数量。 水分是霉菌生长繁殖最重要的影响因素之一。一般玉米、稻谷、麦类等原生态谷物的水分应不高于14%;大豆、次粉、糠麸类、豆粕等的水分应低于13%;棉粕、菜粕、花生粕、鱼粉、肉骨粉、骨粉等的水分应小于12%。水分超标的原料不耐储存,容易发霉。对于棉粕、菜粕等经加工过的原料还需要关注局部水分有无超标,因为即使平均水分很低但由于生产厂家的工艺缺陷等原因常造成局部水分超标产生结块进而霉变。 可以通过霉菌检测了解原料中的霉菌总数是否超标。对于没有条件进行霉菌检测的企业,可通过了解原料的生产日期、生产工艺、贮存条件;观察原料的颜色外观是否正常,是否有结团现象;用嗅觉判断原料的气味是否正常,有无异味;用手或温度计测定原料是否有发热现象等措施来判断原料是否发生霉变。

木箱发霉原因

首先要考虑到季节的原因,因为出口木箱在海运中受到季节影响,不同季节中空气的含水量都是不同的。 其次要考虑到在包装使用的材料是不一样的,通常对于大一点或者重一点的货一般都是使用出口木箱运输,上海钢带木箱提示货物的发霉程度跟木料对于吸水强度的差异也有一定的关系。 最后一个原因可能是集装箱密封条件不达标造成的。在航海运输中,海上空气湿度大,货柜内部在交换的过程中会吸收大量的潮湿空气,内部充满了水蒸气,加之昼夜温差较大。货柜内部的水蒸气发生物理变化,受冷凝结成水珠依附在出口木箱箱板上。且正好此时空气温度、湿度以及木箱板的含水量都在适宜霉菌生长的范围内,所以特别容易发霉。 木卡板在使用过程中,经历过风吹雨淋的,很容易会发发霉,下面小编介绍木卡板发生变及虫害的主要原因有以下3种: 1:梅雨季节已来临,气温上升,持续阴雨,空气湿度大,木卡板等木制品有极高的风险滋生害虫和害虫繁殖。 2:木卡板或木质包装未经深度杀虫处理、未经熏蒸除害处理或者处理方法比较原始、简单,导致虫害发生。 3:木卡板生产企业成品库容量不够大,成品存放在加工车间内,条件相对简陋,堆放场所没有达到成品库的条件,处理好的成品易被交叉感染害虫。 解决办法:将木料进行烘干或风干处理,再制作木托、木卡板,这样可以有效防止产品霉变。 熏蒸处理:主要杀灭虫害,一般在货物出口前21天内进行。 使用防霉剂使用防霉剂使用防霉剂使用防霉剂:国内比较常用防霉剂为五氯酚钠(NaPCP),用于木材保护已有50多年的历史,而且抑制木材霉变和腐朽非常有效。但是,自从发现氯代酚类化合物中含有致癌物后,氯代酚类化合物就逐步被越来越多的国家禁止使用了(如日本、美国)。 木卡板的广泛应用可以大大提高整个物流系统作业效率和有效降低物流成本。木卡板应尽量防止阳光暴晒,避免导致老化,缩短运用寿数。可是,跟着木卡板质料的不断创新,新式的共聚聚丙烯木卡板逐步适用于各种室外环境下运用。长时间的室外运用也不易老化、变形。

铝合金压铸件砂孔标准

1. SCOPE 适用范围: This specification applies for aluminum-alloy die casting porosity definition. It based on original spec of ASTM E505, but not for substitute of original spec, it only provide more comprehensive interpretion, so as to use with original spec. The requirement would override the original spec when conflict. 本规范涵盖了所有铝合金压铸砂孔的要求。本规范参照美国材料实验协会标准ASTM E505的原始规范,但不取代原规范,仅提供更全面的说明,所以原规范必须使用。当本规范和原规范的内容矛盾时,本规范要求取代原规范内容。 2. SPECIFICA TION 规范: Reference radiographs for aluminum-alloy die casting

3. POROSITY LEVEL 0.50~0.70mm 3个/10cm2 0.7~1. 0mm 1个/10cm20.50~1.0mm 5个/10cm2 1.0~1.5mm 1个/10cm2 0.50~1.5mm 10个/10cm2 1.5~4.0mm 1个/10cm2 0.50~4.0mm 15个/10cm2 4.0~10mm 1个/10cm2 4. REMARK 备注: Unless special explanation, void with size of ≦0.5mm will not be considered as porosity, and this apply to inside and on the surface porosity of aluminum-alloy die casting! 如果没有特别说明,0.50mm及以下的气孔不作为砂孔的评估控制范围内,此要求适用于铝合金压铸件的内部和加工表面! 5. REFERENCE 参考文献: ASTM E505 Reference radiographs for Inspection of Aluminum and Magnesium Die Castings 铝合金及镁合金压铸件X射线检查规范 ASTM B85 Standard Specification for aluminum-alloy die castings 压铸铝合金的标准规范 GB/T 13822-92 T est specimens for non ferrous die casting alloys 压铸有色合金的检测试样

铝合金阳极氧化常见故障分析及预防

铝合金阳极氧化常见故障分析及预防 [摘要] 重点介绍铝合金硫酸阳极氧化工艺中经常发生的故障,分析故障产生的原因,采取有效预防措施,可以减少故障发生,保证其质量。 0 前言 铝的阳极氧化是以铝或铝合金作阳极,以铅板作阴极在硫酸、草酸、铬酸等水溶液中电解,使其表面生成氧化膜层。其中硫酸阳极氧化处理应用最为广泛。铝和铝合金硫酸阳极氧化氧化膜层有较高的吸附能力,易进行封孑L或着色处理,更加提高其抗蚀性和外观。阳极氧化膜层厚一般3~15μm,铝合金硫酸阳极氧化工艺操作简单,电解液稳定,成本也不高,是成熟的工艺方法,但在硫酸阳极化过程中往往免不了发生各种故障,影响氧化膜层质量。认真总结分析故障产生的原因并采取有效预防措施,对提高铝合金硫酸阳极氧化质量有重要 的现实意义。 1 常见故障及分析 (1)铝合金制品经硫酸阳极氧化处理后,发生局部无氧化摸,呈现肉眼可见的黑斑或条 纹,氧化膜有鼓瘤或孔穴现象。此类故障虽不多见但也有发生。 上述故障原因,一般与铝和铝合金的成分、组织及相的均匀性等有关,或者与电解液中所溶解的某些金属离子或悬浮杂质等有关。铝和铝合金的化学成分、组织和金属相的均匀性会影响氧化膜的生成和性能。纯铝或铝镁合金的氧化膜容易生成,膜的质量也较佳。而铝硅合金或含铜量较高的铝合金,氧化膜则较难生成,且生成的膜发暗、发灰,光泽性不好。如果表面产生金属相的不均匀、组织偏析、微杂质偏析或者热处理不当所造成各部分组织不均匀等,则易产生选择性氧化或选择性溶解。若铝合金中局部硅含量偏析,则往往造成局部无氧化膜或呈黑斑点条纹或局部选择性溶解产生空穴等。另外,如果电解液中有悬浮杂质、尘埃或铜铁等金属杂质离子含量过高,往往会使氧化膜出现黑斑点或黑条纹,影响氧化膜的抗 蚀防护性能。 (2) 同槽处理的阳极氧化零件,有的无氧化膜或膜层轻薄或不完整,有的在夹具和零件接触处有烧损熔蚀现象。这类故障在流酸阳极氧化工艺实践中往往较多发生,严重影响铝合 金阳极氧化质量。 由于铝氧化膜的绝缘性较好,所以铝合金制件在阳极氧化处理前必须牢固地装挂在通用或专用夹具上,以保证良好的导电性。导电棒应选用铜或铜合金材料并要保证足够接触面积。夹具与零件接触处,既要保证电流自由通过,又要尽可能减少夹具和零件间的接触印痕。接触面积过小,电流密度太大,会产生过热易烧损零件和夹具。无氧化膜或膜层不完整等现象,主要是由于夹具和制件接触不好,导电不良或者是由于夹具上氧化膜层未彻底清除所致。

饲料发霉的原因分析

饲料发霉的原因分析 我国的一些地区,因高温高湿而导致饲料霉变的问题非常严重,特别像今年这种恶劣的天气引起饲料发霉更多,从而导致的纠纷案件也相应较多。为了减少饲料厂家、经销商以及用户的共同利益,减少饲料发霉导致的多方损失,现将饲料发霉的原因及预防措施介绍如下: 1、饲料发生霉变的原因 (1)空气湿度和环境温度 饲料发霉实际上是霉菌大量生长和繁殖的结果,而霉菌在饲料中生长和繁殖需要一定的温度和湿度。饲料中常见的霉菌有:曲霉菌属、青霉菌属和镰刀菌属。其中大部分属于温性型微生物,最适生长温度一般为22-30℃。其中曲霉菌属最适生长温度为30℃左右,青霉菌属为25℃左右,镰刀菌属为22℃左右。上述几种霉菌对环境湿度要求较高,最适的相对湿度在80%以上。因此,霉菌的生长和繁殖与地区气候条件和季节密切相关。从全国范围来说,南方地区和华中地区大大高于北方地区。我国南方地区,5-9月份个月平均气温均在22℃以上,相对湿度在80%以上,这种高温高湿的环境条件,特别是梅雨季节,霉菌生长繁殖最为旺盛,饲料霉变大多发生在这个季节。今年5-7月份整个湖北省均为梅雨季节,长期的梅雨季节导致空气湿度在85%以上,环境温度在22-30℃,在这种条件下霉菌大量生长繁殖,导致饲料发霉的情况非常普遍,给饲料厂、经销商以及用户造成严重的经济损失。 (2)饲料水分高,饲料温度与环境温差大引起 当饲料水分高于14%时,在储存时容易发霉。饲料水分高于14%最要是生产配合饲料时没经过干燥和冷却,而现在的大型饲料加工厂冷却设备性能很好,使饲料水分控制在12%以内,一般不会直接导致饲料发霉。但是当饲料经过运输或其他地方储存时经过暴晒使饲料温度升高,当环境温度下降时,导致环境与饲料之间形成一个温差,从而使饲料包装袋边缘形成一层“汽水”(好比冬天在屋子里一样,屋内外的温差会使玻璃上会形成一层水珠)。导致饲料包装袋内边缘水分升高从而导致发霉。 (3)饲料加工不当 在生产颗粒料时,冷却器出现异常,导致饲料温度较高,因温差大而因其发霉(饲料厂打包时要求饲料与环境温差不超过3℃,因此可以避免此类情况的发生)。冷却器出现异常还会直接导致饲料水分高(饲料水分检测作为出场检验的必检指标,一般不会发生)。 其次,在饲料制粒过程中,提升料斗和管道中积存的物料可形成霉块,脱落后进入城品仓和包装袋,引起整包饲料发霉。这种情况发生的比例很少,不会导致成批饲料发霉。 (4)饲料储存与运输不当 饲料仓库潮湿,饲料包装破损(上下货、运输、鼠害等),饲料存放的位置未经清扫,地面有物料而先发霉从而传染饲料(霉菌污染有接触传染性)。饲料堆垛不合理,库存时间长,运输和存放过程中受到雨淋,暴晒等,都极易引起饲料霉变。

6063铝合金型材氧化缺陷原因分析及解决

6063铝合金型材氧化缺陷原因分析及解决 1问题的提出 在实际生产中,加工率大(ε>95%),壁厚较薄(δ≤1.5mm)的T5状态的6063铝合金挤压型材在经硫酸阳极氧化处理后,其表面会呈现有规律(而有时无规律)分布的白色斑点(或无光斑痕);严重时呈现深色斑痕——“白斑”。“白斑”的分布规律及特征是:它是在平行于挤压方向的平面上大致等间距的、呈线状或扁四边形状或不规则星点(片)状的、相对于基体表面有微小深度而呈凹槽形的一种表面缺陷。白斑通常分布于型材的一个或几个表面,有时会分布在型材的所有表面(对薄壁空心型材,则是分布于某一平面或曲面的内外两侧)。 2原因分析 在现场见到,“白斑”形成于“碱蚀”工序,在经随后的稀硝酸(或硫酸)“中和”之后,并未消失;经硫酸阳极氧化处理后,又更加清晰地呈现出来。 笔者专门截取了两段“白斑”点面积较大(F=30~40mm2)的碱蚀洗(槽液中,ω(Zn2+)≥5×106)型材试样。然后,采用DV-5型原子发射火花直读光谱仪分别对上述两段试样的“白斑”区的成分做了定量分析,其结果如下(表中数据均为质量分数): 由表1的分析结果可见:“白斑”处Si、Mg、Zn元素的含量明显增加:而表2的结果表明:“白斑”处Si、Zn元素的含量明显增加,而Mg元素的含量却有所下降。从金属材料腐蚀的观点看来,Mg2Si这种表面缺陷实质上是6063铝合金材料发生“剥落腐蚀”的结果。剥落腐蚀是一种浅表面的选择腐蚀,腐蚀是沿着金属表面发展的,其产物的体积往往比发生腐蚀的金属大得多,因而膨胀。一般而言,当铝与呈阴极性的异种金属相邻接时,“剥落腐蚀”程度上升。在电子显微镜下观察发现:“剥落腐蚀”通常沿不溶组成物(如Si,Mg2Si等),或沿晶界进行。 2.1铸锭质量的影响 6063铝合金的主要相组成是:α(Al)固溶体、游离Si(阳极相)和F eAl3(阳极相);当铁含量大于时,有β(F e Si Al)(阳极相);而当铁含量小于时,有α(F e Si Al)(阴极相);其他可能的杂质相是:MgZn2、CuAl2等。 生产中,由于非平衡结晶过程而获得的6063铝合金铸锭往往存在宏观偏析或晶内偏析现象。因此,铸锭中的Si、Mg、Zn、Cu等元素分布不均匀。而一些铝型材加工企业缘于经济方面的因素,一般很少对小规格(如φ100mm以下)的铸锭进行均匀化退火处理,以消除偏析现象[2],从而为“白斑”的产生创造了条件。 2.2挤压—热处理工艺的影响 为提高生产效率,在生产操作中,常采用低温高速挤压,由于挤压速度引起的“热效应”使制品在模具出口处的淬火温度大大提高,而在固定出料台上与表面温度为80~110℃(或略低)的石墨板(或轮)接触时,型材表面就会因受到“急冷换热”作用而使该部分的合金元素Mg、Si的浓度比正常部位的偏高一些。在随后的人工时效过程中,该部位就会析出粗大的β′(Mg2Si)相;未经均匀化退火处理且加热温度偏低的6063铝合金铸锭由于挤压时所引起

相关文档